
Optimal Randomized First-Order Methods for Least-Squares Problems

A. Proof of main results
For a polynomial P and a measure (resp. density) µ, we will denote µ[P ] : =

∫
R P (x)µ(x)dµ(x) (resp. µ[P ] : =∫

R P (x)µ(x)dx). For a density µ, we stress the fact that µ[x] and µ(x) refer to different quantities.

A.1. Proof of Theorem 1

We recall that Π0(x)=1, Π1(x)=1 + b1x and for t > 2,

Πt(x) = (at + btx) Πt−1(x) + (1− at)Πt−2(x) . (36)

First, we claim that for any t > 0, ∆t = Πt

(
C−1
S

)
∆0, and we show it by induction. Since Π0(x) = 1, we have that

∆0 = Π0

(
C−1
S

)
·∆0. Since x1 =x0 + b1H

−1
S ∇f(x0), subtracting x∗ and multiplying by U>A the latter equation, we

obtain that ∆1 = Π1

(
C−1
S

)
·∆0. Suppose that for some t > 2, the induction claim holds for t− 1 and t− 2. Subtracting

x∗ and multiplying by U>A the update formula (11), we obtain that

∆t = ∆t−1 + (1− at)(∆t−2 −∆t−1) + btC
−1
S ∆t−1

= (at + btC
−1
S )∆t−1 + (1− at)∆t−2

=
(
(at + btC

−1
S )Πt−1

(
C−1
S

)
+ (1− at)Πt−2

(
C−1
S

))
∆0

= Πt

(
C−1
S

)
∆0 ,

where we used the induction hypothesis for t−1 and t−2 in the third equality, and the recursion formula (36) in the last
equality. Consequently, using Lemma 2.1, we obtain that

lim
n→∞

E‖∆t‖2

E‖∆0‖2
=

∫ b

a

Π2
t

(
λ−1

)
dµ(λ) = L∗µ,t .

A.2. Proof of Theorem 2

We have already argued that {xt} is asymptotically optimal. It remains to prove that L∗µρ,t=ρt.

Set λρ(x) = x−1µρ(x). Let {Πt} be an orthogonal basis with respect to µρ such that Πt(0) = 1 and deg(Πt) = t. From
Lemma 2.3, we have L∗µρ,t = (1− ρ)λρ[Π

2
t ], so that it suffices to show that λρ[Π2

t ] = (1− ρ)−1ρt. On the other hand, in
the proof of Lemma 2.4 in Appendix B.4, we establish that there exists a sequence of polynomials {Tk}k>1 such that for
any t > 1 and k, ` > 1,

Πt(x) = 1−
t∑

j=1

λρ[Tt]Tt(x) ,

λρ[Tt] = (−1)t−1√ρt−1
,

λρ[TkT`] = δk` ,

where δk` = 1 if k = `, and 0 otherwise. Using the latter properties, it follows that

λρ[Π
2
t ] = λρ[1]− 2

t∑
j=1

λρ[Tj ]
2 +

t∑
j=1

λρ[Tj ]
2 λρ[T

2
j ]︸ ︷︷ ︸

=1

= λρ[1]−
t∑

j=1

λρ[Tj ]
2

=
1

1− ρ −
t−1∑
j=0

ρj

=
ρt

1− ρ ,

and, in the third equality, we used the standard inverse moment formula λρ[1]=
∫
x−1µρ(x)dx=(1− ρ)−1. Consequently,

we obtain the claimed formula, that is, L∗µρ,t = ρt.
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A.3. Proof of Theorem 3

According to Lemma 2.5, the support of Fh is included within the interval (0, 1). Therefore, we fix x ∈ (0, 1) and we
consider the complex number z = x+ iy, where y > 0. Our goal is to compute the quantity

lim
y→0+

1

π
|Im(mh(z)) | .

If the above limit exists, then Fh is differentiable at x and its derivative is equal to this limit (Silverstein & Choi, 1995).
Note that the absolute value is not necessary, since Im(mh(z)) is positive on C+. But it will avoid to specify explicitly the
branch cut of the square-root considered later in this proof, and thus additional technicalities.

From Lemma 2.5, it holds that

2γmh(z) =
2γ − 1

1− z +
ξ − γ
z(1− z) −

R(z)

z(1− z) . (37)

where R(z) =
√

(γ + ξ − 2 + z)2 + 4(z − 1)(1− γ)(1− ξ), and the branch cut of the square-root is chosen such that
mh > 0 on C+, mh < 0 on C− (the complex numbers with negative imaginary parts), and mh > 0 on R− (the negative
real numbers). Further, we have

1

z(1− z) =
x(1− x) + y2 + iy(2x− 1)

(x(1− x) + y2)2 + y2(2x− 1)2
,

1

1− z =
1− x+ iy

(1− x)2 + y2
,

from which we deduce that the imaginary parts of the first two terms in the expansion (37) of 2γmh(z) are given by

Im

(
2γ − 1

1− z

)
=

(2γ − 1)y

(1− x)2 + y2
,

Im

(
ξ − γ
z(1− z)

)
=

(ξ − γ)(2x− 1)y

(x(1− x) + y2)2 + y2(2x− 1)2
.

Since x ∈ (0, 1), the limits y → 0+ of the two above quantities exist and are equal to 0. Hence, provided it exists, we have

lim
y→0+

2γ|Im(mh(z))| = lim
y→0+

∣∣∣∣Im( R(z)

z(1− z)

)∣∣∣∣ . (38)

We introduce the function f(z)=(z − α− β)2 + 4(z − 1)αβ where α = 1− ξ and β = 1− γ, so that R(z)=
√
f(z). We

have f(z) = X + iY where

X = (x− α− β)2 − y2 + 4(x− 1)αβ ,

Y = 2(x− α− β + 2αβ)y .

Thus, the absolute values of the real and imaginary parts of R(z) are given by

|Re(R(z))| = 1√
2

√√
X2 + Y 2 +X ,

|Im(R(z))| = 1√
2

√√
X2 + Y 2 −X ,

and they have respective limits

lim
y→0+

|Re(R(z))| =
√
|ϕ(x)| · 1(ϕ(x) > 0) ,

lim
y→0+

|Im(R(z))| =
√
|ϕ(x)| · 1(ϕ(x) < 0) ,

where ϕ(x) : = (x− α− β)2 + 4(x− 1)αβ. Further, we have

Im

(
R(z)

z(1− z)

)
=
y(2x− 1)Re(R(z)) + (x(1− x) + y2)Im(R(z))

g(x, y)
,
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where g(x, y) = (x(1 − x) + y2)2 + y2(2x − 1)2. Note that limy→0+ g(x, y) = x2(1 − x)2, which is non-zero since
x ∈ (0, 1). Then, we obtain

lim
y→0+

∣∣∣∣Im( R(z)

z(z − 1)

)∣∣∣∣ =

√
|ϕ(x)|1(ϕ(x) < 0)

x(1− x)
,

Using (38), it follows that for any x ∈ (0, 1), limy→0+
1
π |Im(mh(x))| exists. This implies that Fh admits a density over

(0, 1), given by

fh(x) =
1

2γπ

√
(Λh − x)+(x− λh)+

x(1− x)
,

where we used the fact that ϕ(x) = (x− Λh)(x− λh), and we recall that the edge eigenvalues Λh and λh are given by

λh : =
(√

(1− γ)ξ −
√

(1− ξ)γ
)2

Λh : =
(√

(1− γ)ξ +
√

(1− ξ)γ
)2

.

Using the fact that Fh is supported within the interval (0, 1), we have recovered the whole density of the limiting spectral
distribution Fh of the matrix U>S>SU .

A.4. Proof of Theorem 5

We have already argued that {xt} is asymptotically optimal. It remains to show that L∗fh,t �
(1−ξ)t
(1−γ)t ρ

t.

Using (25), we have

L∗fh,t =
cτ

(1− τ)γ
min

P∈R0
t [X]

∫ β

α

P 2(t)
µτ (x)

x− c dx

=
cτ

(1− τ)γ
min

P∈R0
t [X]

∫ β

α

P 2(t)
x

x− c
µτ (x)

x
dx .

For x ∈ [α, β], it holds that

β

β − c 6
x

x− c 6
α

α− c ,

and consequently, we can lower and upper bound L∗fh,t as follows,

cτ

(1− τ)γ

β

β − c min
P∈R0

t [X]

∫ β

α

P 2(t)
µτ (x)

x
dx 6 L∗fh,t 6

cτ

(1− τ)γ

α

α− c min
P∈R0

t [X]

∫ β

α

P 2(t)
µτ (x)

x
dx .

From Lemma 2.3, we know that L∗µτ ,t = (1− τ) minP∈R0
t [X]

∫ β
α
P 2(t)µτ (x)

x dx. Thus,

cτ

(1− τ)2γ

β

β − cL
∗
µτ ,t 6 L∗fh,t 6

cτ

(1− τ)2γ

α

α− cL
∗
µτ ,t .

From Theorem 2, we know that L∗µτ ,t = τ t. Thus, we obtain that

L∗fh,t � τ t .

A simple calculation gives that τ = 1−ξ
1−γ ρ, which yields the claimed result. As for the Gaussian case, an exact calculation of

L∗fh,t is actually possible. But, after investigation, the resulting expression is lengthy and fairly difficult to simplify, whereas
we are primarily interested in the scaling in terms of the iteration number t.



Optimal Randomized First-Order Methods for Least-Squares Problems

B. Proofs of intermediate results
B.1. Proof of Lemma 2.1

Suppose that {xt} is generated by a first-order method (6). Fix t > 1, then there exists α0,t, . . . , αt−1,t such that

xt = xt−1 +

t−1∑
j=0

αj,tH
−1
S A>(Axj − b) . (39)

Multiplying both sides of (39) by U>A, subtracting U>Ax∗ and using the normal equation A>Ax∗ = A>b, we find that

∆t = ∆t−1 +

t−1∑
j=0

αj,tC
−1
S ∆j . (40)

First, we aim to show that there exists a polynomial pt ∈ R0
t [X] such that ∆t = pt

(
C−1
S

)
∆0. We proceed by induction

over t > 0. For t=0, the claim is true. Suppose that for some t > 1, it holds that ∆j = pj
(
C−1
S

)
∆0 with pj ∈ R0

j [X] for
j=0, . . . , t− 1. Then, we have from (40) that

∆t = pt−1

(
C−1
S

)
∆0 +

t−1∑
j=0

αj,tC
−1
S pj

(
C−1
S

)
∆0 (41)

=

pt−1

(
C−1
S

)
+

t−1∑
j=0

αj,tC
−1
S pj

(
C−1
S

)∆0 . (42)

We set pt(x) = pt−1(x)+
∑t−1
j=0 αj,txpj(x). It holds that pt(0) = pt−1(0)+0 = 1, and deg(pt) 6 t since deg(pt−1) 6 t−1

and deg(xpj(x)) 6 j + 1 6 t for j = 0, . . . , t − 1. Then, from (42), we have ∆t = pt
(
C−1
S

)
∆0, which concludes the

induction.

Second, we aim to show that limn→∞
E[‖∆t‖2]
E[‖∆0‖2] =

∫
R p

2
(
λ−1

)
dµ(λ), where µ is the l.s.d. of CS for S an m× n Gaussian

or SRHT embedding. The Gaussian case is straightforward to prove, by using the rotational invariance of the Gaussian
distribution. The SRHT case is more involved, and we leverage tools from free probability theory.

B.1.1. THE GAUSSIAN CASE

Let S be an m× n random matrix with i.i.d. entries N (0, 1/m). Then, by rotational invariance, SU is an m× d matrix
with i.i.d. entriesN (0, 1/m). Write the eigenvalue decomposition CS = V ΣV > where V is a d× d orthogonal matrix, and
Σ a diagonal matrix with positive entries λ1, . . . , λd. A standard result states that V and Σ are independent matrices, and V
is Haar-distributed.

Fix t > 0, and let pt ∈ R0
t [X] such that ∆t = pt

(
C−1
S

)
∆0. Taking the squared norm and the expectation, we obtain that

E
[
‖∆t‖2

]
= E

[
∆>0 p

2
t

(
C−1
S

)
∆0

]
= E

[
∆>0 V p

2
t

(
Σ−1

)
V >∆0

]
.

Using the independence of Σ, V and ∆0 and writing V = [v1, . . . , vd], we further obtain that

E
[
‖∆t‖2

]
= E

[
∆>0 V E

[
p2
t

(
Σ−1

)]
V >∆0

]
=

d∑
i=1

E
[
(v>i ∆0)2

]
E[p2

t (λ
−1
i )] .

Since each vi is uniformly distributed on the unit sphere, we have that E
[
(v>i ∆0)2

]
= 1

dE‖∆0‖2, so that

E
[
‖∆t‖2

]
=

1

d
E‖∆0‖2E

[
d∑
i=1

p2
t (λ
−1
i )

]

= E‖∆0‖2
1

d
traceE

[
p2
t

(
C−1
S

)]
.
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Dividing both sides of the above equation by E‖∆0‖2 and taking the limit d→∞, we obtain the claimed result,

E
[
‖∆t‖2

]
E [‖∆0‖2]

=

∫
R
p2
t

(
λ−1

)
dµ(λ) .

B.1.2. THE SRHT CASE

The SRHT does not satisfy rotational invariance as the Gaussian distribution (or Haar matrices), and we need to use a
different approach for this proof, based on asymptotically liberating sequences of unitary matrices (Anderson & Farrell,
2014).

Let S be an m× n SRHT embedding. We denote by µ the l.s.d. of the matrix CS . Following the same first steps as for the
Gaussian case, we have that

E
[
‖∆t‖2

]
= E trace

[
p2
t

(
C−1
S

)
∆0∆>0

]
= E trace

[
p2
t

(
C−1
S

)
Σ0

]
, (43)

where Σ0 : = E∆0∆>0 . Writing p2
t (x) =

∑t
k=0 akx

2k, it follows that

E
[
‖∆t‖2

]
=

t∑
k=0

ak E trace
[
C−2k
S Σ0

]
. (44)

Introducing the matrix Σ̃0 = Σ0

trace Σ0/d
, we further obtain

E
[
‖∆t‖2

]
E [‖∆0‖2]

=

t∑
k=0

ak
1

d
E trace

[
C−2k
S Σ̃0

]
. (45)

We use the following result, whose proof leverages some notions from free probability theory. We defer the proof to
Appendix B.2.
Lemma 1. It holds that for any k > 0,

lim
n→∞

1

d
E trace

[
C−2k
S Σ̃0

]
= lim
n→∞

1

d
E trace

[
C−2k
S

]
=

∫
R
λ−2kdµ(λ) . (46)

Combining (45) and the result of Lemma 1, it follows that

lim
n→∞

E
[
‖∆t‖2

]
E [‖∆0‖2]

=

t∑
k=0

ak

∫
R
λ−2kdµ(λ) =

∫
R
p2
t

(
λ−1

)
dµ(λ) , (47)

which is the claimed result.

B.2. Proof of Lemma 1

We introduce a few needed concepts from free probability that will be used in this proof. We refer the reader to (Voiculescu
et al., 1992; Hiai & Petz, 2006; Nica & Speicher, 2006; Anderson et al., 2010) for an extensive introduction to this field.
Consider the algebraAn of n×n random matrices. ForXn∈ An, we define the linear functional τn(Xn) : = 1

nE [traceXn].
Then, we say that a family {Xn,1, . . . , Xn,I} of random matrices in An is asymptotically free if for every i ∈ {1, . . . , I},
Xn,i has a limiting spectral distribution, and if τn

(∏m
j=1 Pj

(
Xn,ij − τ

(
Pj(Xn,ij )

)))
→ 0 almost surely for any positive

integer m, any polynomials P1, . . . , Pm and any indices i1, . . . , im ∈ {1, . . . , I} with i1 6= i2, . . . , im−1 6= im.

Let S be an n × n SRHT embedding (we consider the SRHT before discarding its zero rows). By definition, we can
write S = BHW , where B is an n× n matrix with i.i.d. Bernoulli entries on the diagonal, with success probability m/n,
H = Hn is the n-th Walsh-Hadamard matrix. The matrix W is an n× n bi-signed permutation, i.e., W = DP , where D is
a diagonal matrix with i.i.d. random signs, and P is an n× n uniformly random permutation matrix.

We aim to show that for any k > 0,

lim
d→∞

τd

(
C−kS Σ̃0

)
= lim
d→∞

τd
(
C−kS

)
. (48)
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We reduce the problem of proving (48) to the following, which is more simple to treat. The proof of this reduction is
deferred to Appendix D.1.

Lemma 2. Suppose that for any k > 0, we have

lim
d→∞

τd

(
CkSΣ̃0

)
= lim
d→∞

τd
(
CkS
)
. (49)

Then, the claim (48) is true for any k > 0.

Thus, we aim to show (49) for all k > 0.

It holds that

CS = U>S>SU = (U>W>HB)(BHWU)

= U>W>HB2HWU

= U>W>HBHWU ,

where we used B2 = B in the fourth equality. Further, we have the following equality in distribution, whose proof is
deferred to Appendix B.3.

Lemma 3. It holds that

U>W>HBHWU
d
= U>W>HWBW>HWU . (50)

Consequently,

CS
d
= U>W>HWBW>HWU . (51)

Let k > 0. We have W>W = In, U>U = Id, B2 = B, H2 = H and τd(Σ̃0) = 1. Using (50), we find

τd

(
CkSΣ̃0

)
= τd

(
(U>W>HWBW>HWU)kΣ̃0

)
=
n

d
· τn
(
X1(Y X2)k

)
, (52)

where we introduced the matrices X1 : = WU Σ̃0U
>W>, X2 : = WUU>W> and Y : = HWBW>H . These matrices

satisfy the following collection of properties, whose proof is deferred to Appendix D.2.

Lemma 4. It holds that X1X2 = X2X1 = X1, X2
2 = X2, Y 2 = Y ,

lim
n∞

τn(X1) = lim
n∞

τn(X2) , (53)

and the sets of matrices {X1, X2} and {Y } are asymptotically free.

Further, for any k > 1, we have

lim
n→∞

τn(X1(Y X2)k) = lim
n→∞

τn(X2(Y X2)k) . (54)

Now, observe that

τn(X2(Y X2)k) = τn(WUU>W>(HWBW>HWUU>W>)k)

=
d

n
τd((U

>W>HWBW>HWU)k)

=
d

n
τd(C

k
S) ,

where we used the commutativity of the trace in the second equality, and the equality in distribution (50) for the third
equality. Consequently,

lim
n→∞

τn(X1(Y X2)k) = γ lim
d→∞

τd(C
k
S) . (55)

Combining the above equality (55) with equality (52), we obtain the claimed result (49).
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B.3. Proof of Lemma 3

Note that both B and D are diagonal matrices whose diagonal entries are i.i.d. random variables, and P is a permutation
matrix. Define B̃ = PBP> and D̃ = P>DP , then B̃ d

= B, D̃ d
= D,

DP = PD̃, P>D = D̃P> . (56)

It follows that

U>W>HWBW>HWU = U>P>DHDPBP>DHDPU

= U>P>DHPD̃BD̃P>HDPU

= U>P>DHnPBD̃
2P>HnDPU

= U>P>DHnPBP
>HnDPU

= U>P>DHnB̃HnDPU

d
= U>P>DHnBHnDPU,

where the second equation follows from (56), the third equation holds because D̃ and B are diagonal so they commute,
while the fourth equation holds because D̃2 = In.

B.4. Proof of Lemma 2.4 – Alternative construction of the polynomials {Πk}
We recall that for a polynomial P and a measure (resp. density) µ, we will denote µ[P ] : =

∫
R P (x)µ(x)dµ(x) (resp. µ[P ] :

=
∫
R P (x)µ(x)dx). Thus, for a density µ, the reader should be aware that µ[x] and µ(x) refer to different quantities.

We present an alternative construction of the orthogonal family {Πk} with respect to µρ, explicitly based on the Chebyshev
polynomials of the second kind. This explicit construction allows us to leverage several properties of the polynomials {Πk}
which are useful to perform calculations and prove Lemma 2.4, as well as Theorem 2.

We introduce the shifted Chebyshev polynomials of the second kind, which are defined by the recurrence

Q0(x) = 1 , Q1(x) =
x− (1+ρ)√

ρ
, Qk+1(x) =

x− (1+ρ)√
ρ

Qk(x)−Qk−1(x) . (57)

A standard result states that the polynomials Qk are orthonormal with respect to the measure ν(x)dx : = xµρ(x)dx. We set
Π̂0(x) = 1, and for k > 1,

Π̂k(x) : = 1−
k∑
j=1

(−1)j−1√ρj−1
xQk−1(x) . (58)

For instance, we have Π̂1(x) = 1− x and Π̂2(x) = 1− (2 + ρ)x+ x2.

We aim to show that {Π̂k} is an orthogonal family with respect to µρ and then, that Π̂k = Πk.

First, we show that the polynomials Π̂k form an orthonormal family with respect to µρ such that deg(Π̂k) = k and
Π̂k(0) = 1. For k> 1, we define the polynomial Tk(x) = xQk−1(x) and the measure λρ(x) = x−1µρ(x). We have that
λρ[TkT`] = νρ[Qk−1Q`−1] = δk`, so that the Tk are orthonormal with respect to λρ. Since deg(Qk−1) = k−1, we have
deg(Tk)=k. We also have Tk(0) = 0 ·Qk−1(0)=0.

Second, we show that µρ[Qk]=(−1)k
√
ρk, which will immediately imply that

λρ[Tk] = λρ[xQk−1(x)] = µρ[Qk−1] = (−1)k−1√ρk−1
. (59)

We denote uk : =µρ[Qk]. The measure µρ is a probability measure, so that u0 = 1. Further, we have

u1 = µρ[Q1] =

∫ b

a

x− (1 + ρ)√
ρ

µρ(x) dx =
−1− ρ+

∫ b
a
xµρ(x) dx

√
ρ

.
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The first moment µρ[x] is equal to 1, so that u1 = −√ρ. From the recurrence relationship (57), we obtain uk+1 = − 1+ρ√
ρ uk−

uk−1. The characteristic equation x2 + 1+ρ√
ρ x+ 1 = 0 has roots −1/

√
ρ and −√ρ. Therefore, uk = α (−1)k√

ρk
+β(−1)k

√
ρk

for some α, β ∈ R. Using the initial values u0 and u1, we find α = 0 and β = 1. This yields the claimed formula for uk.

Then, using the definition (58), we have

Π̂k = 1−
k∑
j=1

(−1)j−1√ρj−1
xQk−1(x) (60)

= 1−
k∑
j=1

λρ[Tk]Tk(x) . (61)

Hence, recognizing the Gram-Schmidt orthogonalization of the constant polynomial 1 with respect to {T1, . . . , Tk}, we
deduce that the family {Π̂k, T1, . . . , Tk} is orthogonal with respect to λρ, and is a basis of Rk[X]. Consider now the
variational problem

min
p∈R0

k[X]

∫
p2(x)λρ(x) dx . (62)

Let p ∈ R0
k[X] and decompose p as p=α0Π̂k+

∑k
j=1 αjTk. Using p(0)=1, Π̂k(0)=1 and Tj(0)=0, we get that α0 must

be equal to 1. Then, ∫
p2(x)λρ(x) dx =

∫
Π̂2
k(x)λρ(x) dx+ 2

k∑
j=1

αj

∫
Π̂k(x)Tj(x)λρ(x) dx

+

∫
(

k∑
j=1

αjTj(x))2λρ(x) dx .

The cross-term is equal to 0 by orthogonality of the family {Π̂k, T1, . . . , Tk}. The third-term is non-negative, and equal
to 0 if and only if p = Π̂k. Therefore, the minimizer of the variational problem (62) is exactly Π̂k. On the other hand,
applying Lemma 2.2 with ν=xλρ=µρ, we know that the solution of each of the problems (62) (for varying k) is unique,
and the solutions form an orthogonal family with respect to xλρ(x)dx=µρ(x)dx. Thus, we obtain that the family {Π̂k} is
orthogonal with respect to µρ.

Finally, we show that the sequence {Π̂k} satisfies the recurrence relationship (15). Observe that

xΠ̂k(x) = x−
k∑
j=1

λρ[Tj ]xTj(x) = x− λρ[T1]xT1(x)−
k∑
j=2

λρ[Tj ]xTj(x)

= x− x2 −
k∑
j=2

λρ[Tj ]xTj(x) .

Multiplying (57) by x and using the definition Tk(x) = xQk−1(x), we find that for k > 2,

xTj(x) =
√
ρ (Tj−1(x) + Tj+1(x)) + (1 + ρ)Tj(x) .

Using the above decomposition of xTj(x), it obtain
∑n
j=2 λρ(Tj)xTj(x) = s1 + s2 + s3, where

s1 : =
√
ρ

k∑
j=2

λρ(Tj)Tj+1(x) =

k∑
j=2

(−1)j−1√ρjTj+1(x)

=

k+1∑
j=3

(−1)j
√
ρ
j−1

Tj(x)

= Π̂k+1(x)− 1 + T1(x)−√ρ T2(x)

= Π̂k+1(x)− 1 + x− x2 + (1 + ρ)x ,
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the second term is s2 : =
√
ρ
∑k
j=2 λρ[Tj ]Tj−1(x)=

∑k
j=2(−1)j−1√ρjTj−1(x)=ρ

(
Π̂k−1(x)−1

)
and the third term is

s3 : = (1 + ρ)
∑k
j=2 λρ[Tj ]Tj(x)=−(1+ρ)

(
Π̂k(x)−1+x

)
. Consequently,

xΠk(x) = x− x2 − s1 − s2 − s3

= x− x2 − Π̂k+1(x) + 1− x+ x2 − (1 + ρ)x− ρ (Π̂k−1(x)−1) + (1 + ρ)(Π̂k(x)−1+x)

= −Π̂k+1(x)− ρ Π̂k−1(x) + (1 + ρ)Π̂k(x) ,

which is the claimed recurrence. We deduce that Π̂k = Πk, and that the family {Πk} is orthogonal with respect to µρ.

C. Description of numerical experiments
Numerical simulations are run in Python with the numerical linear algebra module NumPy and the scientific computation
module SciPy, on a machine with 256Gb of memory.

To generate an m× n Haar matrix Sh, we sample an m× n matrix G with i.i.d. Gaussian entries N (0, 1), and we set Sh
to be its m× n matrix of right singular vectors. To generate an m× n SRHT matrix, we follow the description given in
Section 1. The plots correspond to one trial for each embedding.

C.1. Figure 1

We set n = 8192, d = 1640 and m ∈ {1720, 3280, 4915}. We generate the plots of µρ and fh,r by discretizing their
respective supports with step size 1e−5.

C.2. Figures 2 and 3

We generate an n× d Gaussian matrix G with i.i.d. entries, and we compute its left singular matrix U and right singular
matrix V . Then, we set A = UΣV >, where Σ is a d × d diagonal matrix with entries Σj = 0.98j for j = 1, . . . , d.
We generate a vector b using a planted model b = Axpl + 1√

n
N (0, In), and xpl ∼ 1√

d
N (0, Id). Note that, although the

performance of the algorithms do not depend on the data A and b, we choose a standard statistical model to generate the
data, and a data matrix with a very large condition number.

Algorithms 1 and 2 are implemented following their pseudo-code description. We use small perturbations of the algorithmic
parameters by setting aδt = (1 + δ)at and bδt = (1− δ)bt with δ = 0.01 – where at and bt correspond to the parameters as
described in Theorem 1. Similarly, for the Heavy-ball method with fixed SRHT embeddings and parameters derived based
on our new asymptotitc edge eigenvalues (”SRHT (edge eig.)”), we use instead the slightly perturbed edge eigenvalues
λδh = (1− δ)λh and Λδh = (1 + δ)Λh, with δ = 0.01. These small perturbations of the parameters are necessary in practice
due to the finite-sample approximations. For the Heavy-ball method with fixed SRHT embeddings based on the bounds
of Tropp (2011) (”SRHT (baseline)”), we use the parameters prescribed in (Lacotte & Pilanci, 2019). For the Heavy-ball
method with refreshed SRHT embeddings (”SRHT (refreshed)”), we use the parameters prescribed in (Lacotte et al., 2020).
For each algorithm, results are averaged over 20 independent trials (using the same data A and b).

D. Proofs of auxiliary results
D.1. Proof of Lemma 2

Suppose that (49) holds. Let k > 0. We have

C−kS = (Id − (Id − CS))−k =

 ∞∑
j=0

(Id − CS)j

k

, (63)

where the series expansion (Id − (Id − CS))−1 =
∑∞
j=0(Id − CS)j holds almost surely, due to the fact that CS has

spectrum within (0, 1) almost surely. There exist coefficients {a`} such that
(∑∞

j=0 x
j
)k

=
∑
`=0 a`x

`, and such that the
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sum is absolutely convergent, i.e.,
∑
`=0 |a`||x|` < +∞, for any x ∈ (0, 1). Consequently,

C−kS =

∞∑
`=0

a`C
`
S (64)

Then, by absolute convergence of
∑
` a`x

` and using the fact that ‖CS‖2 < 1, we can exchange the operator τd and the
infinite sum, so that

τd
(
C−kS

)
= τd

( ∞∑
`=0

a`C
`
S

)
=

∞∑
`=0

a`τd
(
C`S
)
. (65)

and writing the latter as a series in CS , we obtain the claimed result. Due to the fact that sup` limd∞ τd
(
C`S
)
< 1, and using

again the absolute convergence of
∑
` a`x

` for |x| < 1, it follows that

lim
d→∞

τd
(
C−kS

)
= lim
d→∞

∞∑
`=0

a`τd
(
C`S
)

(66)

=

∞∑
`=0

a` lim
d→∞

τd
(
C`S
)

(67)

=

∞∑
`=0

a` lim
d→∞

τd

(
C`SΣ̃0

)
. (68)

Using the same arguments, we find that

∞∑
`=0

a` lim
d→∞

τd

(
C`SΣ̃0

)
= lim
d→∞

τd

(
C−kS Σ̃0

)
, (69)

and we conclude that

τd

(
C−kS Σ̃0

)
= τd

(
C−kS

)
(70)

D.2. Proof of Lemma 4

We have

X1X2 = WU Σ̃0U
>W>WUU>W> = WU Σ̃0U

>W> = X1

where we used in the second equality U>W>WU = Id. Similarly, we obtain X2X1 = X1.

We have

Y 2 = (HWBW>H)(HWBW>H) = HWBW>H = Y

where we used in the second equality BW>HHWB = B.

We have

X2
2 = WUU>W>WUU>W> = WUU>W> = X2 ,

where we used in the second equality U>W>WU = Id.

Further, it holds that

lim
n∞

τn(X1) = γ lim
d∞

τd(Σ̃0) = γ = lim
n∞

τn(X2), .

We show asymptotic freeness. Note that the matrices UU>, B and Σ̃0 have l.s.d. compactly supported. For the latter,
this directly follows from our initial assumption that the condition number of the matrix U>AE[x0x

>
0 ]A>U + U>bb>U
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remains bounded. Then, applying Corollary 3.2 from (Anderson & Farrell, 2014) with the set of asymptotically liberating
matrices {W,HW}, we immediately obtain asymptotic freeness of {X1, X2} and {Y }.
It remains to show that for any k > 0,

lim
n→∞

τn(X1(Y X2)k) = lim
n→∞

τn(X2(Y X2)k) . (71)

For the rest of this proof, we use the more compact notations a : = X1, b : = Y , c : = X2 and ϕ = limn→∞ τn. We
show (71) by induction over k > 0. For k = 0, the claim is true because ϕ(a) = ϕ(c) as shown above. Fix k > 1 and
suppose that the claim is true for j = 0, . . . , k − 1. By asymptotic freeness, we have

ϕ
(

(a− ϕ(a))
(
(b− ϕ(b))(c− ϕ(c))

)k)
= 0 . (72)

We expand the left-hand side of the above equation as

ϕ
(

(a− ϕ(a))
(
(b− ϕ(b))(c− ϕ(c))

)k)
= ϕ

(
a(bc)k

)
+

∑
δ1,...,δ2k∈{0,1}

(δ1,...,δ2k) 6=(1,...,1)

ϕ
(
abδ1cδ2bδ3 . . . cδ2k(−ϕ(b))1−δ1 . . . (−ϕ(c))1−δ2k

)

= ϕ
(
a(bc)k

)
+

∑
δ1,...,δ2k∈{0,1}

(δ1,...,δ2k)6=(1,...,1)

(−ϕ(b))1−δ1 . . . (−ϕ(c))1−δ2kϕ
(
abδ1cδ2 . . . cδ2k

)
.

For binary exponents (δ1, . . . , δ2k) 6= (1, . . . , 1), the product of non-commutative matrices bδ1cδ2bδ3 . . . cδ2k must have a
sub-product of the form bb or cc. Using the fact that b2 = b and c2 = c, it follows that there exists some integer ` such that
0 6 ` < k, and

bδ1cδ2bδ3 . . . cδ2k = (bc)` .

Using the induction hypothesis, we have

ϕ
(
abδ1cδ2 . . . cδ2k

)
= ϕ(a(bc)`) = ϕ(c(bc)`) = ϕ

(
cbδ1cδ2 . . . cδ2k

)
.

Consequently, we get

ϕ
(

(a− ϕ(a))
(
(b− ϕ(b))(c− ϕ(c))

)k)
= ϕ

(
a(bc)k

)
+

∑
δ1,...,δ2k∈{0,1}

(δ1,...,δ2k) 6=(1,...,1)

ϕ
(
cbδ1cδ2bδ3 . . . cδ2k(−ϕ(b))1−δ1 . . . (−ϕ(c))1−δ2k

)

On the other hand, using asymptotic freeness again, we have

0 = ϕ
(

(c− ϕ(c))
(
(b− ϕ(b))(c− ϕ(c))

)k)
= ϕ

(
c(bc)k

)
+

∑
δ1,...,δ2k∈{0,1}

(δ1,...,δ2k)6=(1,...,1)

ϕ
(
cbδ1cδ2bδ3 . . . cδ2k(−ϕ(b))1−δ1 . . . (−ϕ(c))1−δ2k

)

Combining the two above sets of equalities, we obtain

ϕ
(
a(bc)k

)
= ϕ

(
c(bc)k

)
,

which concludes the induction, and the proof.


