
Concentration bounds for CVaR estimation:
The cases of light-tailed and heavy-tailed distributions

Prashanth L.A. 1 Krishna Jagannathan 2 Ravi Kumar Kolla 3

Abstract

Conditional Value-at-Risk (CVaR) is a widely
used risk metric in applications such as finance.
We derive concentration bounds for CVaR esti-
mates, considering separately the cases of sub-
Gaussian, light-tailed and heavy-tailed distribu-
tions. For the sub-Gaussian and light-tailed
cases, we use a classical CVaR estimator based
on the empirical distribution constructed from
the samples. For heavy-tailed random variables,
we assume a mild ‘bounded moment’ condi-
tion, and derive a concentration bound for a
truncation-based estimator. Our concentration
bounds exhibit exponential decay in the sample
size, and are tighter than those available in the
literature for the above distribution classes. To
demonstrate the applicability of our concentra-
tion results, we consider the CVaR optimization
problem in a multi-armed bandit setting. Specifi-
cally, we address the best CVaR-arm identifica-
tion problem under a fixed budget. Using our
CVaR concentration results, we derive an upper-
bound on the probability of incorrect arm identi-
fication.

1. Introduction
In applications such as portfolio optimization in finance,
the quality of a portfolio is not satisfactorily captured by
the expected value of return. Indeed, in such applications,
a more risk-sensitive metric is desirable, so as to capture
typical losses in the case of adverse events. Value-at-Risk
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(VaR) and Conditional-Value-at-Risk (CVaR) are two risk-
aware metrics, which are widely used in applications such
as portfolio optimization and insurance. VaR at level α ∈
(0, 1) conveys the maximum loss incurred by the portfolio
with a confidence of α. In other words, the portfolio incurs
a loss greater than VaR at level α with probability 1 − α.
In turn, CVaR at level α ∈ (0, 1) captures the expected loss
incurred by the portfolio, given that the losses exceed VaR
at level α. CVaR has an advantage over VaR, in that the
former is a coherent1 risk measure (Artzner et al., 1999).

1.1. Our Contributions

In this paper, we derive concentration bounds for CVaR
estimators, for the cases of sub-Gaussian, light-tailed and
heavy-tailed random variables. For sub-Gaussian and light-
tailed distributions, our concentration bound uses a classi-
cal CVaR estimator based on the empirical distribution. For
the heavy-tailed case, we employ a truncation-based CVaR
estimator, and derive a concentration result under a mild as-
sumption: the pth moment of the distribution is assumed to
exist, for some p > 1. Notably, our concentration bounds
enjoy an exponential decay in the sample size, for heavy-
tailed as well as light-tailed distributions. Our results also
subsume or strengthen several existing CVaR concentration
results, as we discuss later. We believe our bounds are or-
der optimal, and the dependence on the number of samples
as well as the accuracy cannot be improved.

In order to highlight an important application for our CVaR
concentration results, we consider a stochastic bandit set-
up with a risk-sensitive metric for measuring the quality of
an arm. In particular, we consider a K-armed stochastic
bandit setting, and study the problem of finding the arm
with the lowest CVaR value in a fixed budget setting. We
propose an algorithm for the best CVaR arm identification
that is inspired by successive-rejects (SR) (Audibert et al.,
2010). Using our CVaR concentration results, we establish
an upper bound on the probability of incorrect arm identi-
fication for the SR-based algorithm for CVaR.

1A risk measure is said to be coherent, if it is monotonic, trans-
lation invariant, sub-additive, and positive homogeneous.
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1.2. Related Work

For the case of bounded distributions, a popular CVaR es-
timate has been shown to exponentially concentrate around
the true CVaR — see (Brown, 2007; Wang & Gao, 2010).
In comparison to CVaR, obtaining a concentration result
for VaR is easier, and does not require assumptions on the
tail of the distribution – see (Kolla et al., 2019), a paper
which also derives a one-sided CVaR concentration bound.
More recent work (Thomas & Learned-Miller, 2019) con-
siders CVaR concentration for distributions with bounded
support on one side, but the form of their result (which
uses order statistics) is not directly useful for important
applications such as multi-armed bandits. In another re-
cent paper (Bhat & Prashanth, 2019), the authors derive an
exponentially decaying concentration bound for the case
of sub-Gaussian distributions, using a concentration result
(Fournier & Guillin, 2015) for the Wasserstein distance be-
tween the empirical and the true distributions. However,
the above approach leads to poor concentration bounds
(with power law decay in the sample size) for other rele-
vant distribution classes, such as light-tailed and bounded-
moment distributions.

While bandit learning has a long history, dating back to
(Thompson, 1933), risk-based criteria have been consid-
ered only recently. (Sani et al., 2012) consider mean-
variance optimization in a regret minimization framework.
In the best arm identification setting, VaR-based criteria has
been studied by (David & Shimkin, 2016) and (David et al.,
2018). CVaR-based criteria has been explored in a bandit
context by (Galichet et al., 2013), albeit with an assumption
of bounded arms’ distributions. More recently, (Kagrecha
et al., 2019) incorporate a CVaR-based risk criterion in a
best arm identification problem under a distribution oblivi-
ous setting.

The rest of this paper is organized as follows: Section 2
presents the preliminaries. Section 3 presents the key con-
centration bounds for sub-Gaussian and light-tailed distri-
butions. Section 3.3 presents algorithms and their analyses
for CVaR-based multi-armed stochastic bandits. Section 4
deals with CVaR estimation and concentration for heavy-
tailed distributions.The proofs are contained in Section 5,
and Section 6 concludes the paper.

2. Preliminaries
Given a r.v. X with cumulative distribution function (CDF)
F (·), the VaR vα(X) and CVaR cα(X) at level α ∈ (0, 1)
are defined as follows 2:

vα(X) = inf{ξ : P [X ≤ ξ] ≥ α}, and (1)

2For notational brevity, we omit X from the notations vα(X)
and cα(X) whenever the underlying the r.v. can be understood
from the context.

cα(X) = vα(X) +
1

1− α
E [X − vα(X)]

+
, (2)

where we have used the notation [X]+ = max(0, X). Typ-
ical values of α chosen in practice are 0.95 and 0.99. We
make the following assumption on the r.v. X for the con-
centration bounds derived later.
(A1) The r.v. X is continuous with a density f that satisfies
the following condition: There exist universal constants
η, δ > 0 such that f(x) > η for all x ∈

[
vα − δ

2 , vα + δ
2

]
.

Under (A1), we have

vα(X) = F−1(α), and cα(X) = E [X|X ≥ vα(X)] .

Next, we recall standard definitions of sub-Gaussian and
light-tailed (or sub-exponential) distributions — see Chap-
ter 2 of (Wainwright, 2019).

Definition 2.1. A r.v. X is said to be σ-sub-Gaussian for
some σ > 0 if

E [exp (λX)] ≤ exp

(
λ2σ2

2

)
, for any λ ∈ R.

Definition 2.2. A r.v. X is said to be light-tailed if there
exist non-negative parameters σ and b such that

E [exp (λX)] ≤ exp

(
λ2σ2

2

)
, for any |λ| < 1

b
. (3)

3. CVaR estimation for sub-Gaussian and
light-tailed distributions

In this section, we define the empirical CVaR, and present
CVaR concentration results for sub-Gaussian and light-
tailed distributions. We also discuss a multi-armed bandit
application using the derived concentration bounds.

3.1. VaR and CVaR estimation

Let {Xi}ni=1 be n i.i.d. samples drawn from the distribution
of X . Let {X[i]}ni=1 be the order statistics of {Xi}ni=1,
i.e., X[1] ≤ X[2] · · · ≤ X[n]. Let F̂n(·) be the empirical
distribution function calculated using {Xi}ni=1, defined as
F̂n(x) = 1

n

∑n
i=1 I {Xi ≤ x} ,∀x ∈ R. Notice that CVaR

is a conditional expectation, where the conditioning event
requires VaR. Thus, CVaR estimation requires VaR to be
estimated as well. Let v̂n,α and ĉn,α denote the estimates
of VaR and CVaR at level α using the n samples above.
These quantities are defined as follows (Serfling, 2009):

v̂n,α = X[dnαe], and (4)

ĉn,α =
1

n(1− α)

n∑
i=1

XiI {Xi ≥ v̂n,α} . (5)
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3.2. Concentration bounds

In the case of distributions with bounded support, a con-
centration result for CVaR exists in the literature (Gao
et al., 2010). For the case of unbounded distributions,
deriving a CVaR concentration result becomes consider-
ably easier when the form of distributions are known, i.e.,
when the closed-form expressions of VaR and CVaR can
be derived. To illustrate, consider the case of a Gaus-
sian r.v. X with mean µ and variance σ2. Let Q (ξ) =
1√
2π

∫∞
ξ

exp
(
−x2/2

)
dx. Notice that Q(−x) = 1−Q(x)

and also that FX(ξ) = Q
(
µ−ξ
σ

)
. Hence, vα(X) is the

solution to Q
(
µ−ξ
σ

)
= α, which implies that

vα(X) = µ− σQ−1 (α) . (6)

The CVaR cα(X) for Gaussian X can be shown, using
Acerbi’s formula (see p. 329 in (Chatterjee, 2014)), to be
equal to µ

(
α

1−α

)
+σcα(Z), where Z is the standard Gaus-

sian random variable i.e., Z ∼ N (0, 1).

It is clear from the above argument that estimates of µ and
σ are sufficient to estimate cα(X) for the Gaussian case.
Sample mean µ̂n and sample variance σ̂2

n (computed using
n samples from the distribution ofX) would serve this pur-
pose and we obtain ĉn = µ̂

(
α

1−α

)
+ σ̂cα(Z) as a proxy

for cα(X). Given standard concentration bounds for these
quantities through Hoeffding and Bernstein’s inequalities,
it is straightforward to establish that ĉn,α concentrates ex-
ponentially around cα(X). Similarly, for the case of expo-
nential random variables, we can exploit the memoryless
property to derive an explicit expression for CVaR, in terms
of the mean µ and the level α.

We therefore focus on distributions that do not have closed-
form expressions for VaR and CVaR. In such a setting, the
CVaR has to be estimated directly from the available sam-
ples. However, for establishing concentration bounds for
the CVaR, which involves conditioning on a tail event, it
is common to make some assumptions on the tail distribu-
tion. The following result presents concentration bounds
for the cases when the underlying distribution is either sub-
Gaussian or light-tailed.

Theorem 3.1 (CVaR concentration). Assume (A1). Let
{Xi}ni=1 be a sequence of i.i.d. r.v.s. Let ĉn,α be the CVaR
estimate given in (5) formed using the above set of samples.

(i) Suppose that Xi, i = 1, . . . , n are σ-sub-Gaussian.
Then, for any ε > 0, we have

P [|ĉn,α − cα| > ε] ≤ 2 exp

[
−nε

2(1− α)2

8σ2

]
+ 4 exp

[
−
n(1− α)2η2 min

(
ε2, 4δ2

)
64

]
, (7)

where η and δ are the constants specified in (A1).

(ii) Suppose that Xi, i = 1, . . . , n are light-tailed with pa-
rameters σ, b. Then, for any ε > 0, we have

P [|ĉn,α − cα| > ε]

≤ 2 exp

[
−n

4
min

(
ε2(1− α)2

2σ2
,
ε(1− α)

b

)]
+ 4 exp

[
−
n(1− α)2η2 min

(
ε2, 4δ2

)
64

]
. (8)

Remark 3.2. For a σ-sub-Gaussian r.v. X , with mean µ,
the classic concentration result for sample mean, say µ̂n,
takes the form

P [|µ̂n − µ| > ε] ≤ 2 exp

[
−nε

2

2σ2

]
.

In comparison, the tail bound in (7) involves additional fac-
tors inside the exponential term, and this because of the
VaR estimate v̂n,α that features in the CVaR estimate ĉn,α.

Proof. (Sketch) We split the CVaR estimation error as
ĉn,α − cα = In + en, where

In =
1

1− α

[
1

n

n∑
i=1

(Xi − vα)
+ − E

[
(X − vα)

+
]]
,

(9)

en =
v̂n,α − vα

1− α

[
F̂n(v̂n,α)− α

]
+

1

n

n∑
i=1

Xi − vα
1− α

[I {Xi ≥ v̂n,α} − I {Xi ≥ vα}] .

(10)

The In term can be bounded using a standard sub-Gaussian
concentration result (cf. Theorem 2.1 in (Wainwright,
2019)), after observing that (X − vα)

+ is σ-sub-Gaussian
(see Section 5.1 for a rigorous justification), and this leads
to a bound of the form:

P [In > ε] ≤ 2 exp

[
−nε

2(1− α)2

2σ2

]
. (11)

On the other hand, the bound on the en term requires VaR
concentration, and takes the following form:

P [en > ε] ≤ 4 exp

(
−
n(1− α)2η2 min

(
ε2, δ2

)
16

)
.

(12)

The final bound in (7) can be obtained by combining the
bounds in (11) and (12). A similar observation holds for
the light-tailed concentration result in (8). Note that the
bound on en in (12) holds for any distribution satisfying
(A1), while the high-probability bound on In relates to sum
of i.i.d. r.v.s, and would require tail assumptions. The de-
tailed proof is provided in Section 5.1.
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Remark 3.3. The bound in the theorem above is signifi-
cantly better than the two-sided bound obtained in (Bhat &
Prashanth, 2019) for the light-tailed case. In particular, the
bound in the theorem above has an exponential tail decay
irrespective of whether ε is large or small, while the bound
in (Bhat & Prashanth, 2019) has an exponential decay for
small ε, and a power law for large ε. For a light-tailed r.v.,
one expects a tail behavior similar to that of Gaussian with
constant variance for small ε, and an exponential decay for
large ε, and our bound is consistent with this expected be-
havior. For small ε, the bound that we have in (8) is tighter,
in terms of the constants, than the corresponding bound
in (Bhat & Prashanth, 2019). This is because the Wasser-
stein distance-based approach shows concentration of the
empirical CDF around the true CDF everywhere, while our
approach involves concentration of the empirical CDF only
around the VaR.
Remark 3.4. In comparison to the one-sided bound for
light-tailed r.v.s, in (Kolla et al., 2019), our bound exhibits
better dependence w.r.t. the number of samples n as well
as the accuracy ε. More importantly, since our bound is
two-sided, it opens avenues for a bandit application, while
a one-sided bound is insufficient for this purpose.
Remark 3.5. Note that the constant η, which has the inter-
pretation of a ‘minimum slope’ in a neighbourhood of vα,
appears in the concentration bounds of Theorem 3.1. This
η dependence comes from the VaR concentration result in
Lemma 5.1. We wish to point out that this is inevitable, and
is not an artifact of our proof technique. Indeed, if the CDF
is allowed to be arbitrarily ‘flat’ over a wide interval, it is
possible to construct examples to show that the empirical
VaR does not concentrate well around the true VaR.

In the following section, we present multi-armed bandit al-
gorithms that incorporate a CVaR-based objective, and an-
alyze the finite-time performance of these algorithms using
the bound derived in Theorem 3.1. Unlike previous CVaR-
based bandit algorithms (cf. (Galichet et al., 2013)) that
impose a bounded support requirement on the arms’ dis-
tribution, our bounds in the bandit setting hold for more
general sub-Gaussian and light-tailed distributions.

3.3. Application: Multi-armed bandits

We consider a K-armed stochastic bandit problem, with
arms’ distributions P1, . . . ,PK . We consider a variant of
the bandit problem, where the goal is to find the arm with
the lowest CVaR. Let ciα and viα denote the CVaR and VaR
of the arm i at level α. Let c∗ = mini=1,...,K c

i
α, and i∗ be

the arm that achieves this minimum. Let ∆i = ciα − ci
∗

α

denote the gap between the CVaR values of arm-i and the
optimal arm.

We consider a lowest CVaR arm identification problem in
the fixed budget setting, and devise an algorithm based

on successive rejects (SR) (Audibert et al., 2010) to in-
corporate the CVaR criterion. A bandit algorithm inter-
acts with the environment over a given budget of n rounds.
In each round t = 1, . . . , n, the algorithm pulls an arm
It ∈ {1, . . . ,K} and observes a sample cost from the dis-
tribution PIt . At the end of the budget n rounds, the bandit
algorithm recommends an arm Jn and is judged based on
the probability of incorrect identification, i.e., P [Jn 6= i∗],
where i∗ denotes the best arm. Earlier works use the ex-
pected value to define the best arm, while we use CVaR.

The goal is to minimize the probability of incorrect identi-
fication, i.e., P [Jn 6= i∗]. Let arm-[i] denotes the ith lowest
CVaR valued arm.

Algorithm 1 CVaR-SR algorithm

Initialization: Set A1 = {1, . . . ,K}, logK = 1
2 +

K∑
i=2

1
i , n0 = 0, nk =

⌈
1

logK
n−K
K+1−k

⌉
, k = 1, . . . ,K − 1.

for k = 1, 2, . . . ,K − 1 do

Play each arm in Ak for (nk − nk−1) times.

Set Ak+1 = Ak \ arg max
i∈Ak

ĉiα,nk .

end for

Output: Return the solitary element in AK .

Algorithm 1 presents the pseudo code of our CVaR-SR al-
gorithm, designed to find the CVaR-optimal arm under a
fixed budget. The algorithm is a variation of the regular SR
algorithm, with the following key difference: regular SR
uses sample mean to estimate the expected value of each
arm, while CVaR-SR used empirical CVaR, as defined in
(5), to estimate CVaR for each arm. The elimination logic,
i.e., having K− 1 phases, and removing the worst arm (ac-
cording to sample estimates of CVaR) at the end of each
phase, is borrowed from regular SR.

In the following result, we analyze the performance of
CVaR-SR algorithm for light-tailed distributions.

Theorem 3.6 (Probability of incorrect identification).
Consider a K-armed stochastic bandit, where the arms’
distributions satisfy (A1) and are either sub-Gaussian or
light-tailed. For a given budget n, the arm, say Jn, re-
turned by the CVaR-SR algorithm satisfies:

P [Jn 6= i∗] ≤3K(K−1) exp

[
− (n−K)(1−α)2Gmax

8HlogK

]
,

where Gmax is a problem dependent constant that does not
depend on the underlying CVaR gaps and n, and the hard-
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ness measure H is defined by

H = max
i∈{1,...,K}

i

min
(

∆2
[i], 4δ

2
[i]

) for σ-sub-Gaussian arms,

H = max
i∈{1,...,K}

i

min{∆[i],∆
2
[i], 4δ

2
[i]}

for (σ, b)-light-tailed arms.

In the above, δi denotes the constant from (A1) correspond-
ing to the distribution of arm i, for i = 1, . . . ,K.

Proof. The proof follows arguments similar to that used in
deriving the corresponding bound for SR, and is provided
in Section 5.3.

4. CVaR estimation: the bounded moment
case

In this section, we derive CVaR concentration results under
a much milder assumption than in the previous section. In
particular, we assume that a bounded pth moment exists,
enabling us to handle heavy-tailed distributions as well as
light-tailed ones.

As mentioned before, an alternative proof approach using
Wasserstein distance (Bhat & Prashanth, 2019) provides
weak concentration rates for distributions with bounded
higher moments - a gap that we address in this work. In par-
ticular, we employ a truncation-based estimator for CVaR
to handle this bounded moment case. Throughout this sec-
tion, we assume that the underlying distribution satisfies:
(A2) ∃p ∈ (1, 2], u such that E[|X|p] < u <∞.

Note that if a pth moment is bounded for some p > 2, Lya-
punov’s inequality (see pp. 143 in (Grimmett & Stirzaker,
2001)) implies that the second moment is bounded, and we
simply take p = 2.

4.1. CVaR estimation

Recall that {X[i]}ni=1 denote the order statistics of n i.i.d.
samples drawn from the distribution of X . Using the VaR
estimate v̂n,α, as defined earlier in Section 3.1, we pro-
pose a truncation-based estimator ĉn,α for CVaR at level α,
defined as follows:

ĉn,α =
1

n(1− α)

n∑
i=1

XiI {v̂n,α ≤ Xi ≤ Bi} , (13)

where Bi =

 ui

log
(

3
ξ

)
 1

p

.

In (5), Bi represents a truncation level of Xi, and the
choice for Bi given above is under the assumption that

E[|X|p] < u < ∞ for some p ∈ (1, 2]. Such a trun-
cation based estimator has been employed in the context
of expected regret minimization with heavy-tailed random
variables in (Bubeck et al., 2013). Intuitively, the trunca-
tion level serves to discard very large samples values early
on, as Bi is set to grow slowly with i.

4.2. Concentration bounds

In particular, the following result is more general, as it can
handle heavy-tailed distributions that satisfy (A2).

Theorem 4.1 (CVaR concentration: Bounded moment
case). Let {Xi}ni=1 be a sequence of i.i.d. r.v.s satisfy-
ing (A1) and (A2). Let ĉn,α be the CVaR estimate given
in (13) formed using the above set of samples. Then, for
any p ∈ (1, 2], and ξ ∈ (0, 1), we have with probability
(w.p.) at least 1− ξ,

|ĉn,α − cα| ≤
(5u

1
p + vα)

(1− α)

(
1

n

)1− 1
p

√
log

(
3

ξ

)

+ max

 4

η(1− α)

√√√√ log
(

4
ξ

)
n

, δ

 , (14)

where η and δ are as defined in (A1).

We have presented a high-confidence bound in the theo-
rem above, and not a tail bound, as in Theorem 3.1. The
rationale behind this choice is to make the dependence on
the probability ξ apparent, esp. considering the truncation
level Bi in (13) is a function of ξ.

Proof. We split the estimation error cα − ĉn,α into three
components as follows:

cα − ĉn,α = In,1 − In,2 + en, where

In,1 =
1

1− α
E [X I {vα ≤ X}]

− 1

n(1− α)

n∑
i=1

Xi I {vα ≤ Xi ≤ Bi} ,

In,2 =
1

1− α
E [vα I {vα ≤ X}]

− 1

n(1− α)

n∑
i=1

vα I {vα ≤ Xi ≤ Bi} , and

en = (v̂n,α − vα) +
1

n(1− α)

n∑
i=1

(Xi − v̂n,α)

× [I {v̂n,α ≤ Xi ≤ Bi} − I {vα ≤ Xi ≤ Bi}] .

Using a technique from (Bubeck et al., 2013), we obtain
the following bound for the first two terms, i.e., In,1 and
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In,2:

|In,1 − In,2| ≤
(5u

1
p + vα)

(1− α)

(
1

n

)1− 1
p

√
log

(
3

ξ

)
. (15)

The above bound does not require VaR concentration, as
In,1 and In,2 do not have the empirical VaR v̂n,α in their
definitions. On the other hand, VaR concentration is re-
quired to arrive at the following bound on the en term:

|en| ≤ max

 4

η(1− α)

√√√√ log
(

4
ξ

)
n

, δ

 , w.p. (1− ξ).

(16)

The main claim follows by combining the bounds in (15)
and (16).

The detailed proof is provided in Section 5.2.

Substituting p = 2 in the bound derived above leads to the
following CVaR concentration bound for distributions with
a bounded second moment:
Corollary 4.2. Assume conditions of Theorem 4.1, for the
case when the distribution of X has a bounded second mo-
ment, i.e., p = 2. Then, for any ξ ∈ (0, 1), we have w.p. at
least 1− ξ,

|ĉn,α − cα| ≤
(5
√
u+ vα)

(1− α)
√
n

√
log

(
3

ξ

)

+ max

 4

η(1− α)

√√√√ log
(

4
ξ

)
n

, δ

 ,

where η and δ are as defined in (A1).
Remark 4.3. A bandit application for the case of heavy-
tailed distributions can be worked out using arguments
similar to that in Section 3.3. The main difference is that
the SR algorithm in the heavy-tailed case would involve a
truncated estimator, and a slightly different hardness mea-
sure that is derived using Theorem 4.1. We omit the details
due to space constraints.

5. Proofs
Before providing the main proofs of the CVaR concentra-
tion bounds in Theorems 3.1 and 4.1, we note that empir-
ical CVaR, as defined in (5), involves empirical VaR, and
it is natural to expect that empirical CVaR concentration
would require empirical VaR to concentrate as well. VaR
concentration bounds have been derived recently in (Kolla
et al., 2019), and we state a straightforward variation to
their tail bound below. Note that the result below will be
used to establish the bound in Theorems 3.1, and 4.1.

Lemma 5.1 (VaR concentration). Suppose that (A1)
holds. For any ε > 0, we have

P [|v̂n,α − vα| ≥ ε] ≤ 2 exp
(
−2nη2 min

(
ε2, δ2

))
, (17)

where η is the constant specified in (A1).

Proof. From the initial passage in the proof of Proposition
2 in (Kolla et al., 2019), we have

P [|v̂n,α − vα| ≥ ε] ≤ 2 exp
(
−2nζ2ε

)
, (18)

where
ζε = min (F (vα + ε)− F (vα) , F (vα)− F (vα − ε)).
From (A1), ζε ≥ ηε, for ε < δ, where η and δ are con-
stants specified in (A1). Hence, for ε < δ, we have

P [|v̂n,α − vα| ≥ ε] ≤ 2 exp
(
−2nη2ε2

)
.

The bound in (17) follows by observing that
P [|v̂n,α − vα| ≥ ε] ≤ P [|v̂n,α − vα| ≥ δ] for ε > δ.

Notice that

ĉn,α = vα +
1

n(1− α)

n∑
i=1

(Xi − vα) I {vα ≤ Xi}+ en,

(19)

where en is as defined in (10). We now present a high-
probability bound on the error term en, which holds for
any class of distributions satisfying the growth condition in
(A1).
Lemma 5.2. Assume (A1). For en as defined in (10), the
following bound holds:

P [|en| > ε] ≤ 4 exp

(
−
n(1− α)2η2 min

(
ε2, δ2

)
16

)
,

(20)

where η and δ are the constants specified in (A1).

Proof. Notice that

|en| ≤
|vα − v̂n,α|

1− α
|α− F̂n(v̂n,α)|

+
|vα − v̂n,α|

1− α
|F̂n(vα)− F̂n(v̂n,α)|

≤ |vα − v̂n,α|
1− α

[
2|F̂n(v̂n,α)− F (vα)|

+ |F̂n(vα)− F (vα)|
]
. (21)

Using |F̂n(v̂n,α)−F (vα)| ≤ 1/n and |F̂n(vα)−F (vα)| ≤
2, followed by an application of the VaR concentration re-
sult in Lemma 5.1, we obtain

P [|en| > ε] ≤ P
[

2

n

1

(1− α)
|v̂n,α − vα| >

ε

2

]
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+ P
[

1

1− α
|v̂n,α − vα||F̂n(vα)− F (vα)| > ε

2

]
≤ 2 exp

[
−
n3(1− α)2η2 min

(
ε2, δ2

)
8

]

+ 2 exp

[
−
n(1− α)2η2 min

(
ε2, δ2

)
16

]

≤ 4 exp

(
−
n(1− α)2η2 min

(
ε2, δ2

)
16

)
.

5.1. Proof of Theorem 3.1

Proof. (i) Sub-Gaussian case
Using (19), we have

ĉn,α − cα = In + en, (22)

where In and en are as defined in (9) and (10), respectively.
For bounding the In term, we use the fact that (X − vα)

+

is a σ-sub-Gaussian r.v. This can be argued as follows:
Letting µ+

α = E
[
(X − vα)

+
]
, we have

E
[
exp

[
λ
(

(X − vα)
+ − µ+

α

)]]
≤ 1 +

λ2EX2

2
+ o

(
λ2
)
.

In the above, we have used the following fact that

E
[
[X − vα]

2 I {X ≥ vα}
]
≤ E

[
X2I {X ≥ vα}

]
≤ EX2. (23)

Comparing with the following identity:

exp

(
λ2σ2

2

)
= 1 +

λ2σ2

2
+ o

(
λ2
)
,

it is easy to see that (X − vα)
+ is σ-sub-Gaussian, when-

ever X is σ-sub-Gaussian.

Using a sub-Gaussian concentration result (cf. Theorem
2.1 in (Wainwright, 2019)), we obtain

P [|In| > ε] ≤ 2 exp

[
−nε

2(1− α)2

2σ2

]
. (24)

The claim for the sub-Gaussian case in (7) follows by using

P [|ĉn,α − cα| > ε] ≤ P
[
|In| >

ε

2

]
+ P

[
en >

ε

2

]
, (25)

and substituting the bounds obtained in (20) and (24) in the
RHS above.

(ii) Light-tailed case
For bounding the In term in (22), we show that (X − vα)

+

is a light-tailed r.v. Denoting µ+
α = E

[
(X − vα)

+
]
, we

have

P
[
(Xi − vα)

+ − µ+
α > ε

]
= P

[
X > vα + µ+

α + ε
]
≤ c1 exp (−c2 (vα + ε))

≤ c1 exp (−c4ε) ,

where c1, c2, and c4 are distribution-dependent constants.
Using the fact that X is light-tailed, we have

E
[
exp

[
λ
(

(X − vα)
+ − µ+

α

)]]
≤ 1 +

λ2EX2

2
+ o

(
λ2
)
.

In the above, we have used the following fact from (23).
Comparing with the following identity:

exp

(
λ2σ2

2

)
= 1 +

λ2σ2

2
+
λ2v2α

2
+ o

(
λ2
)
,

it is easy to see that (X − vα)
+ is a light-tailed r.v. with

parameters (σ2, b), whenever X is light-tailed with param-
eters (σ2, b).

The rest of the proof follows in a similar fashion as part
(i), by using a standard light-tailed concentration result (cf.
Theorem 2.2. in (Wainwright, 2019)).

5.2. Proof of Theorem 4.1

Proof. Notice that

ĉn,α = vα+
1

n

n∑
i=1

(Xi − vα)

(1− α)
I {vα ≤ Xi ≤ Bi}+ en,

where

en = (v̂n,α − vα) +
1

n(1− α)

n∑
i=1

(Xi − v̂n,α)

× [I {v̂n,α ≤ Xi ≤ Bi} − I {vα ≤ Xi ≤ Bi}]

= (v̂n,α − vα) +
(vα − v̂n,α)

(1− α)

(
F̂n(Bi)− F̂n(v̂n,α)

)
+

1

n(1− α)

n∑
i=1

(Xi − vα) [I {v̂n,α ≤ Xi ≤ Bi}

−I {vα ≤ Xi ≤ Bi}]

Thus,

|en|≤
|vα−v̂n,α|

1−α

[
2|F̂n(v̂n,α)−F (vα)|+|F̂n(vα)−F (vα)|

]
.
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Using Lemma 5.2, and the inequality above, we obtain

P [|en| > ε] ≤ 4 exp

(
−n(1− α)2η2 min(ε2, δ2)

16

)
,

or, equivalently,

|en| ≤ max

 4

η(1− α)

√√√√ log
(

4
ξ

)
n

, δ

 , w.p. (1− ξ).

(26)

Next, observe that the estimation error can be re-written as

cα − ĉn,α = In,1 − In,2 + en, where

In,1 =
1

1− α
E [X I {vα ≤ X}]

− 1

n(1− α)

n∑
i=1

Xi I {vα ≤ Xi ≤ Bi} , and

In,2 =
1

1− α
E [vα I {vα ≤ X}]

− 1

n(1− α)

n∑
i=1

vα I {vα ≤ Xi ≤ Bi} .

We bound the In,1 term, using a technique from (Bubeck
et al., 2013), as follows:

1

1− α

∣∣∣∣∣E [X I {vα ≤ X}]−
1

n

n∑
i=1

Xi I {vα≤Xi≤Bi}

∣∣∣∣∣
=

1

n(1− α)

∣∣∣∣∣
n∑
i=1

E [X I {X > Bi}]

+

n∑
i=1

E [X I {vα ≤ X ≤ Bi}]−Xi I {vα ≤ Xi ≤ Bi}

∣∣∣∣∣
(27)

≤ 1

n(1− α)

n∑
i=1

u

Bp−1i

+
1

(1− α)

√√√√2B2−p
n u log

(
2
ξ

)
n

+
1

(1− α)

2Bn log
(

2
ξ

)
3n

, holds w.p. (1− ξ),

where we have used the fact that E(Xp) ≥
Bp−1E [X I {X > B}] to handle the first term in
(27). The bound on the second term is justified as follows:
Let Zi = Xi I {vα ≤ Xi ≤ Bi}, i = 1, . . . , n. We have
|Zi| ≤ Bn,∀i, and EZ2

i ≤ uB2−p
n . Thus, applying

Bernstein’s inequality leads to the following bound:

P

[∣∣∣∣∣
n∑
i=1

(Zi − EZi)

∣∣∣∣∣ > ε

]
≤ 2 exp

(
ε2

2nuB2−p
n + 2

3Bnε

)
.

Turning the above inequality into high-confidence form, we
obtain the following bound w.p. (1− ξ),∣∣∣∣∣
n∑
i=1

(Zi − EZi)

∣∣∣∣∣ ≤
√

2nuB2−p
n log

(
2

ξ

)
+

2Bn log( 2
ξ )

3
.

Along similar lines, the term In,2 is bounded as follows:

1

1− α

∣∣∣∣∣E [vα I {vα ≤ X}]−
1

n

n∑
i=1

vα I {vα≤Xi≤Bi}

∣∣∣∣∣
=

vα
n(1− α)

∣∣∣∣∣
n∑
i=1

E [I {X > Bi}]

+
vα

n(1− α)

n∑
i=1

(
E [I {vα ≤ X ≤ Bi}]

−I {vα ≤ Xi ≤ Bi}
)∣∣∣∣ (28)

≤ 1

n(1− α)

n∑
i=1

u

Bp−1i

+
vα

(1− α)

√√√√ log
(

2
ξ

)
2n

,

holds w.p. (1− ξ),

where we have used Hoeffding’s inequality, and Bpi ≥
Bp−1i for bounding the second term3 in (28), while the first
term is bounded using an argument similar to that used in
bounding In,1 term above.

Using Bi =

(
ui

log( 3
ξ )

) 1
p

, we have, w.p. (1− ξ),

|In,1| ≤
4u

1
p

(1− α)

 log
(

3
ξ

)
n

1− 1
p

, and

|In,2| ≤
u

1
p

(1− α)

 log
(

3
ξ

)
n

1− 1
p

+
vα

(1− α)

√√√√ log
(

3
ξ

)
n

.

Combining the bounds on In,1 and In,2 above, we have
w.p. (1− ξ),

|In,1 − In,2| ≤
(5u

1
p + vα)

(1− α)

(
1

n

)1− 1
p

√
log

(
3

ξ

)
, (29)

where we used the fact that (log(3/ξ))
1− 1

p ≤
√

log
(

3
ξ

)
,

since log
(

3
ξ

)
> 1. Combining the bounds in (26) and

(29), we have w.p. (1− ξ),

|ĉn,α − cα| ≤
(5u

1
p + vα)

(1− α)

(
1

n

)1− 1
p

√
log

(
3

ξ

)
3Note that for a fixed ξ, we can assume Bi > 1 for all i by

taking a u large enough.
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+ max

 4

η(1− α)

√√√√ log
(

4
ξ

)
n

, δ

 .

5.3. Proof of Theorem 3.6

Proof. (i) Sub-Gaussian case
We begin the proof by rewriting the CVaR concentration
bound in (7) for the sub-Gaussian case in a simplified man-
ner as follows:

P [|ĉn,α − cα| > ε] ≤ 6 exp

[
−
nG(1− α)2 min

(
ε2, δ2

)
2

]
,

(30)

where G = min(η2,1)
max(σ2,8) .

Note that, if the CVaR-SR algorithm has eliminated the
optimal arm in phase i then it implies that at least one of
the last i worst arms i.e., one of the arms in {[K], [K −
1], · · · , [K − i + 1]} must not have been eliminated in
phase i. Hence, we obtain

P [Jn 6= i∗] ≤
K−1∑
k=1

K∑
i=K+1−k

P
[
ĉi

∗

nk,α
≥ ĉ[i]nk,α

]

=

K−1∑
k=1

K∑
i=K+1−k

P
[
ĉi

∗

nk,α
−ci

∗

α −ĉ[i]nk,α+c[i]α ≥c[i]α − ci
∗

α

]

≤
K−1∑
k=1

K∑
i=K+1−k

P
[
ĉi

∗

nk,α
− ci

∗

α ≥
∆[i]

2

]

+

K−1∑
k=1

K∑
i=K+1−k

P
[
c[i]α − ĉ[i]nk,α ≥

∆[i]

2

]
(31)

We now bound the above terms individually as follows.

K−1∑
k=1

K∑
i=K+1−k

P
[
c[i]α − ĉ[i]nk,α ≥

∆[i]

2

]

≤
K−1∑
k=1

K∑
i=K+1−k

P
[
|ĉ[i]nk,α − c

[i]
α | ≥

∆[i]

2

]
(a)

≤
K−1∑
k=1

K∑
i=K+1−k

6 exp

−n(1− α)2 min
[
∆2

[i], δ
2
[i]

]
G[i]

8


≤
K−1∑
k=1

K∑
i=K+1−k

6 exp

(
[−n(1− α)2Gmax

8

×min
[
∆2

[i], 4δ
2
[i]

])
≤
K−1∑
k=1

6k exp

(
−nGmax(1− α)2

8

×min
(

∆2
[K+1−k], 4δ

2
[K+1−k]

))
, (32)

where we used (30) in arriving at the inequality in (a), and
Gmax = maxiGi.

Notice that

nmin
(

∆2
[K+1−k], 4δ

2
[K+1−k]

)
≥ n−K
HlogK

,

where H is as defined in the theorem statement. By substi-
tuting the above in (32), we obtain

K−1∑
k=1

K∑
i=K+1−k

P
[
c[i]α − ĉ[i]nk,α ≥

∆[i]

2

]

≤
K−1∑
k=1

6k exp

(
− (n−K)(1− α)2Gmax

8HlogK

)
. (33)

Similarly, we can show that
K−1∑
k=1

K∑
i=K+1−k

P
[
ĉi

∗

nk,α
− ci

∗

α− ≥
∆[i]

2

]

≤
K−1∑
k=1

6k exp

(
− (n−K)(1− α)2Gmax

8HlogK

)
. (34)

The main claim follows by substituting (33) and (34)
in (31).

(ii) Light-tailed case
The proof follows by a completely parallel argument to the
proof for the sub-Gaussian case, while using the following
bound in place of (30):

P [|ĉn,α − cα| > ε] ≤

6 exp

[
−nG(1− α)2 min{ε, ε2, δ2}

2

]
,

where G = min(η2,1)
max(2σ2,16,b) .

6. Concluding Remarks
We derived concentration bounds for CVaR estimation,
separately considering light-tailed and heavy-tailed distri-
butions. For light-tailed distributions, our concentration
bound uses a classical CVaR estimator based on the em-
pirical distribution. For the heavy-tailed case, we employ
a truncation based CVaR estimator, and derive a concen-
tration result under a mild bounded-moment assumption.
Our concentration bound enjoys exponential decay in the
sample size even for heavy-tailed random variables.

We highlighted the applicability of the CVaR concentration
result by considering a risk-aware bandit problem. We pro-
posed an adaptation of the successive rejects algorithm to
the setting where the goal is to find an arm with the low-
est CVaR. Using the CVaR concentration bound, we estab-
lished error bounds for the proposed algorithm.
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