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A. Proof of Theorem 1
We will first prove a particular case of Theorem 1, the single-output case (p = 1).

Proposition 1. Let hV,W (x) = V Tσ(Wx) : Rm → R be a neural network where V ∈ Rn×1 and W ∈ Rn×m. Suppose
that that the derivative of the activation is globally bounded between zero and one. Its Lipschitz constant with respect to the
`∞ norm (for the input space) and the `1-norm (for the output space) is bounded as follows:

LV,W ≤
n∑
i=1

m∑
j=1

|Wi,jVi,1| ≤ ‖V ‖1‖W‖∞ (16)

First, note that because the output space is R, the `1-norm is just the absolute value of the output. In this case the Lipschitz
constant of the single-output function h is equal to the supremum of the `1-norm of its gradient, over its domain (c.f., Latorre
et al. (2020, Theorem 1)).

Proof.

LV,W = sup
x
‖∇hV,W (x)‖1

= sup
x

sup
‖t‖∞≤1

tT∇hV,W (x)

= sup
x

sup
‖t‖∞≤1

tTWTσ′(Wx)V

≤ sup
0≤s≤1

sup
‖t‖∞≤1

tTWT Diag(s)V

= sup
0≤s≤1

sup
‖t‖∞≤1

n∑
i=1

m∑
j=1

ti(W
T Diag(V ))i,jsj

≤
n∑
i=1

m∑
j=1

sup
0≤sj≤1

sup
−1≤ti≤1

ti(W
T Diag(V ))i,jsj

=

n∑
i=1

m∑
j=1

|WT Diag(V )|i,j =

n∑
i=1

m∑
j=1

|Wi,jVi,1|

This shows the first inequality in (16). We now show the second inequality. Denote the i-th row of the matrix W as wi:

n∑
i=1

m∑
j=1

|Wi,jVi,1| =
n∑
i=1

|Vi,1|
m∑
j=1

|Wi,j |

=

n∑
i=1

|Vi,1|‖wi‖1

≤
n∑
i=1

|Vi,1| max
j=1,...,m

‖wj‖1

=

n∑
i=1

|Vi,1|‖W‖∞

= ‖V ‖1‖W‖∞

In the fourth line we have used the fact that the `∞ operator norm of a matrix is equal to the maximum `1-norm of the rows.

�

Proof of Theorem 1. We now proceed with the general case where V ∈ Rn×p, W ∈ Rn×m and hV,W (x) = V Tσ(Wx).
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Proof. Denote the columns of V , in order, as V1, . . . , Vp. Using Proposition 1 we have

‖V Tσ(Wx)− V Tσ(Wy)‖1 =

p∑
k=1

|V Tk σ(Wx)− V Tk σ(Wy)|

≤
p∑
k=1

n∑
i=1

m∑
j=1

|Wi,jVi,k|‖x− u‖∞

≤
p∑
k=1

‖Vk‖1‖W‖∞‖x− y‖∞

= ‖V T ‖∞,1‖W‖∞‖x− y‖∞

where in the fourth line we have used the fact that the (`∞, `1) operator norm of a matrix V T is equal to the sum of the `1
norm of its rows i.e., the columns of V . This shows that LV,W ≤

∑n
i=1

∑m
j=1

∑p
k=1 |Wi,jVi,k| ≤ ‖V T ‖∞,1‖W‖∞

�

B. Proof of Theorem 2
In this section we prove the theoretical guarantees stated in Theorem 2 of the prox-grad method described by Algorithm 1.
The first and second parts of Theorem 2 follow immediately from the results establish by (Bolte et al., 2013). Part two in
Theorem 2 states that Algorithm 1 is globally convergent under the celebrated Kurdyka–Lojasiewicz (KL) property (Attouch
et al., 2010). The broad classes of semi-algebraic and subanalytic functions, widely used in optimization, satisfy the KL
property (see e.g. (Bolte et al., 2013, Section 5)), and in particular, most convex functions encountered in finite dimensional
applications satisfy it (see (Bolte et al., 2013, Section 5.1)). We refer the reader to the works (Attouch et al., 2010; 2011;
Bolte et al., 2013), in particular to (Bolte et al., 2013, Sections 3.2-3.5) for additional information and results.

For Part three we require the sufficient decrease property stated next.
Lemma 11 (Sufficient decrease property (Bolte et al., 2013, Lemma 2)). Let Ψ : Rn → R be a continuously differentiable
function with gradient assumed LΨ-Lipschitz continuous, and let σ : Rn → (−∞,∞] be a proper l.s.c function satisfying
that infσ > −∞. Fix any t ∈ (0, 1/LΨ). Then, for any u ∈ domσ and any u+ ∈ Rn defined by

u+ ∈ proxσt (u− t∇Ψ(u))

we have
Ψ(u) + σ(u)−Ψ(u+)− σ(u) ≥ 1− tLΨ

2t
‖u+ − u‖2.

Proof of Theorem 2. The first and second parts follow from the results established by (Bolte et al., 2013). We will now
prove the third part. By Lemma 11 we have that

F(zk)−F(zk+1) = f(zk) + λg(zk)− f(zk+1)− λg(zk+1)) ≥ 1− Lηk
2ηk

‖zk+1 − zk‖2. (17)

Hence {f(zk)+λg(zk)}k≥0 is a non-increasing sequence that strictly decreasing unless a critical point is obtained in a finite
number of steps. By summing (17) over k = 0, 1, . . . ,K and using the fact that {f(zk) + λg(zk)}k≥0 is non-increasing
and is bounded below by F∗, we obtain that

F(z0)−F∗ ≥
K∑
k=0

1− Lηk
2ηk

‖zk+1 − zk‖2

≥ 1

2
(c− L)K min

k=0,...,K
‖zk+1 − zk‖22.

Consequently,

min
k=0,...,K

‖zk+1 − zk‖2 ≤

√
2(F(z0)−F∗)

(c− L)K
.

�
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C. Single output proximal map computation
This section provides the theoretical background and the required intermediate results to prove Theorem 3.

C.1. Moving to an Equivalent Easier Problem

We are interested in minimizing the nonconvex twice continuously differentiable function

min
v,w∈R×Rm

1

2
(v − x)2 +

1

2

m∑
j=1

(wj − yj)2 + λ|v|
m∑
j=1

|wj |. (18)

The signs of the elements of the decision variables in (18) are determined by the signs of (x, y), and consequently, the
problem in (18) is equivalent to problem (19); this is (partly) formulated by Lemma 12.

min
v,w∈R+×Rm+

hλ(v, w;x, y) ≡ 1

2
(v − |x|)2 +

1

2

m∑
j=1

(wj − |yj |)2 + λv

m∑
j=1

wj . (19)

Lemma 12. Let (v∗, w∗) ∈ R+ × Rn+ be an optimal solution of problem (19). Then (sign(x) · v∗, sign(y) ◦ w∗) is an
optimal solution of problem (18).

Proof. We have that

h̃λ(v, w;x, y) ≡ 1

2
(v − x)2 +

1

2

m∑
j=1

(wj − yj)2 + λ|v|
m∑
j=1

|wj |

=
1

2
(sign(x)v − |x|)2 +

1

2

m∑
j=1

(sign(yj)wj − |yj |)2 + λ|v|
m∑
j=1

|wj |

≥ 1

2
(|v| − |x|)2 +

1

2

m∑
j=1

(|wj | − |yj |)2 + λv

m∑
j=1

wj

≥ hλ(v∗, w∗; |x|, |y|),

where the last inequality follows from the fact that (v∗, w∗) is an optimal solution of (19). Since equality with the lower
bound is attained by setting (v, w) = (sign(x) ·v∗, sign(y)◦w∗), we conclude that (sign(x) ·v∗, sign(y)◦w∗) is an optimal
solution of (18). �

To summarize, we have established that, finding an optimal solution to (19) and then changing signs accordingly, yields an
optimal solution to (18). We will now focus on obtaining an optimal solution for (18).

C.2. Solving the Prox Problem

First we note that problem (19) is well-posed.

Lemma 13 (Well-posedness of (19)). For any λ ≥ 0 and any (x, y) ∈ R × Rm, the problem (19) has a global optimal
solution.

Proof. The claim follows from the fact that the objective function is coercive, cf. (Beck, 2014, Thm. 2.32). �

In light of Lemma 13, and due to the fact that in (19) we minimize a continuously differentiable function over a closed
convex set, the set of optimal solutions of (19) is a nonempty subset of the set of stationary points of (19). These satisfy the
following conditions (cf. (Beck, 2014, Ch. 9.1)).
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Lemma 14 (Stationarity conditions). Let (v∗, w∗) ∈ R+×Rm+ be an optimal solution of (19) for a given (x, y) ∈ R×Rm.
Then

w∗j = max {0, |yj | − λv∗} for any j = 1, 2, . . . ,m,

v∗ = max

0, |x| − λ
m∑
j=1

w∗j

 .

Proof. The stationarity (first-order) conditions of (19) (cf. (Beck, 2014, Ch. 9.1)) state that

∂hλ
∂v

(v∗, w∗;x, y)

{
= 0, v∗ > 0,

≥ 0, v∗ = 0,

∂hλ
∂wj

(v∗, w∗;x, y)

{
= 0, w∗j > 0,

≥ 0, w∗j = 0,

which translates to

v∗ − |x|+ λ

m∑
j=1

w∗j

{
= 0, v∗ > 0,

≥ 0, v∗ = 0,
w∗j − |yj |+ λv∗

{
= 0, w∗j > 0,

≥ 0, w∗j = 0,

and the required follows. �

The stationarity conditions given in Lemma 14 imply a solution form that we exploit in Algorithm 2; this is described by
Corollary 3, where we use the convention that

∑0
j=1 aj ≡ 0 for any {aj} ⊆ R.

Corollary 3. Let (v∗, w∗) ∈ R+ × Rm+ be an optimal solution of (19) for a given (x, y) ∈ R× Rm.

1. The vector w∗ satisfies that for any j, l ∈ {1, 2, . . . ,m} it holds that w∗j ≥ w∗l only if |yj | ≥ |yl|.

2. If v∗ = 0, then w∗ = y.

3. If v∗ > 0, and s = |{j : w∗j > 0}|, then we have that

v∗ =
1

1− sλ2

|x| − λ s∑
j=1

|ȳj |

 , (20)

where ȳ is the sorted vector of y in descending magnitude order.

Proof. The first part follows trivially from the stationarity conditions on w∗ given in Lemma 14. The second part also
follows trivially from the problem definition.

From the first part and the conditions in Lemma 14 we have that
∑m
j=1 w

∗
j =

∑s
j=1 |ȳj | − λsv∗. Plugging the latter to the

stationarity condition on v∗ (given in Lemma 14) then implies the required. �

In our analysis, we strictly distinguish between the trivial solution (v∗, w∗) = (0, y), and the non-trivial solution in which
v∗ > 0. A practical point-of-view suggests that if v∗ = 0, then the corresponding succeeding weights should also be zero,
even though the optimality conditions imply otherwise. However, to avoid hindering the training process, this observation is
considered only in the end of the training.

Recall that our analysis so-far implies that the magnitude order of y determines the order magnitude of w, effectively
implying on set of non-zero entries in w (cf. Remark 5). For clarity of indices, and without loss of generality, we assume
throughout this section that the vector y is already sorted in decreasing order of magnitude, that is y ≡ ȳ. We will use,
without confusion, both notation to describe the same entity in order to maintain coherence with our procedures and results.

Denote

v(s) =
1

1− sλ2

|x| − λ s∑
j=1

|yj |


w

(s)
j = |yj | − λv(s) for j = 1, 2, . . . , s, and w(s)

j = 0 otherwise.

(21)
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Lemma 5 which states the monotonicity property

hλ(v(s), w(s);x, y) < hλ(v(s−1), w(s−1);x, y).

is proved next.

Proof of Lemma 5. Recall that hλ(v, w;x, y) := 1
2 (v − |x|)2 + 1

2

∑m
j=1(wj − |yj |)2 + λv

∑m
j=1 wj . By plugging w(s)

defined in (21) to hλ we obtain that

hλ(v(s), w(s);x, y) =
1

2
(v(s) − |x|)2 +

1

2

s∑
i=1

(|ȳi| − (|ȳi| − λv(s)))2 +
1

2

m∑
i=s+1

|ȳi|2 + λv(s)
s∑
i=1

(|ȳi| − λv(s))

=
1

2
(v(s) − |x|)2 +

λ2

2
s(v(s))2 +

1

2
‖y‖22 −

1

2

s∑
i=1

|ȳi|2 + λv(s)
s∑
i=1

|ȳi| − λ2s(v(s))2.

Consequently, plugging v(s), defined in (21), yields

hλ(v(s), w(s);x, y) =
1

2

(
λ2s

1− λ2s
|x| − λ

1− λ2s

s∑
i=1

|ȳi|

)2

− λ2s

2(1− λ2s)2

(
|x| − λ

s∑
i=1

|ȳi|

)2

+
λ

1− λ2s

s∑
i=1

|ȳi|

(
|x| − λ

s∑
i=1

|ȳi|

)
− 1

2

s∑
i=1

|ȳi|2 +
1

2
‖y‖22

=
λ2s

2(1− λ2s)2
x2(λ2s− 1) +

λ2

2(1− λ2s)2

(
s∑
i=1

|ȳi|

)2

(1− λ2s− 2(1− λ2s))

+ |x|
s∑
i=1

|ȳi|
(
− λ3s

(1− λ2s)2
+

λ3s

(1− λ2s)2
+

λ

1− λ2s

)
− 1

2

s∑
i=1

|ȳi|2 +
1

2
‖y‖22

=
1

2(1− λ2s)

−λ2sx2 −

(
|x| − λ

s∑
i=1

|ȳi|

)2

+ x2

− 1

2

s∑
i=1

|ȳi|2 +
1

2
‖y‖22

= − 1

2(1− λ2s)

(
|x| − λ

s∑
i=1

|ȳi|

)2

+
1

2
‖x‖22 −

1

2

s∑
i=1

|ȳi|2 +
1

2
‖y‖22

= −
(

1 +
λ2

1− λ2s

)
1

2(1− λ2(s− 1))

(
|x| − λ

s−1∑
i=1

|ȳi| − λ|ȳs|

)2

+
1

2
‖x‖22 −

1

2

s−1∑
i=1

|ȳi|2 −
1

2
|ȳs|2 +

1

2
‖y‖22

= hλ(v(s−1), w(s−1);x, y)− 1

2(1− λ2s+ λ2)

(
−2λ|ȳs|

(
|x| − λ

s−1∑
i=1

|ȳi|

)
+ λ2|ȳs|2

)

− λ2

2(1− λ2s)(1− λ2s+ λ2)

(
|x| − λ

s∑
i=1

|ȳi|

)2

− 1

2
|ȳs|2.
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Therefore,

hλ(v(s), w(s);x, y)− hλ(v(s−1), w(s−1);x, y)

= − 1

2(1− λ2s+ λ2)

−2λ|ȳs|

(
|x| − λ

s∑
i=1

|ȳi|

)
− λ2|ȳs|2 +

λ2

1− λ2s

(
|x| − λ

s∑
i=1

|ȳi|

)2

+ (1− λ2s+ λ2)|ȳs|2


= − 1

2(1− λ2s+ λ2)

(1− λ2s)|ȳs|2 − 2λ|ȳs|

(
|x| − λ

s∑
i=1

|ȳi|

)
+

λ2

1− λ2s

(
|x| − λ

s∑
i=1

|ȳi|

)2


= − 1− λ2s

2(1− λ2s+ λ2)

(
|ȳs|2 − 2λ|ȳs|v(s) + λ2(v(s))2

)
= − 1− λ2s

2(1− λ2s+ λ2)

(
|ȳs| − λv(s)

)2

≤ 0,

meaning that
hλ(v(s), w(s);x, y) ≤ hλ(v(s−1), w(s−1);x, y).

�

We can now prove our key result formulated in Corollary 2, that states that (v(s∗), w(s∗)) is an optimal solution of (7) for

s∗ = max
{
s ∈ [s̄] : v(s), w(s) > 0

}
, where s̄ = min(bλ−2c,m).

Proof of Corollary 2. By Lemma 3, (v(s∗), w(s∗)) is a stationary point of (7). Moreover, according to Corollary 1 and
Lemma 4, (v(s∗), w(s∗)) belongs to the set of s̄ stationary points that are candidates to be optimal solutions of (7). Invoking
Lemma 5, we have that

hλ(v(s∗), w(s∗);x, y) < hλ(v(j), w(j);x, y), ∀s∗ > j. (22)

Hence, (v(j), w(j)) is not an optimal solution for any j < s∗.

Let us now consider the complementary case. By Lemma 4, for any i > s̄ the pair (v(i), w(i)) does not satisfy the
second-order optimality conditions, and therefore is not an optimal solution. On the other hand, by the definition of s∗,
for any s̄ > i > s∗ the pair (v(i), w(i)) is not a feasible solution , and subsequently not a stationary point. To conclude,
hλ(v(s∗), w(s∗);x, y) < hλ(v(j), w(j);x, y) holds for any j 6= s∗ such that (v(j), w(j)) is a stationary point, meaning that
(v(s∗), w(s∗)) is an optimal solution of (7).

�

Finally, we will show that the problem of finding s∗ can be easily solved using binary search. To this end, we show that the
feasibility criterion (i.e., v(s) > 0 and w(s) > 0) satisfies that

(v(k), w(k)) is feasible ⇒ (v(i), w(i)) is feasible ∀i < k

Proof of Lemma 6. Suppose that (v(k), w(k)) is feasible for some k ∈ {2, . . . , s̄}. By induction principle, it is sufficient to
show that (v(k−1), w(k−1)) is feasible in order to prove the result.

By (21), we have:

(1− kλ2)v(k) = |x| − λ
k∑
j=1

|yj | = (1− kλ2 + λ2)v(k−1) − |yk|.

which implies

v(k−1) =
1

(1− kλ2 + λ2)
((1− kλ2)v(k) + |yk|) ≥ 0.
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For w(k), it is easy to see from (21) that since the vector y is sorted in decreasing order of magnitude, the vector w(k) is also
sorted in decreasing order, and thus w(k) is feasible if and only if w(k)

k > 0.

(1− kλ2)w
(k)
k = (1− kλ2)|yk| − λ|x|+ λ2

k∑
j=1

|yj |

= −λ|x|+ (1− (k − 1)λ2)|yk−1|+ λ2
k−1∑
j=1

|yj |+ λ2|yk|+ (1− kλ2)|yk| − (1− (k − 1)λ2)|yk−1|

= (1− (k − 1)λ2)w
(k−1)
k−1 + (1− kλ2 + λ2)(|yk| − |yk−1|),

where the last line uses the identity of the first line for k − 1. We thus have:

w
(k−1)
k−1 =

1

(1− (k − 1)λ2)
(1− kλ2)w

(k)
k + |yk−1| − |yk| ≥ 0,

since |yk−1| ≥ |yk| and k ≤ λ−2.

Therefore, there exists a value s∗ such that v(k) > 0 and w(k) > 0 ∀k ≥ s∗ and v(k) ≥ 0 or w(k) ≥ 0 ∀k > s∗. This value
of s∗ can thus efficiently be found using binary search.

�

D. Multi-output proximal map computation
D.1. Solving the prox problem

Returning to the multi-output setting, recall that hV,W (x) = V Tσ(Wx) with V ∈ Rp×n,W ∈ Rn×m and

g(V,W ) =

n∑
i=1

m∑
j=1

p∑
k=1

WijVki.

The proximal mapping can then be written as:

proxλg(V̄ , W̄ ) = argmin
V,W

1

2
‖V − V̄ ‖F +

1

2
‖W − W̄‖F + λ

n∑
i=1

m∑
j=1

p∑
k=1

WijVki

= argmin
V,W

n∑
i=1

1

2

p∑
k=1

(Vki − V̄ki)2 +

p∑
j=1

(Wij − W̄ij)
2 +

m∑
j=1

p∑
k=1

WijVki

 .

Noting that the proximal mapping is separable with respect to the columns of W and the rows of V , and using the same sign
trick applied in the single-output case, it is enough to solve for any i = 1, . . . , n,

min
v,w∈Rp+×Rm+

hλ(v, w;x, y) ≡ 1

2

p∑
k=1

(vk − |xk|)2 +
1

2

m∑
j=1

(wj − |yj |)2 + λ

m∑
j=1

p∑
k=1

vkwj , (23)

where x denotes the i-th row of V and y the i-th column of W , in order to compute the prox operator.

The stationarity conditions for (23) are stated next; the arguments are the same as in the single-output case.

Lemma 15 (Stationarity conditions). Let (v∗, w∗) ∈ Rp+×Rm+ be an optimal solution of (23) for a given (x, y) ∈ Rp×Rm.
Then

w∗j = max

{
0, |yj | − λ

p∑
k=1

v∗k

}
for any j = 1, 2, . . . ,m,

v∗k = max

0, |xk| − λ
m∑
j=1

w∗j

 for any k = 1, 2, . . . , p.
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The next lemma restates the result in Lemma 7 which expands on the monotonic relation in magnitude originally established
for single-output networks in Corollary 1.

Lemma 16. Let (v∗, w∗) ∈ Rp+ × Rm+ be an optimal solution of (19) for a given (x, y) ∈ Rp × Rm.

1. The vector w∗ satisfies that for any j, l ∈ {1, 2, . . . ,m} it holds that w∗j ≥ w∗l only if |yj | ≥ |yl|.

2. The vector v∗ satisfies that for any k, l ∈ {1, 2, . . . , p} it holds that v∗k ≥ v∗l only if |xk| ≥ |xl|.

3. Let x̄, ȳ be the sorted vector of x and y respectively in descending magnitude order. Let sv = |{k : v∗k > 0}| and
sw = |{j : w∗j > 0}|. If v∗, w∗ 6= 0, then

v∗k = |xk|+
1

1− svswλ2

λ2sw

sv∑
l=1

|x̄l| − λ
sw∑
j=1

|ȳj |

 , (24)

w∗j = |yj |+
1

1− svswλ2

(
λ2sv

sw∑
l=1

|ȳl| − λ
sv∑
k=1

|x̄k|

)
. (25)

Proof. The two first points are direct applications of the stationary conditions of Lemma 15.

From the conditions in Lemma 15 we have that

m∑
j=1

w∗j =

sw∑
j=1

|ȳj | − λsw
p∑
k=1

v∗k

p∑
k=1

v∗k =

sv∑
k=1

|x̄k| − λsv
m∑
j=1

w∗j

=

sv∑
k=1

|x̄k| − λsv
sw∑
j=1

|ȳj |+ λ2svsw

p∑
k=1

v∗k

=
1

1− λ2svsw

 sv∑
k=1

|x̄k| − λsv
sw∑
j=1

|ȳj |

 .

Thus,

m∑
j=1

w∗j =

sw∑
j=1

|ȳj | −
λsw

1− λ2svsw

 sv∑
k=1

|x̄k| − λsv
sw∑
j=1

|ȳj |


=

1

1− λ2svsw

−λsw sv∑
k=1

|x̄k|+
sw∑
j=1

|ȳj |

 .

Plugging the latter to the stationarity condition on v∗ (given in Lemma 15) then implies the result. �

Finally, we show, as in the single-output case, that second order stationarity condition constraints the ranges of sparsities of
v∗ and w∗; this relation is given by Lemma 8, and is proved next.

Proof of Lemma 8. Since (v∗, w∗) is an optimal solution of (23) and the objective function in (23) is twice continuously
differentiable, (v∗, w∗) satisfies the second order necessary optimality conditions. That is, for any d ∈ Rp × Rm satisfying
that (v∗, w∗) + d ∈ Rp+ × Rm+ and dT∇hλ(v∗, w∗;x, y) = 0 it holds that

dT∇2hλ(v∗, w∗;x, y)d = dT
(

Ip×p Λp×m
Λm×p Im×m

)
d ≥ 0,
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where the first row/column corresponds to v and the others correspond to w, I denotes the identity matrix and Λ denotes a
matrix completely filled with λ. Similarly as in the single output case, we require that the submatrix of∇2hλ(v∗, w∗;x, y)
containing the rows and columns corresponding to the positive coordinates in (v∗, w∗) is positive semidefinite. Since the
minimal eigenvalue of this submatrix equals 1− λ

√
|Sv||Sw|, we have that

λ−2 ≥ |Sv||Sw|.

�

A possible way of solving this proximal problem is thus to exhaustively compute the value of hλ at each stationary point
associated with sparsities sv = 1, . . . , p, sw = 1, . . . ,m such that svsw ≤ λ−2. However, trying all possible pairs of
sparsities (sv, sw) is computationally costly. Similarly as is the single output case, we can exploit some structure of the
objective function hλ in order to reduce the possible candidate pairs of sparsities.

Without loss of generality, we assume hereafter that the vectors x, y are already sorted in decreasing order of magnitude.

Lemma 16 shows that for each pair (sv, sw), sv = 0, 1, . . . , p, sw = 0, 1, . . . ,m, there exists a stationary point
(v(sv,sw), w(sv,sw)) of hλ(·, ·;x, y) such that |{k : v

(sv,sw)
k > 0}| = sv , |{j : w

(sv,sw)
j > 0}| = sw, given by

v
(sv,sw)
k = |xk|+

1

1− svswλ2

λ2sw

sv∑
l=1

|xl| − λ
sw∑
j=1

|yj |

 for k = 1, 2, . . . , sv, and v(sv,sw)
k = 0 otherwise

w
(sv,sw)
j = |yj |+

1

1− svswλ2

(
λ2sv

sw∑
l=1

|yl| − λ
sv∑
k=1

|xk|

)
for j = 1, 2, . . . , sw, and w(sv,sw)

j = 0 otherwise.

(26)

We now move to prove the monotonicity property stated in Lemma 9.

Proof of Lemma 9. The proof follows exactly the same lines as in the single output case. We recall the definition of the
objective function:

hλ(v, w;x, y) ≡ 1

2

p∑
k=1

(vk − |xk|)2 +
1

2

m∑
j=1

(wj − |yj |)2 + λ

(
p∑
k=1

vk

) m∑
j=1

wj

 .
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Plugging the definitions from equation (26), we have

hλ

(
v(sv,sw), w(sv,sw);x, y

)
=
sv
2

 1

1− λ2svsw

λ2sw

sv∑
k=1

|xk| − λ
sw∑
j=1

|yj |

2

+
1

2

p∑
k=sv+1

x2
k

+
sw
2

 1

1− λ2svsw

λ2sv

sw∑
j=1

|yj | − λ
sv∑
k=1

|xk|

2

+
1

2

m∑
j=sw+1

y2
j

+
λ

(1− λ2svsw)2

 sv∑
k=1

|xk| − λsv
sw∑
j=1

|yj |

−λsw sv∑
k=1

|xk|+
sw∑
j=1

|yj |


=

1

2(1− λ2svsw)2

( sv∑
k=1

|xk|

)2

(λ4svs
2
w + λ2sw − 2λ2sw) +

 sw∑
j=1

|yj |

2

(λ2sv + λ4s2
vsw − 2λ2sv)

(
sv∑
k=1

|xk|

) sw∑
j=1

|yj |

 (−2λ3svsw − 2λ3svsw + 2λ+ 2λ3svsw)

+
1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw+1

y2
j

=
1

2(1− λ2svsw)

−λ2sw

(
sv∑
k=1

|xk|

)2

− λ2sv

 sw∑
j=1

|yj |

2

+ 2λ

(
sv∑
k=1

|xk|

) sw∑
j=1

|yj |


+

1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw+1

y2
j

(27)

=

(
1 +

λ2sv
1− λ2svsw

)
1

2(1− λ2sv(sw − 1))

−λ2(sw − 1)

(
sv∑
k=1

|xk|

)2

− λ2

(
sv∑
k=1

|xk|

)2

−λ2sv


sw−1∑

j=1

|yj |

2

+ 2λ|ysw |
sw−1∑
j=1

|yj |+ y2
sw

+ 2λ

sv∑
k=1

|xk|

sw−1∑
j=1

|yj |+ |ysw |


+

1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw−1+1

y2
j −

1

2
y2
sw .

(28)

By applying equation (27) at sv, sw − 1, we can express the right hand side of equation (28) in terms of
hλ
(
v(sv,sw−1), w(sv,sw−1);x, y

)
as:

hλ

(
v(sv,sw), w(sv,sw);x, y

)
= hλ

(
v(sv,sw−1), w(sv,sw−1);x, y

)
+

1

2(1− λ2sv(sw − 1))

−λ2

(
sv∑
k=1

|xk|

)2

−λ2sv|ysw |

2

sw−1∑
j=1

|yj |+ |ysw |

+ 2λ|ysw |
sv∑
k=1

|xk|

+
λ2sv

2(1− λ2svsw)(1− λ2sv(sw − 1))

−λ2sw

(
sv∑
k=1

|xk|

)2

−λ2sv

 sw∑
j=1

|yj |

2

− 2λ

(
sv∑
k=1

|xk|

) sw∑
j=1

|yj |


− 1

2
y2
sw .
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Therefore:

hλ

(
v(sv,sw), w(sv,sw);x, y

)
− hλ

(
v(sv,sw−1), w(sv,sw−1);x, y

)
= − 1

2(1− λ2sv(sw − 1))

−2λ|ysw |

 sv∑
k=1

|xk| − λsv
sw∑
j=1

|yj |

− λ2sv|ysw |2 + λ2

(
sv∑
k=1

|xk|

)2

+
λ2sv

1− λ2svsw

λ2sw

(
sv∑
k=1

|xk|

)2

+ λ2sv

 sw∑
j=1

|yj |

2

− 2λ

(
sv∑
k=1

|xk|

) sw∑
j=1

|yj |


+ (1− λ2svsw + λ2sv)|ysw |


= − 1

2(1− λ2sv(sw − 1))

(1− λ2svsw)y2
sw − 2λ|ysw |(1− λ2svsw)

sv∑
k=1

v
(sv,sw)
k +

λ2

1− λ2svsw

 sv∑
k=1

|xk| − λsv
sw∑
j=1

|yj |

2


= − 1− λ2svsw
2(1− λ2sv(sw − 1))

(
|ysw | − λ

sv∑
k=1

v
(sv,sw)
k

)2

.

The second result is obtain directly by symmetry between v and w. �

In order to derive an efficient algorithm , we will again exploit the monotone property of the feasibility criterion v(sv,sw) > 0,
w(sv,sw) > 0 restated from Lemma 10:

Lemma 17 (Restatement of Lemma 10). Let (k, l) ∈ [p]× [m] be such that kl ≤ λ−2. Suppose that

v(k,l) ≥ 0 and w(k,l) ≥ 0.

Then for any i = 1, . . . , k and any j = 1, . . . , l, it holds that

v(i,j) ≥ 0 and w(i,j) ≥ 0.

Proof of Lemma 10. Since the first k entries of v(k,l) are ordered in decreasing order, we have that v(k,l) ≥ 0 if and only if
v

(k,l)
k ≥ 0. Similarly, w(k,l) ≥ 0 if and only if w(k,l)

l ≥ 0.

Suppose that v(k,l) ≥ 0 and w(k,l) ≥ 0. By induction, in order to prove the result, it is sufficient to prove that v(k−1,l)
k−1 ≥ 0,

v
(k,l−1)
k ≥ 0, w(k−1,l)

l ≥ 0 and w(k,l−1)
l−1 ≥ 0. We only prove the result for v, as the proof for w is identical.

Using equation (26), we have:

(1− klλ2)v
(k,l)
k = (1− klλ2)|xk|+ λ2l

k∑
i=1

|xi| − λ
l∑

j=1

|yj | (29)

= (1− klλ2)|xk|+ (1− (k − 1)lλ2)|xk−1| − (1− (k − 1)lλ2)|xk−1|+ λ2l

k−1∑
i=1

|xi|+ λ2l|xk|λ
l∑

j=1

|yj |

= (1− (k − 1)lλ2)v
(k−1,l)
k−1 + (1− (k − 1)lλ2)(|xk| − |xk−1|).

Therefore:

v
(k−1,l)
k−1 =

1− (k − 1)lλ2

1− klλ2
v

(k,l)
k + |xk−1| − |xk| ≥ 0,

since the vector x is ordered in decreasing order of magnitude, and thus |xk−1| − |xk| ≥ 0.
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Using again equation (29), we have:

(1− klλ2)v
(k,l)
k = (1− klλ2)|xk|+ (1− k(l − 1)λ2)|xk| − (1− k(l − 1)λ2)|xk|

+ λ2(l − 1)

k∑
i=1

|xi|+ λ2
k∑
i=1

|xi| − λ
l−1∑
j=1

|yj | − λ|yl|

= (1− k(l − 1)λ2)v
(k,l−1)
k − kλ2|xk|+ λ2

k∑
i=1

|xi| − λ|yl|,

where the last equality follows (again) from equation (29) for v(k,l−1)
k . Thus,

(1− k(l − 1)λ2)v
(k,l−1)
k = (1− klλ2)v

(k,l)
k + kλ2|xk| − λ2

k∑
i=1

|xi|+ λ|yl|. (30)

From the definition of v(k,l)
k (equation (26)), we have that v(k,l)

k ≥ 0 is equivalent to the condition:

|xk| ≥
λ
∑l
j=1 |yj | − lλ2

∑k
i=1 |xi|

1− klλ2
.

Plugging this inequality in equation (30), we obtain:

(1− k(l − 1)λ2)v
(k,l−1)
k ≥ (1− klλ2)v

(k,l)
k +

kλ2

1− klλ2

λ l∑
j=1

|yj | − lλ2
k∑
i=1

|xi|

+ λ|yl| − λ2
k∑
i=1

|xi|

= (1− klλ2)v
(k,l)
k +

λ

1− klλ2

kλ2
l∑

j=1

|yj | − klλ3
k∑
i=1

|xi|+ (1− klλ2)|yl| − λ(1− klλ2)

k∑
i=1

|xi|


= (1− klλ2)v

(k,l)
k +

λ

1− klλ2

kλ2
l∑

j=1

|yj |+ (1− klλ2)|yl| − λ
k∑
i=1

|xi|

 . (31)

From the definition of w(k,l)
l (equation (26)), we have that w(k,l)

l ≥ 0 is equivalent to the condition:

(1− klλ2)|yl|+ kλ2
l∑

j=1

|yj | − λ
k∑
i=1

|xi| ≥ 0. (32)

Since the expression of equation (32) is exactly the same as the one inside the parentheses of equation (31), plugging this
relation to (30) thus shows that (1− k(l − 1)λ2)v

(k,l−1)
k ≥ 0, i.e. v(k,l−1)

k ≥ 0. �

We now introduce the efficient procedure to compute the maximal feasibility boundary (MFB), and prove that it indeed
delivers, as promised, all sparsity pairs in the MFB set.

Lemma 18. The set S returned by Algorithm 5 contains all, and only, the sparsity pairs that are on the maximal feasibility
boundary.

Proof. First recall that the MFB is defined as all pairs (sv, sw) ∈ {0, . . . , p} × {0, . . . ,m} satisfying the conditions:

1. v(sv,sw)
sv > 0 and w(sv,sw)

sw > 0 and svsw ≤ λ−2,

2. v(sv+1,sw)
sv+1 ≤ 0 or w(sv+1,sw)

sw ≤ 0 or (sv + 1)sw > λ−2 or sv = p,
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Algorithm 5 Finding sparsity pairs on the maximal feasibility boundary
Input: x ∈ Rp, y ∈ Rm ordered in decreasing magnitude order, λ > 0.

1: sv ← 0, sw ← m
2: S ← ∅
3: maximal← True
4: while sv ≤ p and sw ≥ 0 do
5: Compute v(sv,sw)

sv and w(sv,sw)
sw as shown in equation (26)

6: if v(sv,sw)
sv < 0 or w(sv,sw)

sw < 0 or svsw ≥ λ−2 then
7: if maximal then
8: S ← S ∪ {(sv − 1, sw)}
9: maximal← False

10: end if
11: sw ← sw − 1
12: else
13: sv ← sv + 1
14: maximal← True
15: end if
16: end while
17: if sv == p+ 1 then
18: S ← S ∪ {(sv − 1, sw)}
19: end if
20: return S

3. v(sv,sw+1)
sv ≤ 0 or w(sv,sw+1)

sw+1 ≤ 0 or sv(sw + 1) > λ−2 or sw = m.

Algorithm 5 plays on the properties of feasibility-infeasibility of the sparsity levels to build the MFB. We say that a pair of
the sparsity levels of v and w (sv, sw) is feasible if v(sv,sw)

sv ≥ 0, w(sv,sw)
sw ≥ 0 and svsw < λ−2, and denote this by the

property P (i, j), i.e.
(i, j) is feasible ⇔ P (i, j).

Our claim can be read as: Let (i, j) ∈ {0, . . . , p} × {0, . . . ,m}, then (i, j) is added to S by Algorithm 5 if and only if (i, j)
belongs to the MFB, i.e.,

(i, j) ∈ MFB⇔ (i, j) ∈ S.

Obviously, only feasible sparsity pairs belong to the MFB, and it is quite easy to see that only feasible sparsity pairs will
belong to an output S of Algorithm 5. Indeed, Algorithm 5 monotonically decrements sw starting from sw = m and
increments sv starting from sv = 0. For each value of sw, it increases sv while the current pair (sv, sw) is feasible (lines
12 − 15). Once it reaches an infeasible point (i, sw), and in the case where sv has been increased at least once for this
particular value of sw, it adds to S the pair encountered just before, i.e., (i− 1, sw), and then decrements sw (lines 6− 11).

We first prove the⇒ statement. Suppose that some pair (i, j) belongs to the MFB. Let us first leave aside the corner cases,
and assume that i < p and j < m.

Suppose first that sw reaches j before sv reaches i, i.e., sv < i. Since the pair (i, j) is feasible, and due to the monotonicity
property of the feasibility condition (Lemma 9), all pairs (k, sw) with k ≤ i must be feasible. Therefore, sv will be increased
until reaching i+ 1. By definition of the MFB, the pair (i+ 1, j) must be infeasible. Since sv has necessarily been increased
at least once for this value of sw = j, and so the pair (i+ 1− 1, j) = (i, j) will be added to S before decrementing sw.

In the special case where i = p, no infeasible point will be found. The loop will thus finish with sw = j and sv = p+ 1.
The condition at line 17 will thus hold, and the pair (p, j) will be added to S.

Suppose now that sv reaches i before sw reaches j, i.e., sw > j. Since (i, j) is in the MFB, then the pair (i, j + 1) must be
infeasible. Thanks to the monotonicity property of the feasibility condition (Lemma 9), all pairs (sv, k) with k ≥ i must
also be infeasible. Therefore, sw will be decreased until reaching sw = j. Then, similarly as in the previous case, since
(i, j) is feasible, sv will be increased, and the pair (i, j) added to S.
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We now prove the⇐ statement. We show that if (i, j) is added to S, then it must belong to the MFB, i.e., it satisfies all
three properties recalled in the beginning of the proof.

Let us first show that for each pair (sv, sw) encountered during the algorithm, the pair (sv − 1, sw) is always feasible (or
sv = 0). We can show that this property is conserved each time the algorithm either increases sv or decreases sw. First
note that the pair (0,m) is always feasible. The algorithm will then necessarily first goes to the pair (1,m) and P (1,m) is
true. Then suppose that P (sv, sw) is true for some pair (sv, sw) encountered during the algorithm. Then, if sv is increases,
it means that the pair (sv, sw) is feasible. The next encountered pair is then (sv + 1, sw) and P (sv + 1, sw) is true. On
the other hand, suppose that sw is decreased. The next encountered pair is thus (sv, sw − 1). Since P (sv, sw) is true, it
means that (sv − 1, sw) is feasible. By Lemma 9, it implies that (sv − 1, sw − 1) is also feasible, and thus P (sv, sw − 1) is
true. We thus proved that P (sv, sw) is true for any pair (sv, sw) encountered during the algorithm. Therefore, since any pair
added to S is of the form (sv − 1, sw) for some pair (sv, sw) encountered during the algorithm, then any pair added to S
must be feasible.

The second property of the MFB is straightforward to show. Indeed, if (i− 1, j) is added to S, it means that the pair (i, j) is
infeasible due to condition on line 6.

Finally, the third property follows from the fact that, when reaching sw = j, sv must be increased at least once for adding a
pair of the form (i, j) to S. Let s(j)

v be the value of sv when the algorithm reaches sw = j. We necessarily have s(j)
v ≤ i.

This implies that the pair (s
(j)
v , j+ 1) is infeasible, otherwise sv would have been increased to a greater value at the previous

value sw = j + 1. By Lemma 9, and since s(j)
v ≤ i this implies that the pair (i, j + 1) is also infeasible, hence the result.

�

Time complexity of Algorithm 5 At each iteration of the loop, either sv is incremented by 1 or sw is decremented by
1. Since sv starts from 0 and sw from m, and that the stopping criterion is sv > p or sw < 0, it follows that the maximal
number of iterations inside the loop is m+ p. At each iteration, we must compute v(sv,sw)

sv and w(sv,sw)
sw , which requires in

particular to compute
∑sv
k=1 |xk| and

∑sw
j=1 |yj |. However, these cumulative sums can be efficiently computed before the

loop in time O(m+ p), so that computing v(sv,sw)
sv and w(sv,sw)

sw inside the loop can be done in constant time. The overall
complexity of this algorithm is thus O(m+ p).

Moreover, we can see that each time we add a pair to S, we must both decrement sw by 1 (just after adding the element in
the algorithm), and increment sv by 1 (in order for the boolean maximal to become true again). Therefore, there can be at
most min(m, p) pairs in the final set s at the end of the algorithm.

Merging all previous results, we can finally prove Theorem 4.

Proof of Theorem 4. Thanks to the separability argument, it is sufficient to prove that Algorithm 3 returns a solution of
problem (11).

Lemma 7 states that given the number of nonzero elements sv = |{k : v∗k > 0}|, sw = |{j : w∗j > 0}|, the optimal solution
(v∗, w∗) can be obtained in close form (equations (12), (13)).

Due the monotonicity property of the objective function hλ (Lemma 9), it follows that the sparsity pair (sv, sw) of the
optimal solution must lie on the MFB. Indeed, if it does not lie on the MFB, then it means that the candidate solution
associated with either the sparsity pair (sv + 1, sw) or (sv, sw + 1) must be feasible. According to Lemma 9, this pair would
then yield a lower value of hλ, and would then be a better solution.

Algorithm 3 computes the candidate solution associated with all sparsity pair lying on the MFB, and returns the one
achieving the lowest value of hλ. Therefore, the returned solution must necessarily be the optimal solution. �

E. Experimental details and other plots
We consider the following values for the parameters that determine the training loop:

. batch size: 100

. epochs: 20
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Figure 4. percentage of nonzero weights in the network, as a function of iteration count (path regularization - fmnist dataset).

. learning rate: 1e-1, 1e-2, 1e-3, 1e-4, 5e-1, 5e-2, 5e-3, 5e-4

. dataset: mnist, fmnist, kmnist

. hidden neurons: 200

. lambda (λ): 0., 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 2e-5, 2e-4, 2e-3,
2e-2, 2e-1, 2e0, 2e1, 2e2, 3e-5, 3e-4, 3e-3, 3e-2, 3e-1, 3e0, 3e1, 3e2, 4e-5,
4e-4, 4e-3, 4e-2, 4e-1, 4e0, 4e1, 4e2, 5e-5, 5e-4, 5e-3, 5e-2, 5e-1, 5e0, 5e1,
5e2

The `∞-bounded adversarial examples used to evaluate the robustness of the networks were generated using the PGD method
described in (Madry et al., 2018) and implemented in the advertorch toolbox (https://github.com/BorealisAI/
advertorch) using the following parameters:

. epsilon: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

. iterations: 40

. step size: epsilon / 20

. random initialization: True

E.1. sparsity per iteration

One advantage of the proximal mapping of the 1-path-norm and the `1-norm is that they can set many weights to exactly
zero. This has the effect of providing sparse networks from early iterations. This is in contrast to SGD with a constant
stepsize which does not generate sparse iterates. In Figures 4, 5, 6 and 7 we plot the percentage of nonzero weights as a
function of the iteration count, for both plain SGD and proximal SGD. We observe that in fact this is the case, and that the
sparsity of the `1 and 1-path-norm regularized network can be controlled with the regularization parameter λ.

E.2. Robustness vs accuracy tradeoff

For all possible values of λ, in Figure 8 we plot the data corresponding to the lerning rate with least error. We plot the value
of the error on clean samples and the error on adversarial examples. This allows us to understand the tradeoff between
accuracy and robustness that is controlled by the regularization paramter λ.

https://github.com/BorealisAI/advertorch
https://github.com/BorealisAI/advertorch
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Figure 5. percentage of nonzero weights in the network, as a function of iteration count (path regularization - kmnist dataset).
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Figure 6. percentage of nonzero weights in the network, as a function of iteration count (`1 regularization - fmnist dataset).
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Figure 7. percentage of nonzero weights in the network, as a function of iteration count (`1 regularization - kmnist dataset).
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Figure 8. Robustness vs accuracy tradeoff for the different regularizers studied.


