
Online Dense Subgraph Discovery via Blurred-Graph Feedback

Yuko Kuroki 1 2 Atsushi Miyauchi 1 2 Junya Honda 1 2 Masashi Sugiyama 2 1

Abstract
Dense subgraph discovery aims to find a dense
component in edge-weighted graphs. This is a
fundamental graph-mining task with a variety of
applications and thus has received much atten-
tion recently. Although most existing methods
assume that each individual edge weight is easily
obtained, such an assumption is not necessarily
valid in practice. In this paper, we introduce a
novel learning problem for dense subgraph dis-
covery in which a learner queries edge subsets
rather than only single edges and observes a noisy
sum of edge weights in a queried subset. For this
problem, we first propose a polynomial-time algo-
rithm that obtains a nearly-optimal solution with
high probability. Moreover, to deal with large-
sized graphs, we design a more scalable algorithm
with a theoretical guarantee. Computational ex-
periments using real-world graphs demonstrate
the effectiveness of our algorithms.

1. Introduction
Dense subgraph discovery aims to find a dense component in
edge-weighted graphs. This is a fundamental graph-mining
task with a variety of applications and thus has received
much attention recently. Applications include detection
of communities or span link farms in Web graphs (Douris-
boure et al., 2007; Gibson et al., 2005), molecular complexes
extraction in protein–protein interaction networks (Bader
& Hogue, 2003), extracting experts in crowdsoucing sys-
tems (Kawase et al., 2019), and real-time story identification
in micro-blogging streams (Angel et al., 2012).

Among a lot of optimization problems arising in dense sub-
graph discovery, the most popular one would be the densest
subgraph problem. In this problem, given an edge-weighted
undirected graph, we are asked to find a subset of vertices
that maximizes the so-called degree density (or simply den-

1The University of Tokyo, Japan 2RIKEN AIP, Japan. Corre-
spondence to: Yuko Kuroki <ykuroki@ms.k.u-tokyo.ac.jp>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

sity), which is defined as half the average degree of the sub-
graph induced by the subset. Unlike most optimization prob-
lems for dense subgraph discovery, the densest subgraph
problem can be solved exactly in polynomial time using
some exact algorithms, e.g., Charikar’s linear-programming-
based (LP-based) algorithm (Charikar, 2000) and Gold-
berg’s flow-based algorithm (Goldberg, 1984). Moreover,
there is a simple greedy algorithm called the greedy peeling,
which obtains a well-approximate solution in almost linear
time (Charikar, 2000). Owing to the solvability and the
usefulness of solutions, the densest subgraph problem has
actively been studied in data mining, machine learning, and
optimization communities (Ghaffari et al., 2019; Gionis &
Tsourakakis, 2015; Miller et al., 2010; Papailiopoulos et al.,
2014). We thoroughly review the literature in Appendix A.

Although the densest subgraph problem requires a full in-
put of the graph data, in many real-world applications, the
edge weights need to be estimated from uncertain measure-
ments. For example, consider protein–protein interaction
networks, where vertices correspond to proteins in a cell
and edges (resp. edge weights) represent the interactions
(resp. the strength of interactions) among the proteins. In
the generation process of such networks, the edge weights
are estimated through biological experiments using mea-
suring instruments with some noises (Nepusz et al., 2012).
As another example, consider social networks, where ver-
tices correspond to users of some social networking service
and edge weights represent the strength of communications
(e.g., the number of messages exchanged) among them. In
practice, we often need to estimate the edge weights by ob-
serving anonymized communications between users (Adar
& Ré, 2007).

Recently, in order to handle the uncertainty of edge weights,
Miyauchi & Takeda (2018) introduced a robust optimization
variant of the densest subgraph problem. In their method,
all edges are repeatedly queried by a sampling oracle that
returns an individual edge weight. However, such a sam-
pling procedure for individual edges is often quite costly
or sometimes impossible. On the other hand, it is often
affordable to observe aggregated information of a subset
of edges. For example, in the case of protein–protein inter-
action networks, it may be costly to conduct experiments
for all possible pairs of proteins, but it is cost-effective to
observe molecular interaction among a molecular group

Online Dense Subgraph Discovery via Blurred-Graph Feedback

(Bader & Hogue, 2003). In the case of social networks, due
to some privacy concerns and data usage agreements, it may
be impossible even for data owners to obtain the estimated
number of messages exchanged by two specific users, while
it may be easy to access the information within some large
group of users, because this procedure reveals much less
information of individual users (Agrawal & Srikant, 2000;
Zheleva & Getoor, 2011).

In this study, we introduce a novel learning problem for
dense subgraph discovery, which we call densest subgraph
bandits (DS bandits), by incorporating the concepts of
stochastic combinatorial bandits (Chen et al., 2014; 2013)
into the densest subgraph problem. In DS bandits, a learner
is given an undirected graph, whose edge-weights are asso-
ciated with unknown probability distributions. During the
exploration period, the learner chooses a subset of edges
(rather than only single edge) to sample, and observes the
sum of noisy edge weights in a queried subset; we refer to
this feedback model as blurred-graph feedback. We investi-
gate DS bandits with the objective of best arm identification,
that is, the learner must report one subgraph that she believes
to be optimal after the exploration period.

Our learning problem can be seen as a novel variant of com-
binatorial pure exploration (CPE) problems (Chen et al.,
2016; 2017; 2014). In the literature, most existing work
on CPE has considered the case where the learner obtains
feedback from each arm in a pulled subset of arms, i.e.,
the semi-bandit setting, or each individual arm can be
queried (e.g. (Bubeck et al., 2013; Chen et al., 2017; 2014;
Gabillon et al., 2012; Huang et al., 2018)). Thus, the above
studies cannot deal with the aggregated reward from a subset
of arms. On the other hand, existing work on the full-bandit
setting has assumed that the objective function is linear and
the size of subsets to query is exactly k at any round (Kuroki
et al., 2020; Rejwan & Mansour, 2019), while our reward
function (i.e., the degree density) is not linear and the size
of subsets to query is not fixed in advance. If we fix the size
of subsets to query to k in DS bandits, the corresponding
offline problem (called the densest k-subgraph problem)
becomes NP-hard and the best known approximation ratio
is just Ω(1/n1/4+ε) for any ε > 0 (Bhaskara et al., 2010),
where n is the number of vertices.

The contribution of this work is three-fold and can be sum-
marized as follows.

1) We address a problem for dense subgraph discovery with
no access to a sampling oracle for single edges (Problem 1)
in the fixed confidence setting. For this problem, we present
a general learning algorithm DS-Lin (Algorithm 2) based on
the technique of linear bandits (Auer, 2003). We provide an
upper bound of the number of samples that DS-Lin requires
to identify an ε-optimal solution with probability at least
1− δ for ε > 0 and δ ∈ (0, 1) (Theorem 1). Our key idea is

to utilize an approximation algorithm (Algorithm 1) to com-
pute the maximal confidence bound, thereby guaranteeing
that the output by DS-Lin is an ε-optimal solution and the
running time is polynomial in the size of a given graph.

2) To deal with large-sized graphs, we further investigate an-
other problem with access to sampling oracle for any subset
of edges (Problem 2) with a given fixed budget T . For this
problem, we design a scalable and parameter-free algorithm
DS-SR (Algorithm 3) that runs in O(n2T), while DS-Lin
needsO(m2) time for updating the estimate, wherem is the
number of edges. Our key idea is to combine the successive
reject strategy (Audibert et al., 2010) for the multi-armed
bandits and the greedy peeling algorithm (Charikar, 2000)
for the densest subgraph problem. We prove an upper bound
on the probability that DS-SR outputs a solution whose
degree density is less than 1

2OPT − ε, where OPT is the
optimal value (Theorem 2).

3) In a series of experimental assessments, we thoroughly
evaluate the performance of our proposed algorithms using
well-known real-world graphs. We confirm that DS-Lin
obtains a nearly-optimal solution even if the minimum size
of queryable subsets is larger than the size of an optimal
subset, which is consistent with the theoretical analysis.
Moreover, we demonstrate that DS-SR finds nearly-optimal
solutions even for large-sized instances, while significantly
reducing the number of samples for single edges required
by a state-of-the-art algorithm.

2. Problem Statement
In this section, we describe the densest subgraph problem
and the online densest subgraph problem in the bandit set-
ting formally.

2.1. Densest subgraph problem

The densest subgraph problem is defined as follows. Let
G = (V,E,w) be an undirected graph, consisting of
n = |V | vertices and m = |E| edges, with an edge
weight w : E → R>0, where R>0 is the set of positive
reals. For a subset of vertices S ⊆ V , let G[S] denote
the subgraph induced by S, i.e., G[S] = (S,E(S)) where
E(S) = {{u, v} ∈ E : u, v ∈ S}. The degree den-
sity (or simply called the density) of S ⊆ V is defined as
fw(S) = w(S)/|S|, wherew(S) is the sum of edge weights
of G[S], i.e., w(S) =

∑
e∈E(S) w(e). In the densest sub-

graph problem, given an edge-weighted undirected graph
G = (V,E,w), we are asked to find S ⊆ V that maximizes
the density fw(S). There is an LP-based exact algorithm
(Charikar, 2000), which is used in our proposed algorithm
(see Appendix C for the entire procedure).

Online Dense Subgraph Discovery via Blurred-Graph Feedback

2.2. Densest subgraph bandits (DS bandits)

Here we formally define DS bandits. Suppose that we are
given an (unweighted) undirected graph G = (V,E). As-
sume that each edge e ∈ E is associated with an unknown
distribution φe over reals. w : E → R>0 is the expected
edge weights, where w(e) = EX∼φe [X]. Following the
standard assumptions of stochastic multi-armed bandits,
we assume that all edge-weight distributions have R-sub-
Gaussian tails for some constant R > 0. Formally, if X is a
random variable drawn from φe for e ∈ E, then for all r ∈
R, X satisfies E[exp(rX − rE[X])] ≤ exp(R2r2/2). We
define the optimal solution as S∗ = argmaxS⊆V fw(S).

We first address the setting in which the learner can stop the
game at any round if she can return an ε-optimal solution
for ε > 0 with high probability. Let k > 2 be the minimal
size of queryable subsets of vertices; notice that the learner
has no access to a sampling oracle for single edges. The
problem is formally defined below.

Problem 1 (DS bandits with no access to single edges). We
are given an undirected graph G = (V,E) and a family of
queryable subsets of at least k (> 2) vertices S ⊆ 2V . Let
ε > 0 be a required accuracy and δ ∈ (0, 1) be a confidence
level. Then, the goal is to find SOUT ⊆ V that satisfies
Pr[fw(S∗) − fw(SOUT) ≤ ε] ≥ 1 − δ, while minimizing
the number of samples required by an algorithm (a.k.a. the
sample complexity).

We next consider the setting in which the number of rounds
in the exploration phase is fixed and is known to the learner,
and the objective is to maximize the quality of the output
solution. In this setting, we relax the condition of queryable
subsets; assume that the learner is allowed to query any
subset of edges. The problem is defined as follows.

Problem 2 (DS bandits with a fixed budget). We are given
an undirected graph G = (V,E) and a fixed budget T . The
goal is to find SOUT ⊆ V that maximizes fw(SOUT) within T
rounds.

Note that Problem 1 is often called the fixed confidence
setting and Problem 2 is called the fixed budget setting in
the bandit literature.

3. Algorithm for Problem 1
In this section, we first present an algorithm for Problem 1
based on linear bandits, which we refer to as DS-Lin. We
then show that DS-Lin is (ε, δ)-PAC, that is, the output
of the algorithm satisfies Pr[fw(S∗) − fw(SOUT) ≤ ε] ≥
1− δ. Finally, we provide an upper bound of the number of
samples (i.e., the sample complexity).

3.1. DS-Lin algorithm

We first explain how to obtain the estimate of edge weights
and confidence bounds. Then we discuss how to ensure
a stopping condition and describe the entire procedure of
DS-Lin.

Least-squares estimator. We construct an estimate of
edge weight w using a sequential noisy observation. For
S ⊆ V , let χE(S) ∈ {0, 1}E be the indicator vector
of E(S) ⊆ E, i.e., for each e ∈ E, χE(S)(e) = 1 if
e ∈ E(S) and χE(S)(e) = 0 otherwise. Therefore, each
subset of edges E(S) for S ⊆ V corresponds to an arm
whose feature is an indicator vector of it in linear ban-
dits. For any t > m, we define a sequence of indicator
vectors as xt = (χE(S1), . . . ,χE(St)) ∈ {0, 1}E×t and also
define the corresponding sequence of observed rewards as
(r1(S1), . . . , rt(St)) ∈ Rt. We define Axt as

Axt =

t∑
i=1

χE(Si)χ
>
E(Si)

+ λI ∈ RE×E

for a regularized term λ > 0, where I is the identity matrix.
Let bxt =

∑t
i=1 χE(Si)ri(Si) ∈ RE . Then, the regularized

least-squares estimator for w ∈ RE can be obtained by

ŵt = A−1
xt bxt ∈ RE . (1)

Confidence bounds. The basic idea to deal with uncer-
tainty is that we maintain confidence bounds that contain
the parameter w ∈ RE with high probability. For a vector
x ∈ Rm and a matrix B ∈ Rm×m, let ‖x‖B =

√
x>Bx.

Let N(v) = {u ∈ V : {u, v} ∈ E} be the set of neighbors
of v ∈ V and degmax = maxv∈V |N(v)| be the maximum
degree of vertices. In the literature of linear bandits, Abbasi-
Yadkori et al. (2011) proposed a high probability bound
on confidence ellipsoids with a center at the estimate of
unknown expected rewards. Plugging it into our setting, we
have the following proposition on the ellipsoid confidence
bounds for the estimate ŵt = A−1

xt bxt , where xt is fixed
beforehand:
Proposition 1 (Adapted from Abbasi-Yadkori et al. (2011),
Theorem 2). Let ηt be an R-sub-Gaussian noise for R > 0
and R′ =

√
degmaxR. Let δ ∈ (0, 1) and assume that the

`2-norm of edge weight w is less than L. Then, for any fixed
sequence xt, with probability at least 1− δ, the inequality

|w(S)− ŵt(S)| ≤ Ct‖χE(S)‖A−1
xt

(2)

holds for all t ∈ {1, 2, . . .} and all S ⊆ V , where

Ct = R′

√
2 log

det(Axt)
1
2

λ
m
2 δ

+ λ
1
2L. (3)

The above bound can be used to guarantee the accuracy of
the estimate.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Computing the maximal confidence bound. To identify
a solution with an optimality guarantee, the learner ensures
whether the estimate is valid by computing the maximal
confidence bound among all subsets of vertices. We consider
the following stopping condition:

fŵt(Ŝt)−
Ct‖χE(Ŝt)‖A−1

xt

|Ŝt|

≥ max
S⊆V :S 6=Ŝt

fŵt(S) +
Ct maxS⊆V ‖χE(S)‖A−1

xt

|S|
− ε.

The above stopping condition guarantees that the output
satisfies fw(S∗) − fw(SOUT) ≤ ε with probability at least
1− δ. However, computing maxS⊆V ‖χE(S)‖A−1

xt
by brute

force is intractable since it involves an exponential blow-up
in the number of S ⊆ V . To overcome this computational
challenge, we address a relaxed quadratic program:

P1: max. ‖x‖A−1
xt

s.t. − e ≤ x ≤ e, (4)

where e ∈ Rm is the vector of all ones.

There is an efficient way to solve P1 using the SDP-based
algorithm by Ye (1999) for the following quadratic program
with bound constraints:

QP: max.
∑

1≤i,j≤m

qijxixj s.t. − e ≤ x ≤ e, (5)

where Q = (qij) ∈ Rm×m is a given symmetric matrix. Ye
(1999) modified the algorithm by Goemans & Williamson
(1995) and generalized the proof technique of Nesterov
(1998), and then established the constant-factor approxima-
tion result for QP.
Proposition 2 (Ye (1999)). There exists a polynomial-time
4
7 -approximation algorithm for QP.

Note that Ye’s algorithm (Ye, 1999) is a randomized al-
gorithm, but it can be derandomized using the technique
devised by Mahajan & Ramesh (1999). The learner can
compute an upper bound of the maximal confidence bound
maxS⊆V ‖χE(S)‖A−1

xt
by using an approximate solution to

QP obtained by the derandomized version of Ye’s algorithm,
because it is obvious that the optimal value of QP is larger
than maxS⊆V ‖χE(S)‖2A−1

xt

. Therefore, using Algorithm 1,
we can ensure the following stopping condition in polyno-
mial time:

fŵt(Ŝt)−
Ct‖χE(Ŝt)‖A−1

xt

|Ŝt|

≥ max
S⊆V :S 6=Ŝt

fŵt(S) +
CtZt
2α
− ε, (6)

where Zt denotes the objective value of the approximate
solution to P1 and α is a constant-factor approximation ratio
of Algorithm 1.

Algorithm 1 Unconstrained 0–1 quadratic programming
Input : A positive semidefinite matrix Q ∈ Rm×m
Output : x ∈ [−1, 1]m

Solve the following quadratic programming problem by
Ye’s algorithm (Ye, 1999) with derandomization (Mahajan
& Ramesh, 1999):

QP: max.
∑

1≤i,j≤m

qijxixj s.t. − e ≤ x ≤ e,

and obtain a solution x̄ ∈ [−1, 1]m;
return x̄

Proposed algorithm. Let Tt(S) be the number of times
that S ⊆ S is queried before t-th round in the algorithm.
We present our algorithm DS-Lin, which is detailed in Algo-
rithm 2. Our sampling strategy is based on a given allocation
strategy p defined as follows. Let P be a |S|-dimensional
probability simplex. We define p as p = (p(S))S∈S ∈ P ,
where p(S) describes the predetermined proportions of
queries to a subset S. As a possible strategy p, one can use
the well-designed strategy called G-allocation (Pukelsheim,
2006; Soare et al., 2014), or simply use uniform allocation
(see Appendix D for details). At each round t, the algo-
rithm calls the sampling oracle for St ∈ S and observes
rt(St). Then, the algorithm updates statistics Axt and bxt ,
and also updates the estimate ŵt. To check the stopping
condition, the algorithm approximately solves P1 by Algo-
rithm 1 and computes the empirical best solution St using
the LP-based exact algorithm for the densest subgraph prob-
lem for G = (V,E, ŵt). Once the stopping condition is
satisfied, the algorithm returns the empirical best solution
St as output.

3.2. Sample complexity

We prove that DS-Lin is (ε, δ)-PAC and analyze its sam-
ple complexity. We define the design matrix for p ∈ P
as Λp =

∑
S∈S p(S)χE(S)χ

>
E(S). We define ρΛp as ρΛp =

maxx∈[−1,1]m ‖x‖2Λp−1 . Let ∆min be the minimal gap be-
tween the optimal value and the second optimal value, i.e.,
∆min = minS⊆V :S 6=S∗ fw(S∗) − fw(S). The next the-
orem shows an upper bound of the number of queries re-
quired by Algorithm 2 to output SOUT ⊆ V that satisfies
Pr[fw(S∗)− fw(SOUT) ≤ ε] ≥ 1− δ.

Theorem 1. Define Hε =
ρΛp+ε

(∆min+ε)2 . Then, with probabil-
ity at least 1 − δ, DS-Lin (Algorithm 2) outputs S ⊆ V
whose density is at least fw(S∗)− ε and the total number
of samples τ is bounded as follows:

if λ > 4m(
√
m+

√
2)2degmaxR

2Hε, then

τ = O

((
deg2

maxR
2 log

1

δ
+ λL2

)
Hε

)
,

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Algorithm 2 DS-Lin
Input : Graph G = (V,E), a family of queryable subsets

of at least k (> 2) vertices S ⊆ 2V , parameter ε >
0, parameter δ ∈ (0, 1), and allocation strategy p

Output : S ⊆ V
for t = 1, . . . ,m do

Choose St ← argminS∈supp(p)
Tt(S)
p(S) ;

Call the sampling oracle for St;
Observe rt(St);
bxt ← bxt−1

+ χE(St)rt(St);
end
while stopping condition (6) is not true do

t← t+ 1;
Choose St ← argminS∈supp(p)

Tt(S)
p(S) ;

Call the sampling oracle for St and observe rt(St);
Axt ← Axt−1

+ χE(St)χ
>
E(St)

;
bxt ← bxt−1

+ χE(St)rSt ;
ŵt ← A−1

xt
bt;

If ŵt(e) < 0 then ŵt(e) = 0 for each e ∈ E;
x← Algorithm 1 for A−1

xt ;

Zt ← Ct

√∑
1≤i,j≤mA

−1
xt (i, j)xixj ;

Ŝt ← Output of the LP-based exact algorithm (Charikar,
2000) for G(V,E, ŵt);

end
return SOUT ← Ŝt

and if λ ≤ degmaxR
2

L2 log
(

1
δ

)
, then

τ = O

(
mdegmaxR

2Hε log
1

δ
+ CHε,δ

)
where CHε,δ is

O

(
mdegmaxR

2Hε log

(
degmaxRmHε log

1

δ

))
.

The proof of Theorem 2 is given in Appenfix F. Note
that ρΛp = d holds if we are allowed to query any
subset of vertices and employ G-allocation strategy, i.e.,
p = argminp∈P maxS⊆V ‖χE(S)‖2Λp−1 , which was shown
in Kiefer & Wolfowitz (1960). However, in practice, we
should restrict the size of the support to reduce the com-
putational cost; finding a family of subsets of vertices that
minimizes ρΛp may be also related to the optimal experi-
mental design problem (Pukelsheim, 2006).

In the work of Chen et al. (2014), they proved that the
lower bound on the sample complexity of general combi-
natorial pure exploration problems with linear rewards is
Ω(
∑
e∈[m]

1
∆2
e

log 1
δ), where m is the number of base arms

and ∆e is defined as follows. LetM be any decision class
(such as size-k, paths, matchings, and matroids). Let M∗

be an optimal subset, i.e., M∗ = argmaxM∈M
∑
e∈M we.

For each base arm e ∈ [m], the gap ∆e is defined as ∆e =∑
e∈M∗ we−maxM∈M : e∈M

∑
e∈M we (if e /∈M∗), and

∆e =
∑
e∈M∗ we − maxM∈M : e/∈M

∑
e∈M we (if e ∈

M∗).

In the work of Huang et al. (2018), they studied the com-
binatorial pure exploration problem with continuous and
separable reward functions, and showed that the problem
has a lower bound Ω(HΛ + HΛm

−1 log(δ−1)), where
HΛ =

∑
i=1m

1
Λ2
i

. In their definition of HΛ, the term
Λi is called consistent optimality radius and it measures
how far the estimate can be away from true parameter while
the optimal solution in terms of the estimate is still consis-
tent with the true optimal one in the i-th dimension (see
Definition 2 in (Huang et al., 2018)).

Note that the problem settings in Chen et al. (2014) and
Huang et al. (2018) are different from ours; in fact, in our
setting the learner can query a subset of edges rather than
a base arm and reward function is not linear. Therefore,
their lower bound results are not directly applicable to our
problem. However, we can see that our sample complexity
in Theorem 1 is comparable with their lower bounds because
ours is O(Hε log δ−1 + Hε log(Hε log δ−1)) if we ignore
the terms irrespective of Hε and δ.

4. Algorithm for Problem 2
In this section, we propose a scalable and parameter-free
algorithm for Problem 2 that runs in O(n2T) time for a
given budget T , and provide theoretical guarantees for the
output of the algorithm.

4.1. DS-SR algorithm

The design of our algorithm is based on the Successive
Reject (SR) algorithm, which was designed for a regular
multi-armed bandits in the fixed budget setting (Audibert
et al., 2010) and is known to be the optimal strategy (Car-
pentier & Locatelli, 2016). In classical SR algorithm, we
divide the budget T into K − 1 (K is the number of arms)
phases. During each phase, the algorithm uniformly sam-
ples an active arm that has not been dismissed yet. At the
end of each phase, the algorithm dismisses the arm with
the lowest empirical mean. After K phases, the algorithm
outputs the last surviving arm.

For DS bandits, we employ a different strategy from the
classical one because our aim is to find the best subset of
vertices in a given graph. Specifically, our algorithm DS-
SR is inspired by the graph algorithm called greedy peel-
ing (Charikar, 2000), which was designed for approximately
solving the densest subgraph problem. DS-SR removes one
vertex in each phase, and after all phases are over, it se-
lects the best subset of vertices according to the empirical
observation.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Algorithm 3 DS-SR
Input : Budget T > 0, graph G(V,E), sampling oracle
Output : S ⊆ V
˜log(n− 1)←

∑n−1
i=1

1
i ;

T̃0 ← 0;
For T0(v)← 0 for each v ∈ V ;
Sn ← V and v0 ← ∅;
for t← 1, . . . , n− 1 do

T̃t ←
⌈

T−
∑n+1
i=1 i

˜log(n−1)(n−t)

⌉
;

T ′t ←
⌈

T̃t
2|Sn−t+1|

⌉
and τt ← T ′t − T ′t−1;

for v ∈ Sn−t+1 do
Run Algorithm 4 (sampling procedure);

end

f̂(Sn−t+1)←
1
2

∑
v∈Sn−t+1d̂egSn−t+1

(v,t)

|Sn−t+1| ;

vt ← argminv∈Sn−t+1
d̂egSn−t+1

(v, t);
Sn−t ← Sn−t+1 \ {vt};

end
return SOUT ∈ {S2, . . . , Sn} that maximizes f̂(Si)

Notation. For S ⊆ V and v ∈ S, let NS(v) = {u ∈
S : {u, v} ∈ E} be the set of neighboring vertices of v
in G[S] and let ES(v) = {{u, v} ∈ E : u ∈ NS(v)} be
the set of incident edges to v in G[S]. For F ⊆ 2E and for
all phases t ≥ 1, we denote by TF (t) the number of times
that F was sampled over all rounds from 1 to t, and de-
note by XF (1), . . . , XF (TF (t)) the sequence of associated
observed weights. Introduce X̂F (k) = 1

k

∑k
s=1XF (s) as

the empirical mean of weights of F after k samples. For
simplicity, we denote d̂egS,v(t) = X̂ES(v)

(
TE(S)(t)

)
.

Proposed algorithm. All procedures of DS-SR are de-
tailed in Algorithm 3. Intuitively, DS-SR proceeds as fol-
lows. Given a budget T , we divide T into n − 1 phases.
DS-SR maintains a subset of vertices. Initially Sn ← V .
In each phase t, for v ∈ Sn−t+1, the algorithm uses the
sampling oracle for obtaining the estimate of the degree
d̂egSn−t+1

(v), which we refer to as the empirical degree.
After the sampling procedure, we compute empirical quality
function f̂(Sn−t+1) and specify one vertex vt that should
be removed. In Algorithm 4, we detail the sampling pro-
cedure for obtaining the empirical degree of v ∈ Sn−t+1.
If v was not a neighbor of vt−1 in phase t − 1, the al-
gorithm samples ESn−t+1

(v) for τt times, where τt is set
carefully. On the other hand, if v was a neighbor of that,
the algorithm samples ESn−t+1(v) for

∑t
i=1 τi times. Our

eliminate scheme removes a vertex vt that minimizes the em-
pirical degree, i.e., vt ∈ argminv∈Sn−t+1

d̂egSn−t+1
(v, t).

Finally, after n− 1 phases have been done, DS-SR outputs
SOUT ⊆ V that maximizes the empirical quality function,
i.e., SOUT = argmaxSi∈{S2,...,Sn} f̂(Si).

Algorithm 4 Sampling procedure (subroutine of Algo-
rithm 3)
if NSn−t+1

(v) = ∅ then
Set d̂egSn−t+1

(v, t) = 0;
end
else

if v /∈ NSn−t+2(vt−1) then
Sample ESn−t+1

(v) for τt times;
Yt ← TESn−t+1

(v)(t− 1)d̂egSn−t+2
(v, t);

d̂egSn−t+1
(v, t)←

Yt+τtX̂ESn−t+1
(v)(τt)

TESn−t+1
(v)(t−1)+τt

;

TESn−t+1
(v)(t)← TESn−t+1

(v)(t− 1) + τt;
end
else

Sample ESn−t+1(v) for
∑t
i=1 τi times;

d̂egSn−t+1
(v, t)← X̂ESn−t+1

(v)(
∑t
i=1 τi);

TESn−t+1
(v)(t)←

∑t
i=1 τi;

end
end

4.2. Upper bound on the probability of error

We provide an upper bound on the probability that the qual-
ity of solution obtained by the proposed algorithm is less
than 1

2fw(S∗)− ε, as shown in the following theorem.

Theorem 2. Given any T > m, and assume that the edge
weight distribution φe for each arm e ∈ [m] has mean w(e)
with an R-sub-Gaussian tail. Then, DS-SR (Algorithm 3)
uses at most T samples and outputs SOUT ⊆ V such that

Pr

[
fw(SOUT) <

fw(S∗)

2
− ε
]

≤ CG,ε exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)
, (7)

where CG,ε = 2degmax(n+1)32nR2

ε2 and ˜log(n − 1) =∑n−1
i=1 i

−1.

The proof of Theorem 2 is given in Appenfix H. From the
theorem, we see that DS-SR requires a budget of T =

O
(
n3degmax

ε2 log
(

degmax

ε

))
by setting the RHS of (7) to a

constant. Besides, the upper bound on the probability of
error is exponentially decreasing with T .

5. Experiments
In this section, we examine the performance of our pro-
posed algorithms DS-Lin and DS-SR. First, we conduct
experiments for DS-Lin and show that DS-Lin can find a
nearly-optimal solution without sampling any single edges.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Table 1. Real-world graphs used in our experiments.
Name n m Description

Karate 34 78 Social network
Lesmis 77 254 Social network
Polbooks 105 441 Co-purchased network
Adjnoun 112 425 Word-adjacency network
Jazz 198 2,742 Social network
Email 1,133 5,451 Communication network
email-Eu-core 986 16,064 Communication network
Polblogs 1,222 16,714 Blog hyperlinks network
ego-Facebook 4,039 88,234 Social network
Wiki-Vote 7,066 100,736 Wikipedia “who-votes-whom”

Second, we perform experiments for DS-SR and demon-
strate that DS-SR is applicable to large-sized graphs and
significantly reduces the number of samples for single edges,
compared to that of the state-of-the-art algorithm. Through-
out our experiments, to solve the LPs in Charikar’s algo-
rithm (Charikar, 2000), we used a state-of-the-art mathe-
matical programming solver, Gurobi Optimizer 7.5.1, with
default parameter settings. All experiments were conducted
on a Linux machine with 2.6 GHz CPU and 130 GB RAM.
The code was written in Python.

Dataset. Table 1 lists real-world graphs on which our ex-
periments were conducted. Most of those can be found
on Mark Newman’s website1 or in SNAP datasets2. For
each graph, we construct the edge weight w using the
following simple rule, which is inspired by the knockout
densest subgraph model introduced by Miyauchi & Takeda
(2018). Let G = (V,E) be an unweighted graph and let
S∗ ⊆ V be an optimal solution to the densest subgraph
problem. For each e ∈ E, we set w(e) = rand(1, 20) if
e ∈ E(S∗), and w(e) = rand(1, 100) if e ∈ E \ E(S∗),
where rand(·, ·) is the function that returns a real value
selected uniformly at random from the interval between
the two values. That is, we set a relatively small value
for each e ∈ E(S∗) and a relatively large value for each
e ∈ E \E(S∗), which often makes the densest subgraph on
G = (V,E) no longer densest on the edge-weighted graph
G = (V,E,w). Throughout our experiments, we generate
a random noise η(e) ∼ N (0, 1) for all e ∈ E.

5.1. Experiments for DS-Lin

Baseline. We compare our algorithm with the following
naive approach, which we refer to as Naive. As well as
our proposed algorithm, Naive is a kind of algorithm that
sequentially accesses a sampling oracle to estimate w and
uses uniform sampling strategy. The entire procedure is
detailed in Algorithm 5.

1http://www-personal.umich.edu/ mejn/netdata/
2http://snap.stanford.edu/

Algorithm 5 Baseline algorithm (Naive)
Input : Number of iterations T and a family of queryable

subsets of at least k vertices S ⊆ 2V

Output : S ⊆ V
wavg ← 0;
te ← 0 for e ∈ E;
for t = 1, 2, , . . . , T do

Choose St ⊆ S uniformly at random;
Call the sampling oracle for St and observe rt(St);
te ← te + 1 for e ∈ E(St);
Update wavg(e)← wavg(e)(te−1)+rSt/`

te
for e ∈ E(St);

end
S ← Output of Charikar’s LP-based exact algo-

rithm (Charikar, 2000) for G(V,E,wavg);
return S

Table 2. Comparison between DS-Lin and the baseline algorithm
(Algorithm 5).

Graph k DS-Lin Naive OPT |S∗|
10 111.08 19.94

Karate 20 111.08 19.94 111.08 6
30 111.08 19.94

10 179.72 177.19
Lesmis 20 179.72 177.19 179.72 15

30 179.72 177.19

10 227.43 172.69
Polbooks 20 227.62 172.69 228.67 19

30 227.67 172.69

10 133.23 53.27
Adjnoun 40 133.62 53.27 134.83 55

70 133.53 53.27

10 598.39 170.03
Jazz 40 598.81 170.46 599.43 42

70 598.81 164.76

10 223.36 67.24
Email 40 223.37 67.24 223.90 58

70 222.29 67.24

Parameter settings. Here we use the graphs with up to
ten thousand edges. We set the minimum size of queryable
subsets k = 10, 20, 30 for Karate, Lesmis, and
Polbooks, and k = 10, 40, 70 for Adjnoun, Jazz,
and Email. We construct S so that the matrix consisting
of rows corresponding to the indicator vector of S ∈ S has
rank m. Each S ∈ S is given as follows. We select an
integer ` ∈ [k, n] and choose S ⊆ V of size ` uniformly at
random. A uniform allocation strategy is employed by DS-
Lin as p, i.e., p = (1/|S|)S∈S . We set λ = 100 and R = 1.
In our theoretical analysis, we provided an upper bound of
the number of queries required by DS-Lin for ε > 0 and
δ ∈ (0, 1). However, such an upper bound is usually too
large in practice. Therefore, we terminate the while-loop of
our algorithm once the number of iterations exceeds 10,000

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Table 3. Performance of DS-SR. For DS-SR and R-Oracle, the quality of solutions, number of samples, and computation time are
averaged over 100 executions.

Graph DS-SR R-Oracle G-Oracle OPT

T Quality #Samples for single edges Time(s) Quality #Samples for single edges Time(s)

Karate 103 111.08 58 0.00 111.08 10,296 0.02 111.08 111.08
Lesmis 104 177.66 752 0.02 179.72 51,816 0.07 176.29 179.72
Polbooks 104 227.43 419 0.02 228.67 214,767 0.22 227.47 228.67
Adjnoun 104 133.93 403 0.02 134.83 241,400 0.26 133.97 134.83
Jazz 105 599.42 6,837 0.4 599.43 1,115,994 1.49 599.43 599.43
Email 106 220.7 23,785 1.51 223.91 22,790,631 20.54 220.93 223.90
email-Eu-core 106 792.03 34,393 4.0 792.19 17,509,760 29.69 792.07 792.19
Polblogs 106 1211.37 16,508 4.38 1211.44 18,452,256 20.76 1211.44 1211.44
ego-Facebook 107 2654.40 103,546 42.61 2783.85 78,175,324 108.82 2654.44 2783.85
Wiki-Vote 108 1235.71 3,975,994 425.42 1235.95 288,205,696 638.92 1235.76 1235.95

except for the initialization steps. To be consistent, we also
set T = m+ 10000 in Naive.

Results. Here we compare our proposed algorithm DS-
Lin with Naive in terms of the quality of solutions. The
results are summarized in Table 2. The quality of output S
is measured by its density in terms of w which is unknown
to the learner. For all instances, we run each algorithm for
10 times, and report the average value. The last two columns
of Table 2 represent the optimal value and the size of an
optimal solution, respectively, As can be seen, our algorithm
outperforms the baseline algorithm; in fact, our algorithm
always obtains a nearly-optimal solution. It should be noted
that this trend is valid even if k is quite large; in particular,
even if k is larger than the size of the densest subgraph
on the edge-weighted graph G = (V,E,w), our algorithm
succeeds in detecting a vertex subset that is almost densest
in terms of w. We also report how the density of solutions
approaches to such a quality and behavior of DS-Lin with
respect to the number of iterations in Appendix I.

Finally, we briefly report the running time of our proposed
algorithm with 10,000 iterations. For small-sized instances,
Karate, Lesmis, Polbooks, and Adjnoun, the algo-
rithm runs in a few minutes. For medium-sized instances,
Jazz and Email, the algorithm runs in a few hours.

5.2. Experiments for DS-SR

Compared algorithms. To demonstrate the performance
of DS-SR for Problem 2, we also implement two algorithms
G-Oracle and R-Oracle. G-Oracle is the greedy peel-
ing algorithm with the knowledge of the expected weight
w (Charikar, 2000), which is detailed in Algorithm 6. Note
that we are interested in how the quality of solutions by
DS-SR is close to that of G-Oracle. R-Oracle is the
state-of-the-art robust optimization algorithm proposed by
Miyauchi & Takeda (2018) with the use of edge-weight
space W = ×e∈E [min{w(e) − 1, 0}, w(e) + 1], which is

Algorithm 6 Greedy peeling (G-Oracle)
Input : Graph G = (V,E,w)
Output : S ⊆ V
S|V | ← V ;
for i← |V |, . . . , 2 do

Find vi ∈ argminv∈Si degSi(v);
Si−1 ← Si \ {vi};

end
return Si ∈ {S1, . . . , S|V |} that maximizes fw(S)

detailed in Algorithm 7 in Appendix J. For R-Oracle, we
set γ = 0.9 and ε = 0.9 as in Miyauchi & Takeda (2018).

Results. For DS-SR, in order to make T̃t positive, we
run the experiments with a budget T = 10dlog10

∑n+1
i=1 ie for

all instances. The results are summarized in Table 3. The
quality of output is again evaluated by its density in terms
of w. For DS-SR and R-Oracle, we list the total number
of samples for individual edges used in the algorithms. To
observe the scalability, we also report the computation time
of the algorithms. We perform them 100 times on each
graph. As can be seen, DS-SR required much less samples
for single edges than that of R-Oracle but still can find
high-quality solutions. The quality of solutions by DS-SR
is comparable with that of G-Oracle, which has a prior
knowledge of expected weights w. Moreover, in terms of
computation time, DS-SR efficiently works on large-sized
graphs with about ten thousands of edges. Finally, Figure 1
depicts the fraction of the size of edge subsets queried in
DS-SR (see Appendix J for results on all graphs). We see
that in the execution of DS-SR, the fraction of the number
of queries for single edges is less than 30%.

6. Conclusion
In this study, we introduced a novel online variant of the
densest subgraph problem by bringing the concepts of com-

Online Dense Subgraph Discovery via Blurred-Graph Feedback

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

Polblogs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

Email-Eu-core

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
eq

ue
nc

y

Ego-Facebook

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Wiki-Vote

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

Figure 1. Fraction of the size of edge subsets queried in DS-SR.
All values are averaged over 100 executions.

binatorial pure exploration, which we refer to as the DS
bandits. We first proposed an (ε, δ)-PAC algorithm called
DS-Lin, and provided a polynomial sample complexity guar-
antee. Our key technique is to utilize an approximation algo-
rithm using SDP for confidence bound maximization. Then,
to deal with large-sized graphs, we proposed an algorithm
called DS-SR by combining the successive reject strategy
and the greedy peeling algorithm. We provided an upper
bound of probability that the quality of the solution obtained
by the algorithm is less than 1

2OPT− ε. Computational ex-
periments using well-known real-world graphs demonstrate
the effectiveness of our proposed algorithm.

Acknowledgments
The authors thank the anonymous reviewers for their useful
comments and suggestions to improve the paper. YK would
like to thank Wei Chen and Tomomi Matsui for helpful dis-
cussion, and also thank Yasuo Tabei, Takeshi Teshima, and
Taira Tsuchiya for their feedback on the manuscript. YK
was supported by Microsoft Research Asia D-CORE pro-
gram, KAKENHI 18J23034, and UTokyo Toyota-Dwango
Scholarship. AM was supported by KAKENHI 19K20218.
JH was supported by KAKENHI 18K17998. MS was sup-
ported by KAKENHI 17H00757.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Proc. NIPS ’14,
pp. 2312–2320, 2011.

Adar, E. and Ré, C. Managing uncertainty in social net-
works. IEEE Data Engineering Bulletin, 30:15–22, 2007.

Agrawal, R. and Srikant, R. Privacy-preserving data mining.
In Proc. SIGMOD ’00, pp. 439–450, 2000.

Andersen, R. and Chellapilla, K. Finding dense subgraphs
with size bounds. In Proc. WAW ’09, pp. 25–37, 2009.

Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. Dense
subgraph maintenance under streaming edge weight up-
dates for real-time story identification. In Proc. VLDB ’12,
pp. 574–585, 2012.

Audibert, J.-Y., Bubeck, S., and Munos, R. Best arm identi-
fication in multi-armed bandits. In Proc. COLT ’10, pp.
41–53, 2010.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, 2003.

Bader, G. D. and Hogue, C. W. V. An automated method for
finding molecular complexes in large protein interaction
networks. BMC Bioinformatics, 4(1):1–27, 2003.

Bahmani, B., Kumar, R., and Vassilvitskii, S. Densest sub-
graph in streaming and mapreduce. In Proc. VLDB ’12,
pp. 454–465, 2012.

Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and
Vijayaraghavan, A. Detecting high log-densities: An
O(n1/4) approximation for densest k-subgraph. In Proc.
STOC ’10, pp. 201–210, 2010.

Bhattacharya, S., Henzinger, M., Nanongkai, D., and
Tsourakakis, C. E. Space- and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic
streams. In Proc. STOC ’15, pp. 173–182, 2015.

Bouhtou, M., Gaubert, S., and Sagnol, G. Submodularity
and randomized rounding techniques for optimal experi-
mental design. Electronic Notes in Discrete Mathematics,
36:679–686, 2010.

Bubeck, S., Wang, T., and Viswanathan, N. Multiple identi-
fications in multi-armed bandits. In Proc. ICML ’13, pp.
258–265, 2013.

Carpentier, A. and Locatelli, A. Tight (lower) bounds for
the fixed budget best arm identification bandit problem.
In Proc. COLT’ 16, pp. 590–604, 2016.

Charikar, M. Greedy approximation algorithms for finding
dense components in a graph. In Proc. APPROX ’00, pp.
84–95, 2000.

Chen, L., Gupta, A., and Li, J. Pure exploration of
multi-armed bandit under matroid constraints. In Proc.
COLT ’16, pp. 647–669, 2016.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Chen, L., Gupta, A., Li, J., Qiao, M., and Wang, R. Nearly
optimal sampling algorithms for combinatorial pure ex-
ploration. In Proc. COLT ’17, pp. 482–534, 2017.

Chen, S., Lin, T., King, I., Lyu, M. R., and Chen, W. Combi-
natorial pure exploration of multi-armed bandits. In Proc.
NIPS ’14, pp. 379–387, 2014.

Chen, W., Wang, Y., and Yuan, Y. Combinatorial multi-
armed bandit: General framework and applications. In
Proc. ICML ’13, pp. 151–159, 2013.

Dourisboure, Y., Geraci, F., and Pellegrini, M. Extraction
and classification of dense communities in the web. In
Proc. WWW ’07, pp. 461–470, 2007.

Epasto, A., Lattanzi, S., and Sozio, M. Efficient dens-
est subgraph computation in evolving graphs. In Proc.
WWW ’15, pp. 300–310, 2015.

Feige, U., Peleg, D., and Kortsarz, G. The dense k-subgraph
problem. Algorithmica, 29(3):410–421, 2001.

Gabillon, V., Ghavamzadeh, M., and Lazaric, A. Best arm
identification: A unified approach to fixed budget and
fixed confidence. In Proc. NIPS ’12, pp. 3212–3220,
2012.

Galimberti, E., Bonchi, F., and Gullo, F. Core decompo-
sition and densest subgraph in multilayer networks. In
Proc. CIKM ’17, pp. 1807–1816, 2017.

Ghaffari, M., Lattanzi, S., and Mitrović, S. Improved par-
allel algorithms for density-based network clustering. In
Proc. ICML ’19, pp. 2201–2210, 2019.

Gibson, D., Kumar, R., and Tomkins, A. Discovering large
dense subgraphs in massive graphs. In Proc. VLDB ’05,
pp. 721–732, 2005.

Gionis, A. and Tsourakakis, C. E. Dense subgraph dis-
covery: KDD 2015 Tutorial. In Proc. KDD ’15, pp.
2313–2314, 2015.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM, 42:1115–1145, 1995.

Goldberg, A. V. Finding a maximum density subgraph.
Technical report, University of California Berkeley, 1984.

Hu, S., Wu, X., and Chan, T.-H. H. Maintaining dens-
est subsets efficiently in evolving hypergraphs. In Proc.
CIKM ’17, pp. 929–938, 2017.

Huang, W., Ok, J., Li, L., and Chen, W. Combinatorial
pure exploration with continuous and separable reward
functions and its applications. In Proc. IJCAI ’18, pp.
2291–2297, 2018.

Kawase, Y. and Miyauchi, A. The densest subgraph problem
with a convex/concave size function. Algorithmica, 80
(12):3461–3480, 2018.

Kawase, Y., Kuroki, Y., and Miyauchi, A. Graph mining
meets crowdsourcing: Extracting experts for answer ag-
gregation. In Proc. IJCAI’19, pp. 1272–1279, 2019.

Khuller, S. and Saha, B. On finding dense subgraphs. In
Proc. ICALP ’09, pp. 597–608, 2009. ISBN 978-3-642-
02926-4.

Kiefer, J. and Wolfowitz, J. The equivalence of two ex-
tremum problems. Canadian Journal of Mathematics, 12:
363366, 1960.

Kuroki, Y., Xu, L., Miyauchi, A., Honda, J., and Sugiyama,
M. Polynomial-time algorithms for multiple-arm identi-
fication with full-bandit feedback. Neural Computation,
32(9):1733–1773, 2020.

Mahajan, S. and Ramesh, H. Derandomizing approximation
algorithms based on semidefinite programming. SIAM
Journal on Computing, 28:1641–1663, 1999.

McGregor, A., Tench, D., Vorotnikova, S., and Vu, H. T.
Densest subgraph in dynamic graph streams. In Proc.
MFCS ’15, pp. 472–482, 2015.

Miller, B., Bliss, N., and Wolfe, P. Subgraph detection using
eigenvector L1 norms. In Proc. NIPS ’10, 2010.

Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis,
C. E., and Xu, S. C. Scalable large near-clique detection
in large-scale networks via sampling. In Proc. KDD ’15,
pp. 815–824, 2015.

Miyauchi, A. and Kakimura, N. Finding a dense subgraph
with sparse cut. In Proc. CIKM ’18, pp. 547–556, 2018.

Miyauchi, A. and Takeda, A. Robust densest subgraph
discovery. In Proc. ICDM ’18, pp. 1188–1193, 2018.

Miyauchi, A., Iwamasa, Y., Fukunaga, T., and Kakimura,
N. Threshold influence model for allocating advertising
budgets. In Proc. ICML ’15, pp. 1395–1404, 2015.

Nasir, M. A. U., Gionis, A., Morales, G. D. F., and Girdz-
ijauskas, S. Fully dynamic algorithm for top-k densest
subgraphs. In Proc. CIKM ’17, pp. 1817–1826, 2017.

Nepusz, T., Yu, H., and Paccanaro, A. Detecting overlapping
protein complexes in protein-protein interaction networks.
Nature Methods, 9(5):471–472, 2012.

Nesterov, Y. Semidefinite relaxation and nonconvex
quadratic optimization. Optimization Methods and Soft-
ware, 9(1-3):141–160, 1998.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Papailiopoulos, D. S., Mitliagkas, I., Dimakis, A. G., and
Caramanis, C. Finding dense subgraphs via low-rank
bilinear optimization. In Proc. ICML ’14, pp. 1890–1898,
2014.

Pukelsheim, F. Optimal Design of Experiments. SIAM,
2006.

Rejwan, I. and Mansour, Y. Top-k combinatorial
bandits with full-bandit feedback. arXiv preprint
arXiv:1905.12624, 2019.

Sagnol, G. Approximation of a maximum-submodular-
coverage problem involving spectral functions, with ap-
plication to experimental designs. Discrete Applied Math-
ematics, 161:258–276, 2013.

Soare, M., Lazaric, A., and Munos, R. Best-arm identifi-
cation in linear bandits. In Proc. NIPS’14, pp. 828–836,
2014.

Tsourakakis, C. E. The k-clique densest subgraph problem.
In Proc. WWW ’15, pp. 1122–1132, 2015.

Tsourakakis, C. E., Chen, T., Kakimura, N., and Pachocki,
J. Novel dense subgraph discovery primitives: Risk aver-
sion and exclusion queries. In Proc. ECML-PKDD ’19,
2019. 17 pages.

Xu, L., Honda, J., and Sugiyama, M. A fully adaptive
algorithm for pure exploration in linear bandits. In Proc.
AISTATS ’18, pp. 843–851, 2018.

Ye, Y. Approximating quadratic programming with bound
constraints. Mathematical Programming, 84:219–226,
1999.

Zheleva, E. and Getoor, L. Privacy in social networks: A
survey. In Social Network Data Analytics, pp. 277–306.
Springer US, 2011.

Zou, Z. Polynomial-time algorithm for finding densest
subgraphs in uncertain graphs. In Proc. MLG ’13, 2013.
7 pages.

Supplementary Material:

Online Dense Subgraph Discovery via Blurred-Graph Feedback

A. Related work on the densest subgraph problem
The densest subgraph problem has a large number of noteworthy problem variations. The most related one is the above-
mentioned variant dealing with the uncertainty of edge weights, recently introduced by Miyauchi & Takeda (2018). Here
we review their models in detail. They introduced two optimization models: the robust densest subgraph problem and the
robust densest subgraph problem with sampling oracle. In both models, it is assumed that we have an edge-weight space
W = ×e∈E [le, re] ⊆ ×e∈E [0,∞) that contains the unknown true edge weight w. That is, we have only the lower and
upper bounds on the true edge weight for each edge. The key question they addressed is as follows: how can we evaluate
the quality of solutions in this uncertain scenario? To answer this question, they employed the measure called the robust
ratio, which is a well-known notion in the field of robust optimization. In the first model, given an unweighted graph G and
an edge-weight space W , we are asked to find S ⊆ V that maximizes the robust ratio. In the second model, as mentioned
above, we also have access to the edge-weight sampling oracle.

There are other problem variations under uncertain scenarios. Zou (2013) studied the densest subgraph problem on uncertain
graphs. Uncertain graphs are a generalization of graphs, which can model the uncertainty of the existence of edges (rather
than the uncertainty of edge weights). More formally, an uncertain graph consists of an unweighted graph G = (V,E) and a
function p : E → [0, 1], where e ∈ E is present with probability p(e) whereas e ∈ E is absent with probability 1− p(e). In
the problem introduced by Zou (2013), given an uncertain graph G, we are asked to find S ⊆ V that maximizes the expected
value of the density. Zou (2013) demonstrated that this problem can be reduced to the original densest subgraph problem,
and designed polynomial-time exact algorithm using the reduction. Very recently, Tsourakakis et al. (2019) introduced
a novel optimization model, which they refer to as the risk-averse DSD. In this model, given an uncertain graph, we are
asked to find S ⊆ V that has a large expected value of the density, at the same time, has a small risk. The risk of S ⊆ V is
measured by the probability that S is not dense on a given uncertain graph. They showed that the risk-averse DSD can be
reduced to NEG-DSD, and designed an efficient approximation algorithm based on the reduction.

In addition to the above uncertain variants, the densest subgraph problem has many other interesting variations. In particular,
the size-restricted variants have been actively studied (Andersen & Chellapilla, 2009; Bhaskara et al., 2010; Feige et al.,
2001; Khuller & Saha, 2009). For example, in the densest k-subgraph problem (Feige et al., 2001), given an edge-weighted
graph G and a positive integer k, we are asked to find S ⊆ V that maximizes the density fw(S) (or equivalently w(S))
subject to the size constraint |S| = k. It is known that such a size restriction makes the problem much harder; in fact, the
densest k-subgraph problem is NP-hard and the best known approximation ratio is Ω(1/n1/4+ε) for any ε > 0 (Bhaskara
et al., 2010). The densest subgraph problem has also been extended to more general graph structures such as hypergraphs (Hu
et al., 2017; Miyauchi et al., 2015) and multilayer networks (Galimberti et al., 2017). Moreover, to cope with the dynamics
of real-world graphs and to model the limited computation resources in reality, some literature has considered dynamic
settings (Epasto et al., 2015; Hu et al., 2017; Nasir et al., 2017) and streaming settings (Angel et al., 2012; Bahmani et al.,
2012; Bhattacharya et al., 2015; McGregor et al., 2015), respectively. The average-degree density itself has also been
generalized by modifying the numerator (Mitzenmacher et al., 2015; Miyauchi & Kakimura, 2018; Tsourakakis, 2015) or
the denominator (Kawase & Miyauchi, 2018) of d(S) = w(S)

|S| , for some specific purposes.

B. Notation
We give the summary of notation in Table 4.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Table 4. Notation.
Notation Description

G = (V,E,w) Undirected graph
E(S) = {{u, v} ∈ E : u, v ∈ S} Subset of edges induced by S ⊆ V
G[S] = (S,E(S)) Subgraph induced by S
w : E → R>0 Expected edge weights
w(S) =

∑
e∈E(S) we Sum of edge weights in E(S)

fw(S) = w(S)/|S| Degree density for weight w and S ⊆ V
χE(S) ∈ {0, 1}E Indicator vector of E(S)
xt = (χE(S1), . . . ,χE(St)) ∈ {0, 1}E×t Sequence of indicator vectors
(r1(S1), . . . , rt(St)) ∈ Rt Sequence of observed rewards
Axt =

∑t
i=1 χE(Si)χ

>
E(Si)

+ λI Design matrix
bxt bxt =

∑t
i=1 χE(Si)ri(Si) ∈ RE

ŵt = A−1
xt bxt ∈ RE Regularized least-square estimator

‖x‖B =
√
x>Bx Quadratic (ellipsoidal) norm

N(v) = {u ∈ V : {u, v} ∈ E} Set of neighbors of v ∈ V
degmax = maxv∈V |N(v)| Maximum degree of vertices
p = (p(S))S∈S ∈ P Predetermined proportions of queries
Λp =

∑
S∈S p(S)χE(S)χ

>
E(S) Design matrix for p ∈ P

ρΛp = maxx∈[−1,1]m ‖x‖2Λp−1 Upper bound of maximal confidence width
NS(v) = {u ∈ S : {u, v} ∈ E} Set of neighboring vertices of v in G[S]
ES(v) = {{u, v} ∈ E : u ∈ NS(v)} Set of incident edges to v in G[S]

X̂F (k) = 1
k

∑k
s=1XF (s) Empirical mean of weights for k samples

d̂egS,v(t) = X̂ES(v)

(
TE(S)(t)

)
Empirical degree in S ⊂ V for v ∈ S

f̂(Sn−t+1) =

1
2

∑
v∈Sn−t+1d̂egSn−t+1

(v,t)

|Sn−t+1| Empirical quality function at round t

C. LP-based exact algorithm for the densest subgraph problem
We describe an exact algorithm for the densest subgraph problem based on the following LP and simple rounding procedure
proposed by Charikar (2000) which we use in our proposed algorithm.

maximize
∑
e∈E

wexe

subject to xe ≥ yu, xe ≥ yv ∀e = {u, v} ∈ E,∑
v∈V

yv = 1,

xe, yv ≥ 0 ∀e ∈ E,∀v ∈ V. (8)

Let (x∗, y∗) be an optimal solution to the above LP. For a real number r ≥ 0, the algorithm considers a sequence of
subsets vertices S(r) = {v ∈ V : y∗v ≥ r} and finds r∗ ∈ argmaxr∈[0,1] fw(S(r)). Such a r∗ can be obtained by simply
examining r = y∗v for each v ∈ V . Finally, the algorithm outputs S(r∗). Charikar (2000) proved that the output S(r∗) is an
optimal solution to the densest subgraph problem.

D. Arm allocation strategy
In this section, we introduce a possible allocation strategy that can be used in DS-Lin algorithm. To reduce the number of
samples, good arm allocation strategy makes confidence bound shrinking fast. We define the G-allocation for a family S as:

p = argmin
p∈P

max
S⊆S
‖χE(S)‖2Λp−1 .

There are existing studies that proposed approximate solutions to solve it in the experimental design literature (Bouhtou
et al., 2010; Sagnol, 2013); we can solve a continuous relaxation of the problem by a projected gradient algorithm when
the support size |S| is not so large. For details on G-allocation or standard G-optimal design, see Soare et al. (2014) or
see Pukelsheim (2006).

In general, an algorithm that adaptively changes an arm selection strategy based on the past observations at each round,
which is called an adaptive algorithm, is desired because samples should be allocated for comparison of near-optimal arms

Online Dense Subgraph Discovery via Blurred-Graph Feedback

in order to reduce the number of samples. On the other hand, the algorithm that fixes all arm selections before observing any
reward is called the static algorithm. Although the static algorithm is not able to focus on estimating near-optimal arms, it
can be used to analyze the worst case optimality. In our text, each arm corresponds to an edge set; it is rare that any set
is able to query since the possible choices are exponential. Therefore, we design a static algorithm DS-Lin for solving
Problem 1. On the other hand, if we are allowed to query any action as in Problem 2, we can design an adaptive algorithm
DS-SR.

E. Technical lemmas for Theorem 1
We introduce random event Et which characterizes the event that the confidence bounds of any feasible solution S ∈ V are
valid at round t. We define a random event Et as follows:

Et = {∀S ∈ V and v ∈ S, |w(S)− ŵt(S)| ≤ Ct‖χE(S)‖A−1
xt
}. (9)

The following lemma states that event E =
⋂∞
t=1 Et occurs with high probability.

Lemma 1. The event E occurs with probability at least 1− δ.

The proof is omitted since it is straightforward from Proposition 1 and union bounds.

Lemma 2. For a fixed round t > m, assume that Et occurs. Then, if the algorithm stops at round t, the output of the
algorithm SOUT satisfies fw(S∗)− fw(SOUT) ≤ ε.

Proof. If SOUT = S∗, we obviously have the desired result. Then, we shall assume SOUT 6= S∗.

fw(SOUT) ≥ fwt(SOUT)−
Ct‖χE(SOUT)‖A−1

xt

|SOUT|

≥ max
S 6=SOUT :S⊆V

fŵt(S) +
CtZt
2α
− ε

≥ fŵt(S∗) +
maxx∈[−1,1]m ‖x‖A−1

xt

2
− ε

≥ fŵt(S∗) +
maxS⊆V ‖χE(S)‖A−1

xt

2
− ε

≥ fŵt(S∗) +
Ct‖χE(S∗)‖A−1

xt

|S∗|
− ε

≥ fw(S∗)− ε,

where the first and last inequalities follow from the event Et, and the second inequality follows from the stopping condition,
and the third inequality follows from the definition of Zt and approximation ratio α.

In Miyauchi & Takeda (2018), they provided the following lemma, which we also use to prove Theorem 1.

Lemma 3 (Miyauchi & Takeda (2018), Lemma 2). Let G = (V,E) be an undirected graph. Let w1 and w2 be edge-weight
vectors such that ‖w1 − w2‖∞ ≤ β holds for β > 0. Then, for any S ⊆ V , it holds that

|fw1
(S)− fw2

(S)| ≤
√
m

2
· β.

F. Proof of Theorem 1
Proof. We know that the event E holds with probability at least 1− δ from Lemma 1. Therefore, we only need to prove that,
under event E , the algorithm returns a set whose density is at least fw(S∗)− ε and provide an upper bound of number of
queries. From Lemma 2, on the event E , the algorithm outputs SOUT ⊆ V that satisfies fw(S∗)− fw(SOUT) ≤ ε.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Next, we focus on bounding the number of queries. Recall that Algorithm 2 employs a stopping condition:

fŵt(Ŝt)−
Ct‖χE(Ŝt)‖
|Ŝt|

≥ max
S 6=Ŝt :S⊆V

fŵt(S) +
CtZt
2α
− ε, (10)

where Zt denotes the objective of the approximate solution to P1. A sufficient condition of the stopping condition is that for
S∗ and for t > m,

fŵt(S
∗)− Ct‖χE(S∗)‖

|S∗|
≥ max
S 6=S∗ :S⊆V

fŵt(S) +
CtZt
2α
− ε, (11)

Since Zt ≤ maxx∈[−1,1]m ‖x‖A−1
xt

and ‖χE(S∗)‖ ≤ maxx∈[−1,1]m ‖x‖A−1
xt

, the following inequality is also a sufficient
condition to stop:

fŵt(S
∗)−

Ct maxx∈[−1,1]m ‖x‖A−1
xt

|S∗|
≥ max
S 6=S∗ :S⊆V

fŵt(S) +
Ct maxx∈[−1,1]m ‖x‖A−1

xt

2α
− ε. (12)

Recall that Tt(S) be the number of times that S ⊆ S is queried before t-th round in the algorithm. We denote pxt by pxt =
(Tt(S)/t)S∈S . From the above definitions, the design matrix is Axt = tΛpxt

. Recall that ρΛp = maxx∈[−1,1]m ‖x‖2Λ−1
p

,

and let ρΛpxt
= maxx∈[−1,1]m ‖x‖2Λ−1

pxt

. From the fact that limt→∞ Λpxt
= Λp, for sufficiently large t� m we have that

|ρΛp − ρΛpxt
| ≤ ε with probability at least 1− δ

2 where δ ∈ (0, 1) and ε > 0. Let S̄ = argmaxS 6=S∗ :S⊆V fŵt(S). Then,
(12) is rewritten as follows:

fŵt(S
∗)− fŵt(S̄) ≥

(
1

|S∗|
+

1

2α

)
Ct

√
ρΛp + ε

t
− ε. (13)

Next, we show the following inequality.

fŵt(S
∗)− fŵt(S̄) ≥ ∆min −

√
2mCt

√
ρΛp + ε

t
. (14)

From Proposition 1, with probability 1 − δ
2 , we have ‖w − ŵt‖∞ ≤ Ct maxS ‖χE(S)‖A−1

xt
. From Lemma 3, we see that

fŵt(S
∗) − fw(S∗) ≥ −

√
m
2 Ct maxS⊆V ‖χE(S)‖A−1

xt
and fw(S̄) − fŵt(S̄) ≥ −

√
m
2 Ct maxS⊆V ‖χE(S)‖A−1

xt
. Therefore,

for sufficiently large t� m such that |ρΛp − ρΛpxt
| ≤ ε with probability at least 1− δ

2 , we have that

fŵt(S
∗)− fŵt(S̄) ≥ fw(S∗)− fw(S̄)−

√
2mCt max

S⊆V
‖χE(S)‖A−1

xt

≥ fw(S∗)− fw(S̄)−
√

2mCt max
x∈{0,1}m

‖x‖A−1
xt

= fw(S∗)− fw(S̄)−
√

2mCt

√
ρΛpxt

t

≥ fw(S∗)− fw(S̄)−
√

2mCt

√
ρΛp + ε

t

≥ ∆min −
√

2mCt

√
ρΛp + ε

t
.

Then, we obtain (14). Combining (13) and (14), we see that the following inequality is a sufficient condition to stop:

∆min −
√

2mCt

√
ρΛp + ε

t
≥
(

1

|S∗|
+

1

2α

)
Ct

√
ρΛp + ε

t
− ε. (15)

Solving (15) with respect to t, we obtain

t ≥ (
√

2m+ |S∗|−1 + 2α−1)2C2
tHε, (16)

Online Dense Subgraph Discovery via Blurred-Graph Feedback

where recall that Hε is defined as

Hε =
ρΛp + ε

(∆min + ε)2
.

Therefore, from the above, we obtain t ≥
(√

2m+ |S∗|−1 + 2α−1
)2
C2
tHε as a sufficient condition to stop. Let τ > m be

the stopping time of the algorithm. From the above discussion and |S∗| ≥ 2, we see that

τ ≤
(√

2m+
α+ 1

2

)2

C2
τHε. (17)

Now we bound Cτ in (17). We have det(Axτ) ≤ (λ + τ)m, which is obtained by Lemma 10 in Abbasi-Yadkori et al.
(2011). Then, we obtain the following inequality in the similar manner in Theorem 2 in Xu et al. (2018):

Cτ ≤ R′
√

2 log
det(Axτ)

1
2 det(λI)−

1
2

δ
+ λ

1
2L

≤ R′
√

2 log
1

δ
+m log

(
1 +

τ

λ

)
+ λ

1
2L. (18)

Using (18), we give an upper bound of τ . We also use a similar proof strategy as in Xu et al. (2018). First, let us consider
the case λ > 4m(

√
m+

√
2)2R′2Hε, where recall that R′ =

√
degmaxR. Using the facts that (a+ b)2 ≤ 2(a2 + b2) for

a, b > 0 and log(1 + x) ≤ x, we have

τ ≤
(√

2m+
α+ 1

2

)2

C2
τHε ≤ 2

(√
2m+

α+ 1

2

)2

Hε

(
4R′2 log

1

δ
+
R′2m

λ
τ + λL2

)
.

Thus, we obtain

τ ≤

(
1− 2

(√
2m+

α+ 1

2

)2
R′2mHε

λ

)−1

(8HεR
′2 log 1/δ + 2HελL

2)

≤ 2(8HεR
′2 log 1/δ + 2HελL

2),

where the last inequality holds from λ > 4m(
√
m+

√
2)2R′2Hε and α =

√
4
7 . Therefore, in this case, we obtain

τ = O

((
deg2

maxR
2 log

1

δ
+ λL2

)
Hε

)
.

Second, we consider λ ≤ R′2

L2 log
(

1
δ

)
. From this bound and (18), we have

Cτ ≤ 2R′
√

2 log
1

δ
+m log

(
1 +

τ

λ

)
.

Let V (m,α) =
(√

2m+ α+1
2

)2
. Therefore, we obtain

τ ≤ V (m,α)C2
τHε ≤ 4V (m,α)R′2

(
2 log

1

δ
+m log

(
1 +

τ

λ

))
Hε.

Let N = 8V (m,α)R′2 log 1
δHε and let τ ′ be a parameter satisfying:

τ = N + 4V (m,α)R′2m log

(
1 +

τ ′

λ

)
Hε. (19)

Online Dense Subgraph Discovery via Blurred-Graph Feedback

It is easy to see τ ′ ≤ τ . Then, we have

τ ′ ≤ τ = N + 4V (m,α)R′2m log

(
1 +

τ ′

λ

)
Hε

≤ N + 4V (m,α)R′2m

√
τ ′

λ
Hε,

where the second inequality follows from the fact log(1 + x) ≤
√
x. Solving this quadratic inequality for

√
τ ′, we have

√
τ ′ ≤ 2V (m,α)R′2mHε√

λ
+

√
4V (m,α)2R′4m2H2

ε

λ
+N

≤ 2

√
4V (m,α)2R′4m2H2

ε

λ
+N. (20)

Let M = 2

√
4V (m,α)2R′4m2H2

ε

λ +N . We can give an upper bound τ by (19) and (20) as follows:

τ ≤ 8V (m,α)R′2Hε log
1

δ
+ 4HεV (m,α)R′2m log

(
1 +

M

λ

)
.

Note that logM = O
(
log
(
R′4m4H2

ε +mR′2 log 1
δHε

))
since V (m,α) = O(m). From the above and R′ =

√
degmaxR,

we obtain

τ =O

(
mdegmaxR

2Hε log
1

δ
+mdegmaxR

2Hε log

(
deg2

maxR
4m4H2

ε +mdegmaxR
2Hε log

1

δ

))
= O

(
mdegmaxR

2Hε log
1

δ
+ C(Hε, δ)

)
where

C(Hε, δ) = mdegmaxR
2Hε log

(
deg2

maxR
4m4H2

ε +mdegmaxR
2Hε log

1

δ

)
= O

(
mdegmaxR

2Hε log

(
degmaxRmHε log

1

δ

))
.

G. Technical lemmas for Theorem 2
First we introduce a standard concentration inequality of sub-Gaussian random variables (Chen et al., 2014).
Lemma 4 (Chen et al. (2014), Lemma 6). Let X1, . . . , Xk be k independent random variables such that, for each i ∈ [k],
random variable Xi − E[Xi] is R-sub-Gaussian distributed, i.e., ∀a ∈ R, E[exp(aXi − aE[Xi])] ≤ exp(R2a2)/2. Let
X̄ = 1

k

∑k
i=1Xi denote the average of these random variables. Then, for any λ > 0, we have

Pr
[
|X̄ − E[X̄]| ≥ λ

]
≤ 2 exp

(
− kλ

2

2R2

)
.

For S ⊆ V , v ∈ S, and expected weight w, we denote by deg∗S(v) the weighted degree of v ∈ S on G[S] in terms of the
true edge weight w. We show the following lemma used for analysis of Algorithm 3.
Lemma 5. Given an phase t ∈ {1, . . . , n− 1}, we define random event

E ′t =
{
∀v ∈ Sn−t+1,

∣∣∣deg∗Sn−t+1
(v)− d̂egSn−t+1

(v, t)
∣∣∣ ≤ ε} . (21)

Then, we have

Pr

[
n−1⋂
t=1

E ′t

]
≥ 1− 2degmax2nR2

ε2
(n+ 1)3 exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmax
˜log(n− 1)

)
. (22)

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Proof. For any S ⊆ V , and v ∈ S, recall that XES(v)(i) is i-th observation of edge-weights ES(v) for i ∈ [k]. Then,
XES(v)(i)−E[XES(v)(i)] follows a (

√
|ES(v)| R)-sub-Gaussian distribution. We can assume that the sequence of weights

for each subset of edges is drawn before the beginning of the game. Thus X̂ES(v)(k) is well defined even if ES(v) has not
been actually sampled k times. Therefore, from Lemma 4, for any ε > 0 we have that

Pr
[∣∣∣E[X̂ES(v)(k)]− X̂ES(v)(k)

∣∣∣ ≥ ε] ≤ 2 exp

(
− kε2

2|ES(v)|R2

)
≤ 2 exp

(
− kε2

2degmaxR
2

)
. (23)

Fix t ∈ {1, . . . , n− 1} and fix a vertex v ∈ Sn−t+1 in a phase t. If |NSn−t+1
(v)| = 0, it is obvious that degSn−t+1

(v) =

d̂egSn−t+1
(v) = 0. Therefore, we will consider a vertex v ∈ Sn−t+1 such that |NSn−t+1

(v)| ≥ 1 in the rest of the proof.
By the definition of T̃t for t ∈ [1, 2, . . . , n− 1], we have

T̃t ≥
T −

∑n+1
i=1 i

(n− t) ˜log(n− 1)
≥
T −

∑n+1
i=1 i

n ˜log(n− 1)
.

Then for TESn−t+1
(v)(t), we have:

TESn−t+1
(v)(t) =

t∑
i=1

τi =

t∑
i=1

(T ′i − T ′i−1) = T ′t ≥
T̃t

2|Sn−t+1|
≥

T −
∑n+1
i=1 i

2n2 ˜log(n− 1)
. (24)

Let k′ be the RHS of (24), i.e. k′ =
T−

∑n+1
i=1 i

2n2 ˜log(n−1)
. For v ∈ Sn−t+1, we have

Pr
[∣∣∣deg∗Sn−t+1

(v)− d̂egSn−t+1
(v, t)

∣∣∣ ≥ ε]
= Pr

[∣∣∣E[X̂ESn−t+1
(v)(TESn−t+1

(v)(t))]− X̂ESn−t+1
(v)(TESn−t+1

(v)(t))
∣∣∣ ≥ ε]

≤ Pr
[
∃S ⊆ V, u ∈ S

∣∣∣∣∣∣E[X̂ES(u)(TESn−t+1
(v)(t))]− X̂ES(u)(TESn−t+1

(v)(t))
∣∣∣ ≥ ε]

≤
∑
S∈2V

∑
u∈S

∞∑
k=k′

Pr
[∣∣∣E[X̂ES(u)(k)]− X̂ES(u)(k)

∣∣∣ ≥ ε]
≤
∑
S∈2V

∑
u∈S

∞∑
k=k′

2 exp

(
− kε2

2degmaxR
2

)

=
∑
S∈2V

∑
u∈S

2 exp
(
− k′ε2

2degmaxR
2

)
exp

(
ε2

2degmaxR
2

)
− 1

≤
∑
S∈2V

∑
u∈S

2 exp
(
− k′ε2

2degmaxR
2

)
ε2

2degmaxR
2

=
∑
S∈2V

∑
u∈S

4degmaxR
2

ε2
exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)

≤ 4degmax2nnR2

ε2
exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)
, (25)

where the third inequality follows by (23) and the fourth inequality follows by e−x ≥ 1− x.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Now using (25) and taking a union bound for all t ∈ {1, . . . n− 1} and all v ∈ Sn−t+1, we obtain

Pr

[
n−1⋂
t=1

E ′t

]
=1− Pr

[
∃t ∈ {1, . . . n− 1}, v ∈ Sn−t+1

∣∣∣∣∣∣deg∗Sn−t+1
(v)− d̂egSn−t+1

(v, t)
∣∣∣ ≥ ε]

≥ 1−
n−1∑
t=1

∑
v∈Sn−t+1

Pr
[∣∣∣deg∗Sn−t+1

(v)− d̂egSn−t+1
(v, t)

∣∣∣ ≥ ε]

≥ 1−
n−1∑
t=1

∑
v∈Sn−t+1

4degmax2nnR2

ε2
exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)

= 1− 4degmax2nnR2

ε2

n−1∑
t=1

|Sn−t+1| exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)

= 1− 4degmax2nnR2

ε2

n−1∑
t=1

(n− t+ 1) exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)

= 1− 2degmax2nR2

ε2
n2(n+ 1) exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)

≥ 1− 2degmax2nR2

ε2
(n+ 1)3 exp

(
−

(T −
∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n− 1)

)
.

H. Proof of Theorem 2
Proof. First, we verify that the algorithms requires at most T queries. In each phase t, the number of samples Algorithm 4
requires is at most T̃t + |Sn−t+1|, since we have that

∑
v∈Sn−t+1

t∑
i=1

τi =
∑

v∈Sn−t+1

t∑
i=1

T ′i − T ′i−1 =
∑

v∈Sn−t+1

T ′t ≤
∑

v∈Sn−t+1

(
T̃t

|Sn−t+1|
+ 1

)
≤ T̃t + |Sn−t+1|.

Therefore, the total number of queries used by the algorithm is bounded by

n−1∑
t=1

(
T̃t + |Sn−t+1|

)
≤
n−1∑
t=1

T̃t +

n−1∑
t=1

(n− t+ 1)

≤
n−1∑
t=1

(
T −

∑n+1
i=1 i

(n− t) ˜log(n− 1)
+ 1

)
+

n−1∑
t=1

(n− t+ 1)

≤
n−1∑
t=1

T −
∑n+1
i=1 i

(n− t) ˜log(n− 1)
+

n+1∑
i=1

i

=
(T −

∑n+1
i=1 i)

˜log(n− 1)
˜log(n− 1) +

n+1∑
i=1

i

= T −
n+1∑
i=1

i+

n+1∑
i=1

i = T.

Lemma 5 implies that the random event E ′ :=
⋂n−1
t=1 E ′t occurs with probability at least 1 − 2degmax2nR2

ε2 (n +

1)3 exp
(
− (T−

∑n+1
i=1 i)ε

2

4n2degmaxR
2 ˜log(n−1)

)
. We shall assume the event E ′ occurs in the rest of the proof, because we only need to

show that the algorithm outputs a solution SOUT that guarantees fw(SOUT) ≥ fw(S∗)
2 − ε under E ′.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Let S∗ ⊆ V be an optimal solution in terms of the expected weight w. Choose an arbitrary vertex v ∈ S∗. From the
optimality of S∗ ⊆ V , it holds that

fw(S∗) =
w(S∗)

|S∗|
≥ w(S∗ \ {v})

|S∗| − 1
= fw(S∗ \ {v}).

By using the fact that w(S∗ \ {v}) = w(S∗)− deg∗S∗(v), the above inequality can be transformed into

deg∗S∗(v) ≥ fw(S∗). (26)

Let Sτ ⊆ V be the last subset over the phases that satisfies Sτ ⊇ S∗ and let τ ∈ [1, . . . , n] be its phase. Let τOUT be the
phase t such that Sn−t+1 = SOUT. Then we have

fw(SOUT) =
1
2

∑
v∈SOUT

deg∗SOUT
(v)

|SOUT|

≥
1
2

∑
v∈SOUT

(
d̂egSOUT

(v, τOUT)− ε
)

|SOUT|

≥
1
2

∑
v∈Sτ d̂egSτ (v, τ)

|Sτ |
− ε

2
.

where the first inequality follows from event E ′, the second inequality follows from the greedy choice of SOUT. Recall that
the algorithm removes the vertex that satisfies vτ ∈ argminv∈Sτ d̂egSτ (v, τ) in the phase τ . Therefore, from the definition
of Sτ , it is clear that vτ ∈ S∗. Using this property, we further have that

1
2

∑
v∈Sτ d̂egSτ (v, τ)

|Sτ |
− ε

2
≥

1
2

∑
v∈Sτ d̂egSτ (vτ , τ)

|Sτ |
− ε

2

=
1

2
d̂egSτ (vτ , τ)− ε

2

≥ 1

2
deg∗Sτ (vτ)− ε

≥ 1

2
deg∗S∗(vτ)− ε

≥ 1

2
fw(S∗)− ε,

where the second inequality follows from event E ′, and third inequality follows from the fact Sτ ⊇ S∗, and the last inequality
follows from the fact vτ ∈ S∗ and inequality (26). Therefore, we obtain fw(SOUT) ≥ 1

2fw(S∗) − ε. That concludes the
proof.

I. Details of experiments for DS-Lin

I.1. Behavior of DS-Lin

We first analyze the behavior of our proposed algorithm with respect to the number of iterations. In the previous section, we
confirmed that the solution obtained after 10,000 iterations is almost densest in terms of unknown w. A natural question
here is how the density of solutions approaches to such a sufficiently large value. In other words, does our algorithm is
sensitive to the choice of the number of iterations? In this section, we answer these questions by conducting the following
experiments. We terminate the while-loop of our algorithm once the number of iterations exceeds 0, 100, 200, . . . , 10,000,
and follow the density values of solutions in terms of w. For each instance, we again run our algorithm for ten times, and
report the average value.

The results are shown in Figure 2. As can be seen, as the number of iterations increases, the density value converges to the
sufficiently large value (close to the optimum). Although the density value sometimes drops down, the decrease is quite
small.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

0 30 60 90 120 150 180 210 240 270 300
Number of Iterations

70

80

90

100

110

De
ns

ity
 o

f S
ol

ut
io

ns

Karate

k = 10
k = 20
k = 30

0 30 60 90 120 150 180 210 240 270 300
Number of Iterations

179.0

179.1

179.2

179.3

179.4

179.5

179.6

179.7

De
ns

ity
 o

f S
ol

ut
io

ns

Lesmis

k = 10
k = 20
k = 30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Iterations

225.75

226.00

226.25

226.50

226.75

227.00

227.25

227.50

227.75

De
ns

ity
 o

f S
ol

ut
io

ns

Polbooks

k = 10
k = 20
k = 30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Iterations

128

129

130

131

132

133

De
ns

ity
 o

f S
ol

ut
io

ns

Adjnoun

k = 10
k = 40
k = 70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Iterations

597.25

597.50

597.75

598.00

598.25

598.50

598.75

599.00

De
ns

ity
 o

f S
ol

ut
io

ns

Jazz

k = 10
k = 40
k = 70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

216

217

218

219

220

221

De
ns

ity
 o

f S
ol

ut
io

ns

Email

k = 10
k = 40
k = 70

Figure 2. Results for the behavior of our proposed algorithm with respect to the number of iterations. Each point is an average over 10
runs of the algorithm.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

7

8

9

10

11

||(
w

w
|| 1

/m

Karate
k = 10
k = 20
k = 30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

||(
w

w
|| 1

/m

Lesmis
k = 10
k = 20
k = 30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

10

11

12

13

14

15

||(
w

w
|| 1

/m

Polbooks
k = 10
k = 20
k = 30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

8

9

10

11

12

||(
w

w
|| 1

/m

Adjnoun
k = 10
k = 40
k = 70

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

9.50

||(
w

w
|| 1

/m

Jazz
k = 10
k = 40
k = 70

2
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iterations

9.0

9.5

10.0

10.5

||(
w

w
|| 1

/m

Email
k = 10
k = 40
k = 70

Figure 3. Results for the estimation of the expected weight w. Each point is an average over 10 runs of the algorithm.

I.2. Estimation of the expected weight

We next explain the reason why our proposed algorithm DS-Lin performs fairly well. To this end, we focus on the quality of
the estimated edge weight obtained by the algorithm. We measure the quality of the estimated edge weight ŵt by comparing
with the expected weight w; specifically, we compute ‖w − ŵt‖1/m. The experimental setup is exactly the same as that in
the previous section.

The results are depicted in Figure 3. As can be seen, as the number of iterations increases, ŵt converges to the true edge
weight w. It is very likely that the high performance of our algorithm is derived from the high-quality estimation of the
expected edge weight w.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Algorithm 7 Robust optimization with oracle intervals (R-Oracle)
Input : Graph G = (V,E), oracle intervals W = ×e∈E [le, re] where le = min{we − 1, 0} and re = we + 1, sampling

oracle, γ ∈ (0, 1), and ε > 0
Output :(Sout)
for each e ∈ E do

if le = re then
lout
e ← le, r

out
e ← re;

end
else

S∗w− ← Output of Charikar’s LP-based exact algorithm for G(V,E,w−);

te ←
⌈
m(re−le)2 ln 2m

γ

ε2fw− (S∗
w−

)2

⌉
;

Sample e for te times;
p̂e ← X̂e(te);

δ ← εfw− (S∗
w−)

√
2m

;
lout
e ← max{le, p̂e − δ} and rout

e ← min{re, p̂e + δ};
end

end
Wout ← ×e∈E [lout

e , rout
e];

Sout ← Output of Charikar’s LP-based exact algorithm for G(V,E, l−out);
return Sout;

J. Details of experiments for DS-SR

J.1. Description of R-Oracle

We describe the entire procedure of R-Oracle in Algorithm 7. This algorithm employs the robust optimization model
proposed by Miyauchi & Takeda (2018). Their robust optimization model takes intervals of edge weights as its input. We
generate the intervals W = ×e∈E [le, re] based on unknown edge weight w, i.e., le = min{we − 1, 0} and re = we + 1.
Algorithm 7 first obtains the optimal solution S∗w− in terms of extreme edge weight w− = (le)e∈E and computes the value
of fw−(S∗w−). Then, for each single edge e ∈ E, the algorithm calls the sampling oracle for an appropriate number of times
and obtains the empirical mean. Using the empirical means, the algorithm constructs intervals Wout ← ×e∈E [lout

e , rout
e],

and computes a densest subgraph Sout on G with w−out = (lout
e)e∈E .

J.2. The number of samples for single edges in DS-SR

We report experimental results on the size of queried edge subsets in DS-SR (cumulative) over 100 runs for all instances in
Figure 4.

Online Dense Subgraph Discovery via Blurred-Graph Feedback

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Karate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

Lemis

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Polbooks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Adjnoun

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Jazz

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Email

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

Polblogs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

Email-Eu-core

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
eq

ue
nc

y

Ego-Facebook

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

0 10 20 30 40 50

Size of edge subsets

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Wiki-Vote

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cumulative

Figure 4. Fraction of the size of queried edge subsets in DS-SR (cumulative) over 100 runs.

