
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics

A. Experimental Setting
We would like to caution about the use of MuJoCo 2.0 with versions of Gym at least up to v0.15.4 (the last released at
the moment). For these versions Gym incorrectly nullifies state components corresponding to contact forces, which, in turn
makes results incomparable to previous works.

In our work we use MuJoCo 1.5 and v3 versions of environments. Versions of all other packages we used are listed in the
Conda environment file, distributed with the source code6.

B. Hyperparameters
Critic networks are fully-connected, with the last layer output size equal to the number of atoms M .

Table 5. Hyperparameters values.

HYPERPARAMETER TQC SAC

OPTIMIZER ADAM
LEARNING RATE 3 · 10−4

DISCOUNT γ 0.99
REPLAY BUFFER SIZE 1 · 106
NUMBER OF CRITICS N 5 2
NUMBER OF HIDDEN LAYERS IN CRITIC NETWORKS 3 2
SIZE OF HIDDEN LAYERS IN CRITIC NETWORKS 512 256
NUMBER OF HIDDEN LAYERS IN POLICY NETWORK 2
SIZE OF HIDDEN LAYERS IN POLICY NETWORK 256
MINIBATCH SIZE 256
ENTROPY TARGET HT − dimA
NONLINEARITY RELU
TARGET SMOOTHING COEFFICIENT β 0.005
TARGET UPDATE INTERVAL 1
GRADIENT STEPS PER ITERATION 1
ENVIRONMENT STEPS PER ITERATION 1

NUMBER OF ATOMS M 25 —
HUBER LOSS PARAMETER κ 1 —

Table 6. Environment dependent hyperparameters for TQC.

ENVIRONMENT NUMBER OF DROPPED ATOMS, d NUMBER OF ENVIRONMENT STEPS

HOPPER 5 3 · 106
HALFCHEETAH 0 5 · 106
WALKER2D 2 5 · 106
ANT 2 5 · 106
HUMANOID 2 10 · 106

C. Toy Experiment Setting
The task is an infinite horizon MDP (S,A,P,R, p0) with a single state S = {s0} and one-dimensional continuous action
space A = [−1, 1]. Since there is only one state, the state transition function P and initial state distribution p0 are delta
functions. On each step agent receives stochastic reward r(a) ∼ f(a) + N (0, σ), where σ = 0.25. The mean reward
function is the cosine with slowly increasing amplitude (Figure 9):

f(a) =
[
A0 +

A1 −A0

2
(a+ 1)

]
cos νa, where A0 = 0.3; A1 = 0.9; ν = 5 (19)

6https://github.com/bayesgroup/tqc

https://github.com/bayesgroup/tqc
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The reward function gives rise to three locally optimal actions: near the left end, a ≈ −0.94, in the right half, a∗ ≈ 0.31
(global) and at the right end a = 1. The optimal policy in this environment always selects a∗ = arg maxa f(a). The
discount factor is γ = 0.99.
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Figure 9. Reward function. x-axis represents one dimensional action space, y-axis - corresponding stochastic rewards and their expecta-
tion.

We evaluate three bias correction techniques (Table 1). We train Q-networks (or Z-networks, depending on the method) with
two hidden layers of size 50 on the buffer of size 50 for 3000 iterations. Each iteration includes Temporal Difference (TD)
target computation on all elements of the buffer and a gradient step minimizing the loss function specific to a particular
method. We populate the buffer only once, at the start, with 50 pairs (a, r): we sample a reward for each of the actions from
the uniform grid.

For TD target computation, instead of the target network, we plugged in the approximation and stopped gradient, as usual.
To prevent interference of policy optimization into conclusions about Q-function approximation quality, we use implicit
greedy deterministic policy induced by value networks: the argmax of the approximation, listed in Table 1. To find the
maximum, we evaluated the approximation over the dense uniform grid over dense uniform grid of actions of size 2000 .

For each method we vary the parameter responsible for overestimation control. For AVG and MIN we vary the number
of networks N from [3, 5, 10, 20, 50] and [2, 3, 4, 6, 8, 10] correspondingly. For TQC — the number of dropped atoms per
network d = M − k from [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16] out of 25.

For each variation we report the robust average (10% of each tail is truncated) over 100 seeds of Ea∼U(−1,1) [ ∆(a) ] and
Vara∼U(−1,1) [∆(a)]. The ∆(a) := Q̂π(a)−Qπ(a) is a signed discrepancy between the approximate and the true Q-value.
For example, for TQC Q̂π(a) = EẐπ(a) = 1

kN

∑kN
i=1 z(i)(a). Expectation and variance are estimated over dense uniform

grid of actions of size 2000.

We present the results in Figure 4 with bubbles of diameter, inversely proportional to the averaged over the seeds absolute
distance between the optimal a∗ and the arg max of the policy objective.
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D. Extended Ablation
D.1. Number of critics
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Figure 10. Varying the number of critic networks N for TQC with M = 25 atoms per critic and d = 2 of dropped atoms per critic.
Smoothed with a window of 100, ± std is plotted.

D.2. Total number of atoms M
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Figure 11. Varying the number of atoms per critic M for TQC with N = 5 critics and corresponding d to keep approximately the same
proportion of dropped atoms. Smoothed with a window of 100, ± std is plotted.

D.3. Varying the number of dropped atoms for Hopper and HalfCheetah

As always, for TQC we remove dN atoms with largest locations from the mixture composed of individual critics predictions.
d controls the intesity of overestimation control, while N defines the size of the ensemble.

Figure 12 shows the dependence of TQC on d for Hopper and HalfCheetah. The results indicate that the performance
increases with an increase in d for Hopper and with a decrease in d for Halfcheetah. This provides additional evidence for
the per-environment optimal level of overestimation also reported by Lan et al. (2020).
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Figure 12. Varying the number of dropped atoms per critic d. N = 5 networks, M = 25 atoms. Smoothed with a window of 100, ±
std is plotted. The stared HalfCheetah means extended number of initial exploration steps, as is suggested by https://github.com/rail-
berkeley/softlearning/issues/75. The additional exploration prevent premature convergence and better conveys the dependence on d.

E. Application of TQC components to TD3
Could distributional critics, ensembling and truncation improve performance of other algorithms? Figure 13 quantifies
performance improvements brought by various modifications of TQC on top of the TD3 (Fujimoto et al., 2018b). For TD3
the largest part of the improvement originates from the distributional critic architecture.
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Figure 13. Applying Quantile, Big, Truncated and Pooled modifications to TD3 algorithm with d ∈ {0, 2} (where applicable). The
naming convention is consistent with the ablation section 5. N = 5 networks, M = 25 atoms. Smoothed with a window of 100, ± std is
plotted.

https://github.com/rail-berkeley/softlearning/issues/75
https://github.com/rail-berkeley/softlearning/issues/75
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F. Various Types of Overestimation Correction with Small and Big Networks
F.1. Clipped Double Q-learning

To ensure that it is not possible to match the performance of TQC with careful tuning of previous methods, we varied the
number of critic networks used in the Clipped Double Q-learning estimate (Fujimoto et al., 2018b) for SAC (Haarnoja et al.,
2018b). The larger the number of networks under the min, the more the underestimation (Lan et al., 2020).

We have found that for MuJoCo benchmarks it is not possible to improve performance upon the published results by
controlling the overestimation in such a coarse way for both the regular network size (Figure 14), and for the increased
network size (Figure 15).
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Figure 14. Varying the number of critic networks N under the min operation of the Clipped Double Q-learning estimate for SAC. Each
critic networks is 2 layers deep with 256 neurons in each layer (the same network structure as in SAC (Haarnoja et al., 2018b)). Smoothed
with a window of 100, ± std is plotted.
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Figure 15. Varying the number of critic networks N under the min operation of the Clipped Double Q-learning estimate for SAC. Each
critic networks is 3 layers deep with 512 neurons in each layer. Smoothed with a window of 100, ± std is plotted.

F.2. k-SAC and kQ-SAC

Additionally, we benchmarked a modification of the Clipped Double Q-learning. The modification, introduced by Fujimoto
et al. (2018a), which we here call k-SAC, uses a convex combination of two Q-values to compute the target:

y(s, a) = r + γ [kmin (Q1(s′, a′), Q2(s′, a′)) + (1− k) max (Q1(s′, a′), Q2(s′, a′))− α log π(a′|s′)] (20)

Hyperparameter k ∈ [0, 1] interpolates between the usual Clipped Estimate (k = 1) and its upper bound: max of two
Q-functions (k = 0). By benchmarking k-SAC we can test if the overestimation compensation of the usual estimate (k = 1)
is excessive.
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Figures 16 and 17 shows the performance of k-SAC and its Quantile modification (see Section 5 for details). For both
architectures performance increases with an increase in k, culminating at k = 1 for almost all settings. This suggest, that for
SAC and QSAC the Clipped Estimate may be very close to optimal.

Interestingly, QSAC benefits much more than SAC from the increased network size .
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Figure 16. Varying the k in the convex combination of min and max over two critic networks. Big SAC, BSAC, has 3 layers of 512
neurons each. Smoothed with a window of 100, ± std is plotted.

F.3. TQC with small and large networks

In Appendx F.1 we have compared SAC with small and big networks. In Figure 18 we report the performance of TQC with
small and big networks. The performance degradation due to a reduction in network size is almost invisible on Humanoid,
while being large and noticable on Walker for N = 5 and N = 2 respectively.

G. Measuring Overestimation in MuJoCo

Usually, overestimation is measured as the difference between the estimated value Q̂π and its true counterpart. In complex
environments, such as MuJoCo, we do not know the true Q-values. Thus, we have to rely on Monte Carlo estimation and
compare the Q̂π with QπMC . Usually (Fujimoto et al., 2018a; Van Hasselt et al., 2015) the reported metric is the difference
between the predicted value and estimated true value, averaged over the state and action distributions.

Results. Figure 19 shows distributions of ∆(s, a) = Q̂π(s, a)−QπMC(s, a) at the end of the training for TQC, SAC, k-SAC
(see Appendix F.2 for details on k-SAC). Each violin in the figure corresponds to 400 points: 100 state-action samples
per each of the 4 trained agents. To estimate QπMC we made 20 rollouts. By varying hyperparameters responsible for the
overestimation control, we can match average overestimation level of TQC and SAC. However, as we see in Figure 19, the
level of overestimation does not fully explain the difference in performance.

While interpreting the average ∆ it is important to keep in mind the following.
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Figure 17. Varying the k in the convex combination of min and max over two critic networks. Big QSAC, QBSAC, has 3 layers of 512
neurons each. For the details on the learning process of QSAC and QBSAC see Section 5. Smoothed with a window of 100, ± std is
plotted.

1. Incompleteness of measurements. We may miss crucial overestimations because of two factors: space and time.
First, the state-action product space is multidimensional, so the Monte Carlo estimation is likely to miss some of
overestimations. Second, overestimations change in time during the optimization, and there is a chance to miss some
wild overestimation occurring at the moment different from the snapshot dump.

2. Issues of averaging. Averaging of many harmless underestimations (∆ < 0) may compensate a harmful overesti-
mation (∆ > 0) leading to zero average difference. Thus, the small average ∆ does not mean there are no harmful
overestimations.

3. Existence of harmless overestimations. Some overestimations are harmless: e.g. a constant shift in all state-action
values does not change optimization at all. Also, the policy may be unaffected by some erroneous estimates due to
insufficiently flexible approximation family or due to the noise in gradients.

4. Existence of useful overestimations. Overestimation is not 100% evil. Previous works (Lan et al., 2020) showed an
agent can benefit from overestimations: High return stochasticity is believed to promote overestimations, which, in
turn, promote exploration. If the return stochasticity correlates positively with average returns, overestimations help an
agent to find those regions faster.

How to account for these peculiarities and what can serve a reliable measure of overestimation remain an open question.
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Figure 18. TQC small and big networks, with ensemble size N ∈ {2, 5}. As before, the small network consists of 2 layers of 256 neurons
each. The big network consists of 3 layers of 512 neurons each. Smoothed with a window of 100, ± std is plotted.
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Figure 19. The dependence of the performance (red) and the distribution of value estimation error (blue) for TQC, SAC and k-SAC
varying hyperparameters responsible for overestimation control. A blue bar depicts the mean of the distribution.

H. Removed Atoms Stats
TQC drops atoms with largest locations after the pooling of atoms from multiple Z-networks. Experimentally, this procedure
drops more atoms for some Z-networks than for the others. To quantify this disbalance, we compute the ratio of dropped
atoms to the total M atoms for each of Z-networks. These proportions, once sorted and averaged over the replay, are
approximately constant throughout the learning: 65/35% for N = 2 and 35/25/18/13/9% for N = 5 (Figure 20).

Interestingly, without sorting the averaging over the replay gives almost perfectly equal proportions (Figure 21). These
results suggest, that a critic overestimates in some regions of the state action space more, than any other critic. In other
words, in practice the systematic overestimation of a single critic (w.r.t. other critics predictions) on the whole state action
space does not occur.
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Figure 20. Proportions of atoms dropped per critic, sorted and averaged over the minibatches drawn from the experience replay for TQC
with N = 2 and N = 5 critics with M = 25 and d = 2 dropped atoms per critic. For example, the upper right plot, should be read as ”on
average the largest proportion of dropped atoms per critic is 35%, i.e. out of N · d = 10 atoms dropped approximately 4 were predicted
by a single critic. Smoothed with a window of 100, ± std is plotted.

0 1 2 3 4 5
Frames 1e6

0.490

0.495

0.500

0.505

0.510

Sh
ar

e 
of

 tr
un

ca
tio

n

TQC N=2, Walker2d

Net 0
Net 1

0 1 2 3 4
Frames 1e6

0.1900

0.1925

0.1950

0.1975

0.2000

0.2025

0.2050

0.2075

0.2100
TQC N=5, Walker2d

Net 0
Net 1
Net 2
Net 3
Net 4

0 2 4 6 8 10
Frames 1e6

0.485

0.490

0.495

0.500

0.505

0.510

0.515

Sh
ar

e 
of

 tr
un

ca
tio

n

TQC N=2, Humanoid

Net 0
Net 1

0 2 4 6 8 10
Frames 1e6

0.1900

0.1925

0.1950

0.1975

0.2000

0.2025

0.2050

0.2075

0.2100

TQC N=5, Humanoid

Net 0
Net 1
Net 2
Net 3
Net 4

Figure 21. Proportions of atoms dropped per critic, averaged over the minibatches drawn from the experience replay for TQC with N = 2
and N = 5 critics with M = 25 and d = 2 dropped atoms per critic. Same plot as 20, but without sorting. The figure illustrates that there
is no a single critic consistently overestimating more than the others over the whole state action space. Smoothed with a window of 100,
± std is plotted.


