Understanding Self-Training for Gradual Domain Adaptation

Ananya Kumar 1 Tengyu Ma 1 Percy Liang 1

Abstract

Machine learning systems must adapt to data distributions that evolve over time, in applications ranging from sensor networks and self-driving car perception modules to brain-machine interfaces. Traditional domain adaptation is only guaranteed to work when the distribution shift is small; empirical methods combine several heuristics for larger shifts but can be dataset specific. To adapt to larger shifts we consider gradual domain adaptation, where the goal is to adapt an initial classifier trained on a source domain given only unlabeled data that shifts gradually in distribution towards a target domain. We prove the first non-vacuous upper bound on the error of self-training with gradual shifts, under settings where directly adapting to the target domain can result in unbounded error. The theoretical analysis leads to algorithmic insights, highlighting that regularization and label sharpening are essential even when we have infinite data. Leveraging the gradual shift structure leads to higher accuracies on a rotating MNIST dataset, a forest Cover Type dataset, and a realistic Portraits dataset.

1. Introduction

Machine learning models are typically trained and tested on the same data distribution. However, when a model is deployed in the real world, the data distribution typically evolves over time, leading to a drop in performance. This problem is widespread: sensor measurements drift over time due to sensor aging (Vergara et al., 2012), self-driving car vision modules have to deal with evolving road conditions (Bobu et al., 2018), and neural signals received by brain-machine interfaces change within the span of a day (Farshchian et al., 2019). Repeatedly gathering large sets of labeled examples to retrain the model can be impractical, so we would like to leverage unlabeled examples to adapt the model to maintain high accuracy (Farshchian et al., 2019; Sethi and Kantardzic, 2017).

The traditional solution to adapt to the distribution shift is unsupervised domain adaptation, but existing methods are only guaranteed to work when the distribution shift is small—when the source and target distributions cannot be easily distinguished from each other (Zhao et al., 2019). To adapt to larger shifts, recent empirical papers propose combining several heuristics (Hoffman et al., 2018; Shu et al., 2018), but these methods can be brittle, working well on some datasets but not on others (Peng et al., 2019) and requiring substantial tuning for new domains.

In many real applications the domain shift does not happen at one time, but happens gradually, although this structure is ignored by most domain adaptation methods. We show that the gradual shift structure allows us to reliably adapt to very different distributions, both in theory and practice. We analyze self-training (also known as pseudolabeling), a method for semi-supervised learning (Chapelle et al., 2006) that has led to state-of-the-art results on ImageNet (Xie et al., 2020) and adversarial robustness on CIFAR-10 (Uesato et al., 2019; Carmon et al., 2019; Najafi et al., 2019).

Intuitively, it is easier to handle smaller shifts, but for each shift we can incur some error so the more steps, the more degradation—making it unclear whether leveraging the gradual shift structure is better than directly adapting to the tar-
Figure 2. The source classifier w_0 gets 100% accuracy on the source domain (Figure 2a), where we have labeled data. But after 3 time steps (Figure 2d) the source classifier is stale, classifying most examples incorrectly. Now, we cannot correct the classifier using unlabeled data from the target domain, which corresponds to traditional domain adaptation directly to the target. Given unlabeled data in an intermediate domain (Figure 2b) where the shift is gradual, the source classifier pseudolabels most points correctly, and self-training learns an accurate classifier (show in green) that separates the classes. Successively applying self-training learns a good classifier on the target domain (green classifier in Figure 2d).

Our results: We analyze gradual domain adaptation in two settings. The key challenge for domain adaptation theory is dealing with source and target domains that are very different, for example where the source and target can be easily discriminated / distinguished (Zhao et al., 2019; Shu et al., 2018), which are typical in the modern high-dimensional regime. The gradual shift structure inherent in many applications provides us with leverage to handle adapting to target distributions that are very different.

Our first setting, the margin setting, is distribution-free—we only assume that at every point in time there exists some Lipschitz classifier that can classify most of the data correctly with a margin, where the classifier may be different at each time step (so this is more general than covariate shift), and that the shifts are small in Wasserstein-infinity distance. The classifier can be non-linear. A simple example (as in Figure 2) shows that a classifier that gets 100% accuracy can get 0% accuracy after a constant number of time steps. Directly adapting to the final target domain also gets 0% accuracy. Gradual self-training does better, letting us bound the error after T steps: $\text{err}_T \leq e^{\alpha T} (\alpha_0 + O(1/\sqrt{n}))$, where α_0 is the error of the classifier on the source domain, and n is the number of unlabeled examples in each intermediate domain. While this bound is exponential in T, this bound is non-vacuous for small α_0, and we show that this bound is tight for gradual self-training.

In the second setting, stronger distributional assumptions allow us to do better—we assume that $P(X \mid Y = y)$ is a d-dimensional isotropic Gaussian for each y. Here, we show that if we begin with a classifier w_0 that is nearly Bayes optimal for the initial distribution, we can recover a classifier w_T that is Bayes optimal for the target distribution with infinite unlabeled data. This is an idealized setting to understand what properties of the data might allow self-training to do better than the exponential bound.

Our theory leads to practical insights, showing that regularization—even when we have infinite data—and label sharpening are essential for gradual self-training. Without regularization, the accuracy of gradual self-training drops from 84% to 77% on Portraits and 88% to 46% on rotating MNIST. Even when we self-train with more examples, the accuracy gap between regularized and unregularized models stays the same—unlike in supervised learning where the benefit of regularization diminishes with more examples.

Finally, our theory suggests that the gradual shift structure helps when the shift is small in Wasserstein-infinity distance as opposed to other distance metrics like the KL-divergence. For example, one way to interpolate between the source and target domains is to gradually introduce more images from the target, but this shift is large in Wasserstein-infinity distance—we see experimentally that gradual self-training does not help in this setting. We hope this gives practitioners...
some insight into when gradual self-training can work.

2. Setup

Gradually shifting distributions: Consider a binary classification task of predicting labels $y \in \{-1, 1\}$ from input features $x \in \mathbb{R}^d$. We have joint distributions over the inputs and labels, $\mathbb{R}^d \times \{-1, 1\}$: P_0, P_1, \ldots, P_T, where P_0 is the source domain, P_T is the target domain, and P_1, \ldots, P_{T-1} are intermediate domains. We assume the shift is gradual: for some $\epsilon > 0$, $\rho(P_t, P_{t+1}) < \epsilon$ for all $0 \leq t < T$, where $\rho(P, Q)$ is some distance function between distributions P and Q. We have n_0 labeled examples $S_0 = \{(x_i^{(0)}, y_i^{(0)})\}_{i=1}^{n_0}$ sampled independently from the source P_0 and n unlabeled examples $S_t = \{(x_i^{(t)})\}_{i=1}^{n}$ sampled independently from the source P_t for each $1 \leq t \leq T$.

Models and objectives: We have a model family Θ, where a model $M_\theta : \mathbb{R}^d \to \mathbb{R}$, for each $\theta \in \Theta$, outputs a score representing its confidence that the label is 1 for the given example. The model’s prediction for an input x is $\text{sign}(M_\theta(x))$, where $\text{sign}(r) = 1$ if $r \geq 0$ and $\text{sign}(r) = -1$ if $r < 0$. We evaluate models on the fraction of times they make a wrong prediction, also known as the 0-1 loss:

$$\text{Err}(\theta, P) = \mathbb{E}_{x,y \sim P}[\text{sign}(M_\theta(x)) \neq y]$$

The goal is to find a classifier θ that gets high accuracy on the target domain P_T—that is, low $\text{Err}(\theta, P_T)$. In an online setting we may care about the accuracy at the current P_t for every time t, and our analysis in this setting as well.

Baseline methods: We select a loss function $\ell : \mathbb{R} \times \{-1, 1\} \to \mathbb{R}^+$ which takes a prediction and label, and outputs a non-negative loss value, and we begin by training a source model θ_0 that minimizes the loss on labeled data in the source domain:

$$\theta_0 = \arg \min_{\theta \in \Theta} \frac{1}{n_0} \sum_{(x_i, y_i) \in S_0} \ell(M_\theta(x_i), y_i)$$

The non-adaptive baseline is to use θ_0 on the target domain, which incurs error $\text{Err}(\theta_0, P_T)$. Self-training uses unlabeled data to adapt a model. Given a model θ and unlabeled data S, $\text{ST}(\theta, S)$ denotes the output of self-training. Self-training pseudolabels each example in S using M_θ, and then selects a new model θ' that minimizes the loss on this pseudolabeled dataset. Formally,

$$\text{ST}(\theta, S) = \arg \min_{\theta' \in \Theta} \frac{1}{|S|} \sum_{x_i \in S} \ell(M_{\theta'}(x_i), \text{sign}(M_\theta(x_i)))$$

Here, self-training uses “hard” labels: we pseudolabel examples as either -1 or 1, based on the output of the classifier, instead of a probabilistic label based on the model’s confidence—we refer to this as label sharpening. In our theoretical analysis, we sometimes want to describe the behavior of self-training when run on infinite unlabeled data from a probability distribution P:

$$\text{ST}(\theta, P) = \arg \min_{\theta' \in \Theta} \mathbb{E}_{x \sim P}[\ell(M_{\theta'}(x), \text{sign}(M_\theta(x)))]$$

The direct adaptation to target baseline takes the source model θ_0 and self-trains on the target data S_T, and is denoted by $\text{ST}(\theta_0, S_T)$. Prior work often chooses to repeat this process of self-training on the target k times, which we denote by $\text{ST}_k(\theta_0, S_T)$.

Gradual self-training: In gradual self-training, we self-train on the finite unlabeled examples from each domain successively. That is, for $i \geq 1$, we set:

$$\theta_i = \text{ST}(\theta_{i-1}, S_i)$$

Let $\text{ST}(\theta_0, (S_1, \ldots, S_T)) = \theta_T$ denote the output of gradual self-training, which we evaluate on the target distribution P_T. As defined here, gradual self-training uses more data than directly adapting to the target, but we account for this in our theory and experiments.

3. Theory for the margin setting

We show that gradual self-training does better than directly adapting to the target, where we assume that at each time step there exist some Lipschitz classifier—which can be different at each step—that can classify most of the data correctly with a margin (a standard assumption in learning theory), and that the shifts are small. Our main result (Theorem 3.2) bounds the error of gradual self-training. We show that our analysis is tight for gradual self-training (Example 3.4), and explain why regularization, label sharpening, and the ramp loss, are key to our bounds. Proofs are in Appendix A.

3.1. Assumptions

Models: We consider a model family Θ_R where each model M_θ, for $\theta \in \Theta_R$, is R-Lipschitz in the input in ℓ_2 norm for some fixed $R > 0$. That is, for all $x, x' \in \mathbb{R}^d$:

$$|M_\theta(x) - M_\theta(x')| \leq R \|x - x'\|_2$$

An example is the set of regularized linear models that have weights with bounded ℓ_2 norm:

$$\Theta_R^L = \{(w, b) : w \in \mathbb{R}^d, b \in \mathbb{R}, \|w\|_2 \leq R\}$$

In this case, given $(w, b) \in \Theta_R^L$, the model’s output is $M_{w,b}(x) = w^\top x + b$. Our theory applies to non-linear models that are Lipschitz, but it may help the reader to think of linear models on a first reading.
Losses: We consider margin loss functions such as the hinge and ramp losses. Intuitively, a margin loss encourages a model to classify points correctly and confidently—by keeping correctly classified points far from the decision boundary. We consider the hinge function h and ramp function r:

$$h(m) = \max(1 - m, 0)$$

$$r(m) = \min(h(m), 1)$$

The ramp loss is $\ell_r(y, y) = r(y \hat{y})$, where $\hat{y} \in \mathbb{R}$ is a model’s prediction, and $y \in \{-1, 1\}$ is the true label. The hinge loss is the standard way to enforce margin, but the ramp loss is more robust towards outliers because it is bounded above—no single point contributes too much to the loss. We will see that the ramp loss is key to the theoretical guarantees for gradual self-training because of its robustness. We denote the population ramp loss as:

$$L_r(\theta, P) = \mathbb{E}_{X, Y \sim P} [\ell_r(M_\theta(X), Y)]$$

Given a finite sample S, the empirical loss is:

$$L_r(\theta, S) = \frac{1}{|S|} \sum_{x, y \in S} \ell_r(M_\theta(x), y)$$

Distributional distance: Our notion of distance is W_∞, the Wasserstein-infinity distance. Intuitively, W_∞ moves points from distribution P to Q by distance at most ϵ to match the distributions. For ease of exposition we consider the Monge form of W_∞, although the results can be extended to the Kantarovich formulation as well. Formally, given probability measures P, Q on \mathcal{X}:

$$W_\infty(P, Q) = \inf \{ \sup_{x \in \mathbb{R}^d} ||f(x) - x||_2 : f : \mathbb{R}^d \to \mathbb{R}^d, f \# P = Q \}$$

As usual, $\#$ denotes the push-forward of a measure, that is, for every set $A \subseteq \mathbb{R}^d$, $f \# P(A) = P(f^{-1}(A))$.

In our case, we require that the conditional distributions do not shift too much. Given joint probability measures P, Q on the inputs and labels $\mathbb{R}^d \times \{-1, 1\}$, the distance is:

$$\rho(P, Q) = \max(W_\infty(P_{X|Y=1}, Q_{X|Y=1}), W_\infty(P_{X|Y=-1}, Q_{X|Y=-1}))$$

α^*-low-loss assumption: Assume every domain admits a classifier with low loss α^*, that is there exists $\alpha^* \geq 0$ and for every domain P_t, there exists some $\theta_t \in \Theta_R$ with $L_r(\theta_t, P_t) \leq \alpha^*$ (θ_t can be different for each domain).

Gradual shift assumption: For some $\rho < \frac{1}{\pi}$, assume $\rho(P_t, P_{t+1}) \leq \rho$ for every consecutive domain, where $\frac{1}{\pi}$ can be interpreted as the regularization strength of the model class Θ_R or as the geometric margin (distance from decision boundary to data) the model is trying to enforce.

Bounded model complexity assumption: For finite sample guarantees, we assume that the Rademacher complexity of the model family, $R_n(\Theta_R; P)$, is bounded for all distributions P_0, \ldots, P_T. That is, for some fixed $B > 0$:

$$R_n(\Theta_R; P) \leq \frac{B}{\sqrt{n}}, \quad \forall P = P_0, \ldots, P_T$$

where $R_n(\Theta_R; P)$ is defined as usual as:

$$R_n(\Theta_R; P) = \mathbb{E} \left[\sup_{\theta \in \Theta_R} \frac{1}{n} \sum_{i=1}^{n} \sigma_i M_\theta(x_i) \right]$$

where the expectation is taken over $Y = 1$ labels does not change: $P_t(Y)$ is the same for all t.

3.2. Domain shift: baselines fail

While the distribution shift from P_t to P_{t+1} is small, the distribution shift from the source P_0 to the target P_T can be large, as visualized in Figure 2. A classifier that gets 100% accuracy on P_0, might classify every example wrong on P_T, even if $T \geq 2$. In this case, directly adapting to P_T would not help. The following example formalizes this:

Example 3.1: *Even under the α^*-low-loss, no label shift, gradual shift, and bounded model complexity assumptions, there exists distributions P_0, P_1, P_2 and a source model $\theta \in \Theta_R$ that gets 0 loss on the source ($L_r(\theta, P_0) = 0$), but high loss on the target: $L_r(\theta, P_2) = 1$. Self-training directly on the target does not help: $L_r(ST(\theta, P_2), P_2) = 1$. This holds true even if every domain is separable, so $\alpha^* = 0$.*

Other methods: Our analysis focuses on self-training, but other bounds do not apply in this setting because they either assume that the density ratio between the target and source exists and is not too small (Jiayuan et al., 2006), or that the source and target are similar enough that we cannot discriminate between them (Ben-David et al., 2010).

3.3. Gradual self-training improves error

We show that gradual self-training helps over direct adaptation. For intuition, consider a simple example where $\alpha^* = 0$
and \(\theta_0 \) classifies every example in \(P_0 \) correctly with geometric margin \(\gamma = \frac{1}{\rho} \). If each point shifts by distance \(< \gamma \), \(\theta_0 \) gets every example in the new domain \(P_1 \) correct. If we had infinite unlabeled data from \(P_1 \), we can learn a model \(\theta' \) that classifies every example in the new domain \(P_1 \) correctly with margin \(\gamma \) since \(\alpha^* = 0 \). Repeating the process for \(P_2, \ldots, P_T \), we get every example in \(P_T \) correct.

But what happens when we start with a model that has some error, for example because the data cannot be perfectly separated, and have only finite unlabeled samples? We show that self-training still does better than adapting to the target domain directly, or using the non-adaptive source classifier.

The first main result of the paper says that if we have a model \(\theta \) that gets low loss and the distribution shifts slightly, self-training gives us a model \(\theta' \) that does not do too badly on the new distribution.

Theorem 3.2. Given \(P, Q \) with \(\rho(P, Q) = \rho < \frac{1}{\rho} \) and marginals on \(Y \) are the same so \(P(Y) = Q(Y) \). Assuming \(\Theta_R \) has bounded model complexity with respect to \(P \) and \(Q \), if we have initial model \(\theta \), and \(n \) unlabeled samples \(S \) from \(Q \), and we set \(\theta' = \text{ST}(\theta, S) \), then with probability at least \(1 - \delta \) over the sampling of \(S \), letting \(\alpha^* = \min_{\theta' \in \Theta_R} L_r(\theta^*, Q) \):

\[
L_r(\theta', Q) \leq \frac{2}{1 - \rho^2} L_r(\theta, P) + \alpha^* + \frac{4B + \sqrt{2\log 2/\delta}}{\sqrt{n}} \tag{16}
\]

The proof of this result is in Appendix A, but we give a high level sketch here. There exists some classifier that gets accuracy \(\alpha^* \) on \(Q \), so if we had access to \(n \) labeled examples from \(Q \) then empirical risk minimization gives us a classifier that is accurate on the population—from a Rademacher complexity argument we get a classifier \(\theta' \) with loss at most \(\alpha^* + O(B/\sqrt{n}) \), the second and third term in the RHS of the bound.

Since we only have unlabeled examples from \(Q \), self-training uses \(\theta \) to pseudolabel these \(n \) examples and then trains on this generated dataset. Now, if the distribution shift \(\rho \) is small relative to the geometric margin \(\gamma = \frac{1}{\rho} \), then we can show that the original model \(\theta \) labels most examples in the new distribution \(Q \) correctly—that is, \(\text{Err}(\theta, Q) \) is small if \(L_r(\theta, P) \) is small. Finally, if most examples are labeled correctly we show that because there exists some classifier \(\theta^* \) with low margin loss, self-training will also learn a classifier \(\theta' \) with low margin loss \(L_r(\theta', Q) \), which completes the proof.

We apply this argument inductively to show that after \(T \) time steps, the error of gradual self-training is \(\lesssim \exp(cT)\alpha_0 \) for some constant \(c \), if the original error is \(\alpha_0 \).

Corollary 3.3. Under the \(\alpha^* \)-low-loss, no label shift, gradual shift, and bounded model complexity assumptions, if the source model \(\theta_0 \) has low loss \(\alpha_0 \geq \alpha^* \) on \(P_0 \) (i.e. \(L_r(\theta_0, P_0) \leq \alpha_0 \) and \(\theta \) is the result of gradual self-training: \(\theta = \text{ST}(\theta_0, (S_1, \ldots, S_n)) \)), letting \(\beta = \frac{2}{1 - \rho^2} \):

\[
L_r(\theta, P_T) \leq \beta^{T+1}(\alpha_0 + \frac{4B + \sqrt{2\log 2/\delta}}{\sqrt{n}}). \tag{17}
\]

Corollary 3.3 says that the gradual structure allows some control of the error unlike direct adaptation where the accuracy on the target domain can be 0% if \(T \geq 2 \). Note that if the classes are separable and we have infinite data, then gradual self-training maintains 0 error.

Our next example shows that our analysis for gradual self-training in this setting is tight—if we start with a model with loss \(\alpha_0 \), then the error can in fact increase exponentially even with infinite unlabeled examples. Intuitively, at each step of self-training the loss can increase by a constant factor, which leads to an exponential growth in the error.

Example 3.4. Even under the \(\alpha^* \)-low-loss, no label shift, gradual shift, and bounded model complexity assumptions, given \(0 < \alpha_0 \leq \frac{1}{\rho} \), for every \(T \) there exists distributions \(P_0, \ldots, P_{2T} \), and \(\theta_0 \in \Theta_R \) with \(L_r(\theta_0, P_0) \leq \alpha_0 \), but if \(\theta' = \text{ST}(\theta_0, (P_1, \ldots, P_{2T})) \) then \(L_r(\theta', P_{2T}) \geq \min(0.5, \sqrt{2T/\alpha_0}) \). Note that \(L_r \) is always in \([0, 1]\).

This suggests that if we want sub-exponential bounds we either need to make additional assumptions on the data distributions, or devise alternative algorithms to achieve better bounds (which we believe is unlikely).

3.4. Essential ingredients for gradual self-training

In this section, we explain why regularization, label sharpening, and the ramp loss are essential to bounding the error of gradual self-training (Theorem 3.2).

Regularization. Without regularization there is no incentive for the model to change when self-training—if we self-train without regularization an optimal thing to do is to output the original model. The intuition is that since the model \(\theta = (w, \theta) \) is used to pseudolabel examples, \(\theta \) gets every pseudolabeled example correct. The scaled classifier \(\theta' = (\alpha w, \alpha \theta) \) for large \(\alpha \) then gets optimal loss, but \(\theta' \) and \(\theta \) make the same predictions for every example. We use \(\text{ST}(\theta, S) \) to denote the set of possible \(\theta' \) that minimize the loss on the pseudolabeled distribution (Equation (3)):

Example 3.5. Given a model \(\theta
\in \Theta_R \) (in other words \(R = \infty \)) and unlabeled examples \(S \) where for all \(x \in S, M_\theta(x) \neq 0 \), there exists \(\theta' \in \text{ST}(\theta, S) \) such that for all \(x \in \mathbb{R}^d, M_\theta(x) = M_{\theta'}(x) \).

More specific to our setting, our bounds require regularized models because regularized models classify the data cor-
We only analyzed the statistical effects here—the hinge loss we get most new examples correct. Note that in traditional supervised learning, regularization is usually required when we have few examples for better generalization to the population, whereas in our setting regularization is important for maintaining a margin even with infinite data.

Label sharpening: When self-training, we pseudolabel examples as −1 or 1, based on the output of the classifier. Prior work sometimes uses “soft” labels (Najafi et al., 2019), where for each example they assign a probability of the label being −1 or 1, and train using a logistic loss. The loss on the soft-pseudolabeled distribution is defined as:

\[
L_{\sigma,\theta}(\theta') = \mathbb{E}_{X \sim P} [\ell(l(\sigma(M_{\theta}(X)), \sigma(M'_{\theta}(X)))]
\]

(18)

where \(\sigma \) is the sigmoid function, and \(\ell \) is the log loss:

\[
\ell(p, p') = p \log p' + (1 - p) \log (1 - p')
\]

(19)

Self-training then picks \(\theta' \in \Theta_R \) minimizing \(L_{\sigma,\theta}(\theta') \). A simple example shows that this form of self-training may never update the parameters because \(\theta' \) minimizes \(L_{\alpha,\theta} \):

Example 3.6. For all \(\Theta_R \) and \(\theta \in \Theta_R \), \(\theta \) is a minimizer of \(L_{\sigma,\theta}(\theta') \). A simple example shows that this form of self-training may never update the parameters because \(\theta' \) minimizes \(L_{\sigma,\theta}(\theta') \).

This suggests that we “sharpen” the soft labels to encourage the model to update its parameters. Note that this is true even on finite data: set \(P \) to be the empirical distribution.

Ramp versus hinge loss: We use the ramp loss, but does the more popular hinge loss \(L_h \) work? Unfortunately, the next example shows that we cannot control the error of gradual self-training with the hinge loss even if we had infinite examples, so the ramp loss is important for Theorem 3.2.

Example 3.7. Even under the \(\alpha \)-low-loss, no label shift, and gradual shift assumptions, given \(\alpha_0 > 0 \), there exists distributions \(P_0, P_1, P_2 \) and \(\theta_0 \in \Theta_R \) with \(L_h(\theta_0, P_0) \leq \alpha_0 \), but if \(\theta' = \text{ST}(\theta_0, (P_1, P_2)) \) then \(L_h(\theta', P_2) \geq \text{Err}(\theta', P_2) = 1(\theta' \text{ gets every example in } P_2 \text{ wrong}) \), where we use the hinge loss in self-training.

We only analyzed the statistical effects here—the hinge loss tends to work better in practice because it is much easier to optimize and is convex for linear models.

3.5. Self-training without domain shift

Example 3.4 showed that when the distribution shifts, the loss of gradual self-training can grow exponentially (though the non-adaptive baseline has unbounded error). Here we show that if we have no distribution shift, the error can only grow linearly: if \(P_0 = \ldots = P_T \), given a classifier with loss \(\alpha_0 \), if we do gradual self-training the loss is at most \(\alpha_0 T \).

Proposition 3.8. Given \(\alpha_0 > 0 \), distributions \(P_0 = \ldots = P_T \), and model \(\theta_0 \in \Theta_R \) with \(L_r(\theta_0, P_0) \leq \alpha_0 \), \(L_r(\theta', P_T) \leq \alpha_0(T + 1) \) where \(\theta' = \text{ST}(\theta_0, (P_1, \ldots, P_T)) \) in Appendix A, we show that self-training can indeed hurt without domain shift: given a classifier with loss \(\alpha \) on \(P \), self-training on \(P \) can increase the classifier’s loss on \(P \) to \(2\alpha \), but here the non-adaptive baseline has error \(\alpha \).

4. Theory for the Gaussian setting

In this section we study an idealized Gaussian setting to understand conditions under which self-training can have better than exponential error bounds: we show that if we begin with a good classifier, the distribution shifts are not too large, and we have infinite unlabeled data, then gradual self-training maintains a good classifier.

4.1. Setting

We assume \(P_t(X \mid Y = y) \) is an isotropic Gaussian in \(d \)-dimensions for each \(y \in \{-1, 1\} \). We can shift the data to have mean 0, so we suppose:

\[
P_t(X|Y = y) = N(y\mu_t, \sigma_t^2 I)
\]

(20)

Where \(\mu_t \in \mathbb{R}^d \) and \(\sigma_t > 0 \) for each \(t \). As usual, we assume the shifts are gradual: for some \(B > 0 \), \(||\mu_{t+1} - \mu_t||_2 \leq B/T \). We assume that the means of the two classes do not get closer than the shift, or else it would be impossible to distinguish between no shift, and the distributions of the two classes swapping: so \(||\mu_t||_2 \geq B \) for all \(t \). We assume infinite unlabeled data (access to \(P_t(X) \)) in our analysis.

Given labeled data in the source, we use the objective:

\[
L(w, P) = \mathbb{E}_{X,Y \sim P} [\phi(Y(w^\top X))]
\]

(21)

For unlabeled data, self-training performs descent steps on an underlying objective function (Amini and Gallinari, 2003), which we focus on:

\[
U(w, P) = \mathbb{E}_{X \sim P} [\phi([w^\top X])]
\]

(22)

We assume \(\phi : \mathbb{R} \to \mathbb{R}^+ \) is a continuous, non-increasing function which is strictly decreasing on \([0, 1]\): these are regularity conditions which the hinge, ramp, and logistic losses satisfy. If \(w' = \text{ST}(w, P) \) then \(U(w', P) \leq U(w, P) \) (Amini and Gallinari, 2003).

The algorithm we analyze begins by choosing \(w_0 \) from labeled data in \(P_0 \), and then updates the parameters with unlabeled data from \(P_t \) for \(1 \leq t \leq T \):

\[
w_t = \arg\min_{||w||_2 \leq 1, ||w-w_{t-1}||_2 \leq \frac{1}{t}} U(w, P_t)
\]

(23)

Note that we do not show that self-training actually converges to the constrained minimum of \(U \) in Equation (23) and prior work only shows that self-training descends on \(U \)—we leave this optimization analysis to future work.
4.2. Analysis

Let \(w^*(\mu) = \frac{\mu}{\|\mu\|^2} \) where \(\|\mu\| \geq B > 0 \). Note that \(w^*(\mu_t) \) minimizes the 0-1 error on \(P_t \). Our main theorem says that if we start with a regularized classifier \(w_0 \) that is near \(w^*(\mu_0) \), which we can learn from labeled data, and the distribution shifts \(\|\mu_{t+1} - \mu_t\| \) are not too large, then we recover the optimal \(w_T = w^*(\mu_T) \). The key challenge is that the unlabeled loss \(U \) in \(d \) dimensions is non-convex, with multiple local minima, so directly minimizing \(U \) does not guarantee a solution that minimizes the labeled loss \(L \).

Theorem 4.1. Assuming the Gaussian setting, if \(\|w_0 - w^*(\mu_0)\|_2 \leq \frac{1}{4} \), then we recover \(w_T = w^*(\mu_T) \).

Proving this reduces to proving the single-step case. At each step \(t + 1 \), if we have a classifier \(w_t \) that was close to \(w^*(\mu_t) \), then we will recover \(w_{t+1} = w^*(\mu_{t+1}) \). We give intuition here and the formal proof in Appendix B.

We first show that if \(\mu \) changes by a small amount, the optimal parameters (for the labeled loss) does not change too much. Then since \(w_t \) is close to \(w^*(\mu_t) \), \(w_t \) is not too far away from \(w^*(\mu_{t+1}) \). The key step in our argument is showing that the unique minimum of the unlabeled loss \(U(w, P_{\mu_{t+1}}) \) in the neighborhood of \(w_t \), is \(w^*(\mu_t) \)—looking for a minimum nearby is important because if we deviate too far we might select other “bad” minima. We consider arbitrary \(w \) near \(w^*(\mu_{t+1}) \) and construct a pairing of points \((a, b)\) in \(\mathbb{R}^d \), using a convexity argument to show that \((a, b)\) contributes more to the loss of \(w \) than \(w^*(\mu_{t+1}) \).

5. Experiments

Our theory leads to practical insights—we show that regularization and label sharpening are important for gradual self-training, that leveraging the gradual shift structure improves target accuracy, and give intuition for when the gradual shift assumption may not help. We run experiments on three datasets (see Appendix C for more details):

Rotating MNIST: Rotating MNIST is a semi-synthetic dataset where we rotate each MNIST image by an angle between 0 and 60 degrees. We split the 50,000 MNIST training set images into a source domain (images rotated between 0 and 5 degrees), intermediate domain (rotations between 5 and 60 degrees), and a target domain (rotations between 55 degrees and 60 degrees). Note that each image is seen at exactly one angle, so the training procedure cannot track a single image across different angles.

Cover Type: A dataset from the UCI repository where the goal is to predict the forest cover type at a particular location given 54 features (Blackard and Dean, 1999). We sort the examples by increasing distance to water body, splitting the data into a source domain (first 50K examples), intermediate domain (next 400K examples), and a target domain (final 50K examples).

Portraits: A real dataset comprising photos of high school seniors across years (Ginosar et al., 2017). The model’s goal is to classify gender. We split the data into a source domain (first 2000 images), intermediate domain (next 14000 images), and target domain (next 2000 images).

In Appendix C we also include synthetic experiments on a mixture of Gaussians dataset which resembles the Gaussian setting of our theory but the covariance matrices are not isotropic, and the number of labeled and unlabeled samples is finite and on the order of the dimension \(d \).

5.1. Leveraging gradual shifts improves adaptation

Our goal is to see if adapting to the gradual shift sequentially helps compared to directly adapting to the target. We evaluate four methods: Source: simply train a classifier on the labeled source examples. Target self-train: repeatedly self-train on the unlabeled target examples ignoring the intermediate examples. All self-train: pool all the unlabeled examples from the intermediate and target domains, and repeatedly self-train on this pooled dataset to adapt the initial source classifier. Gradual self-train: sequentially self-train on unlabeled data in each successive intermediate domain, and finally self-train on unlabeled data on the target domain, to adapt the initial source classifier.

For the rotating MNIST datasets, we ensured that the target self-train method sees as many unlabeled target examples as gradual self-train sees across all the intermediate examples. Since Portraits and Cover Type are real datasets we cannot synthesize more examples from the target, so target self-train uses fewer unlabeled examples here. However, the all self-train baseline uses all of the unlabeled examples from all domains.

For rotating MNIST and Portraits we used a 3-layer convolutional network with dropout(0.5) and batchnorm on the last layer, that was able to achieve 97% − 98% accuracy on held out examples in the source domain. For the CoverType dataset we used a 2 hidden layer feedforward neural network with dropout(0.5) and batchnorm on the last layer which got higher accuracies than logistic regression. For each step of self-training, we filter out the 10% of images where the model’s prediction was least confident—Appendix C shows similar findings without this filtering. To account for variance in initialization and optimization, we ran each method 5 times and give 90% confidence intervals. More experimental details are in Appendix C.

Table 1 shows that leveraging the gradual structure leads to improvements over baselines on all 3 datasets, and closes over half the gap between the source and oracle classifiers.
Table 1. Percentage classification accuracies for gradual self-training (ST) and baselines on three datasets, with 90% standard errors for the mean over 5 runs in parentheses. Gradual ST closes about half the gap between the source and oracle classifiers on all three datasets, and does better than self-training directly on the target or self-training on all the unlabeled data pooled together.

<table>
<thead>
<tr>
<th>Source Model</th>
<th>Rot MNIST</th>
<th>Cover Type</th>
<th>Portraits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target ST</td>
<td>+1.0 (±0.5)</td>
<td>+0.7 (±1.5)</td>
<td>+1.6 (±1.2)</td>
</tr>
<tr>
<td>All ST</td>
<td>+6.1 (±1.1)</td>
<td>+1.5 (±2.2)</td>
<td>+3.5 (±1.8)</td>
</tr>
<tr>
<td>Gradual ST</td>
<td>+56.0 (±1.5)</td>
<td>+7.6 (±3.7)</td>
<td>+8.5 (±0.9)</td>
</tr>
<tr>
<td>Oracle</td>
<td>+59.6 (±1.2)</td>
<td>+16.8 (±3.7)</td>
<td>+17.0 (±0.8)</td>
</tr>
</tbody>
</table>

5.2. Important ingredients for gradual self-training

Our theory suggests that regularization and label sharpening are important for gradual self-training, because without regularization and label sharpening there is no incentive for the model to change (Section 3.4). However, prior work suggests that overparameterized neural networks trained with stochastic gradient methods have strong implicit regularization (Zhang et al., 2017; Hardt et al., 2016)—in the supervised setting they perform well without explicit regularization even though the number of parameters is much larger than the number of data points—is this implicit regularization enough for gradual self-training?

In our experiments, we see that even without explicit regularization, or with ‘soft’ probabilistic labels, gradual self-training does slightly better than the non-adaptive source classifier, suggesting that this implicit regularization may have some effect. However, explicit regularization and ‘hard’ labeling gives a much larger accuracy boost.

Regularization is important: We repeat the same experiment as Section 5.1, comparing gradual self-training with or without regularization—that is, disabling dropout and batchnorm (Ioffe and Szegedy, 2015) in the neural network experiments. In both cases, we first train an unregularized model on labeled examples in the source domain. Then, when we either turn on regularization during self-training, or keep the model unregularized. We control the original model to be the same in both cases to see if regularization helps in the self-training process, as opposed to in learning a better supervised classifier. Table 2 shows that accuracies are significantly better with regularization, even though unregularized performance is still better than the non-adaptive source classifier.

Soft labeling hurts: We ran the same experiment as Section 5.1, comparing gradual self-training with hard labeling versus using probabilistic labels output by the model. Table 2 shows that accuracies are better with hard labels. Note that in datasets with more intrinsic uncertainty, soft labeling may work well (Mey and Loog, 2016).

Regularization is still important with more data: In supervised learning, the importance of regularization diminishes as we have more training examples—if we had access to infinite data (the population), we don’t need regularization. On the other hand, for gradual domain adaptation, the theory says regularization is needed to adapt to the dataset shift even with infinite data, and predicts that regularization remains important even if we increase the sample size.

To test this hypothesis, we construct a rotating MNIST dataset where we increase the sample sizes. The source domain consists of \(N \) images at different angles. We compare using regularized and unregularized model on labeled examples in the source domain. Then, when we either turn on regularization during self-training, or keep the model unregularized. We control the original model to be the same in both cases to see if regularization helps in the self-training process, as opposed to in learning a better supervised classifier. Table 2 shows that accuracies are significantly better with regularization, even though unregularized performance is still better than the non-adaptive source classifier.

5.3. When does gradual shift help?

Our theory in Section 3 says that gradual self-training works well if the shift between domains is small in Wasserstein-infinity distance, but it may not be enough for the total variation or KL-divergence between \(P \) and \(Q \) to be small.

To test this, we run an experiment on a modified version of the rotating MNIST dataset. We keep the source and target...
Table 3. Classification accuracies for gradual self-train on rotating MNIST as we vary the number of samples. Unlike in previous experiments, here the same N samples are rotated, so the models do not have to generalize to unseen images, but seen images at different angles. The gap between regularized and unregularized gradual self-training does not shrink much with more data.

<table>
<thead>
<tr>
<th></th>
<th>N=2000</th>
<th>N=5000</th>
<th>N=20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
<td>28.3±1.4</td>
<td>29.9±2.5</td>
<td>33.9±2.6</td>
</tr>
<tr>
<td>NO REG</td>
<td>55.7±3.9</td>
<td>53.6±4.0</td>
<td>55.1±3.9</td>
</tr>
<tr>
<td>REG</td>
<td>93.1±0.8</td>
<td>91.7±2.4</td>
<td>87.4±3.1</td>
</tr>
</tbody>
</table>

domains the same as before, but change the intermediate domains. In Table 1 we saw that gradual self-training works well if we have intermediate images rotated by gradually increasing rotation angles. Another type of gradual transformation is to gradually introduce more examples rotated by 55 to 60 degrees. That is, in the i-th domain, $(20-i)/20$ fraction of the examples are MNIST images rotated by 0 to 5 degrees, and $i/20$ of the examples are MNIST images rotated by 55 to 60 degrees, where $1 \leq i \leq 20$. Here the total-variation distance between successive domains is small, but intuitively the Wasserstein distance is large because each image undergoes a large (\approx 55 degrees) rotation.

As the theory suggests, here gradual self-training does not outperform directly self-training on the target—gradual self-training gets $33.5 \pm 1.5\%$ accuracy on the target, while direct adaptation to the target gets $33.0 \pm 2.2\%$ over 5 runs. Intuitively, gradual self-training helps when most of the distribution shifts by a small amount, and it may not be sufficient if only a small fraction of the distribution shifts but by a large amount. We hope this gives practitioners some insight into when gradual self-training helps.

6. Related work

Self-training is a popular method in semi-supervised learning (Lee, 2013; Sohn et al., 2020) and domain adaptation (Long et al., 2013; Zou et al., 2019; Inoue et al., 2018), and is related to entropy minimization (Grandalet and Bengio, 2005). Recent work shows that a robust variant of self-training can mitigate the tradeoff between standard and adversarial accuracy (Raghu Nathan et al., 2020). Related to self-training is co-training (Blum and Mitchell, 1998), which assumes that the input features can be split into two or more views that are conditionally independent on the label. Other theory in semi-supervised learning (Rigollet, 2007; Singh et al., 2008; Ben-David et al., 2008) does not analyze domain shift.

Unsupervised domain adaptation, where the goal is to directly adapt from a labeled source domain to an unlabeled target domain, is widely studied (Quinonero-Candela et al., 2009). The key challenge for domain adaptation is when the source and target domains are very different, when it is easy to discriminate between the two domains and their supports do not overlap (Zhao et al., 2019; Shu et al., 2018), which is typical in the modern high-dimensional regime. Importance weighting based methods (Shimodaira, 2000; Sugiyama et al., 2007; Jiayuan et al., 2006) assume the domains are close, with bounds depending on the expected density ratios between the source and target. In practice, even if the domains overlap, the density ratio often scales exponentially in the dimension in which case these methods perform poorly. These methods also assume that $P(Y \mid X)$ is the same for the source and target which we do not require. The theory of $H \Delta H$-divergence (Ben-David et al., 2010; Mansour et al., 2009) gives conditions for when a model trained on the source does well on the target without any adaptation. Empirical methods aim to learn domain invariant representations (Tzeng et al., 2014; Ganin and Lempitsky, 2015; Tzeng et al., 2017) but there are no theoretical guarantees for these methods (Zhao et al., 2019). These methods require several additional heuristics (Hoffman et al., 2018), and work well on some tasks but not others (Bobu et al., 2018; Peng et al., 2019).

Hoffman et al. (2014); Michael et al. (2018); Markus et al. (2018); Bobu et al. (2018) among others propose approaches for gradual domain adaptation. This setting differs from online learning (Shalev-Shwartz, 2007), lifelong learning (Silver et al., 2013), and concept drift (Kramer, 1988; Bartlett, 1992; Bartlett et al., 1996), since we only have unlabeled data from shifted distributions. To the best of our knowledge, we are the first to develop a theory for gradual domain adaptation, and investigate when and why the gradual structure helps.

7. Conclusion and Future Work

Our work suggests that the gradual shift structure, which appears often in applications, enables us to reliably adapt to very different target distributions. There are many exciting avenues for future work:

1. Better algorithms for gradual shifts: Can we develop better algorithms and more general theory for gradual domain adaptation?

2. Discovering gradual shifts: Can we apply gradual self-training to spatial data: datapoints close in space may be similar? More generally, can we learn which datapoints are similar and do gradual self-training?

3. Structured domain adaptation: Are there other structures in real applications we can leverage to reliably adapt to very different target distributions?
Acknowledgements. The authors would like to thank the Open Philantropy Project and the Stanford Graduate Fellowship program for funding. This work is also partially supported by the Stanford Data Science Initiative and the Stanford Artificial Intelligence Laboratory.

We are grateful to the anonymous reviewers, and to Rui Shu, Robin Jia, Pang Wei Koh, Michael Kim, Stephen Mussman, Csaba Szepesvari, Judy Hoffman, Shai Ben-David, Lin Yang, Michael Xie, Aditi Raghunathan, Sanjana Srivastava, Nelson Liu, Rachel Holladay, Megha Srivastava, and Albert Gu for insightful comments.

Reproducibility. All code, data, and experiments can be found on CodaLab at https://bit.ly/gradual-shift-codalab, code is also on GitHub at https://github.com/p-lambda/gradual_domain_adaptation.

References
Understanding Gradual Domain Adaptation

