
Learning with Good Feature Representations in Bandits and in RL with a
Generative Model

Tor Lattimore 1 Csaba Szepesvári 2 3 Gellért Weisz 1

Abstract
The construction by Du et al. (2019) implies that
even if a learner is given linear features in Rd
that approximate the rewards in a bandit with a
uniform error of ε, then searching for an action
that is optimal up to O(ε) requires examining
essentially all actions. We use the Kiefer–
Wolfowitz theorem to prove a positive result that
by checking only a few actions, a learner can
always find an action that is suboptimal with an
error of at most O(ε

√
d). Thus, features are

useful when the approximation error is small
relative to the dimensionality of the features.
The idea is applied to stochastic bandits and
reinforcement learning with a generative model
where the learner has access to d-dimensional
linear features that approximate the action-value
functions for all policies to an accuracy of ε. For
linear bandits, we prove a bound on the regret
of order

√
dn log(k) + εn

√
d log(n) with k the

number of actions and n the horizon. For RL we
show that approximate policy iteration can learn
a policy that is optimal up to an additive error of
order ε

√
d/(1 − γ)2 and using d/(ε2(1 − γ)4)

samples from a generative model.

1. Introduction
Du et al. (2019) ask whether “good feature representation” is
sufficient for efficient reinforcement learning and suggest a
negative answer. Efficiency here means learning a good
policy with a small number of interactions either with
the environment (on-line learning), or with a simulator
(planning). A linear feature representation is called “good”
if it approximates the value functions of all policies with a
small uniform error. The same question can also be asked

1DeepMind, London 2DeepMind, Edmonton 3University
of Alberta. Correspondence to: Tor Lattimore <latti-
more@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

for learning in bandits. The ideas by Du et al. (2019) suggest
that the answer is also negative in finite-armed bandits with
a misspecified linear model. All is not lost, however. By
relaxing the objective, we will show that one can obtain
positive results showing that efficient learning is possible in
interactive settings with good feature representations.

The rest of this article is organised as follows. First we
introduce the problem of learning to identify a near-optimal
action with side information about the possible reward
(Section 2). We then adapt the argument of Du et al. (2019)
to show that no algorithm can find an O(ε)-optimal action
without examining nearly all the actions, even when the
rewards lie within an ε-vicinity of a subspace spanned
by some features available to the algorithm (Section 3).
The negative result is complemented by a positive result
showing that there exists an algorithm such that for any
feature map of dimension d, the algorithm is able to
find an action with suboptimality gap of at most O(ε

√
d)

where ε is the maximum distance between the reward
and the subspace spanned by the features in the max-
norm. The algorithm only needs to investigate the reward
at O(d log log d) well-chosen actions. The main idea is
to use the Kiefer-Wolfowitz theorem with a least-squares
estimator of the reward function. Finally, we apply the idea
to stochastic bandits (Section 5) and reinforcement learning
with a generative model (Section 6).

Related work Despite its importance, the problem of
identifying near-optimal actions when rewards follow
a misspecified linear model has only recently received
attention. Of course, there is the recent paper by Du et al.
(2019), whose negative result inspired this work and is
summarised for our setting in Section 3. A contemporaneous
work also addressing the issues raised by Du et al. (2019)
is by Van Roy and Dong (2019), who make a connection
to the Eluder dimension (Russo and Van Roy, 2013) and
prove a variation on our Proposition 4.2. The setting
studied here in Section 3 is closely related to the query
complexity of exactly maximising a function in a given
function class, which was studied by Amin et al. (2011).
They introduced the haystack dimension as a hardness
measure for exact maximisation. Unfortunately, their results
for infinite classes are generally not tight and no results for

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

misspecified linear models were provided. Another related
area is pure exploration in bandits, which was popularised in
the machine learning community by Even-Dar et al. (2006);
Audibert and Bubeck (2010). The standard problem is to
identify a (near)-optimal action in an unstructured bandit.
Soare et al. (2014) study pure exploration in linear bandits,
but do not address the case where the model is misspecified.
More general structured settings have also been considered
by Degenne et al. (2019) and others. The algorithms in
these works begin by playing every action once, which is
inconsequential in an asymptotic sense. Our focus, however,
is on the finite-time regime where the number of actions
is very large, which makes these algorithms unusable. We
discuss the related work on linear bandits and RL in the
relevant sections later.

Notation Given a matrix A ∈ Rn×m, the set of rows is
denoted by rows(A) and its range is range(A) = {Aθ :
θ ∈ Rm}. When A is positive semi-definite, we define
‖x‖2A = x>Ax. The Minkowski sum of sets U, V ⊂ Rd
is U + V = {u + v : u ∈ U, v ∈ V }. The standard basis
vectors are e1, . . . , ed. There will never be ambiguity about
deducing the dimension.

2. Problem setup
We start with an abstract problem that is reminiscent of pure
exploration in bandits, but without noise. Fix δ > 0 and
consider the problem of identifying a δ-optimal action out of
k actions with the additional information that the unknown
reward vector µ ∈ Rk belongs to a known hypothesis set
H ⊂ Rk. An action j ∈ [k] = {1, . . . , k} is δ-optimal for
µ = (µi)

k
i=1 if µj > maxi µi − δ. The learner sequentially

queries actions i ∈ [k] and observes the reward µi. At some
point the learner should stop and output both an estimated
optimal action â ∈ [k] and an estimation vector µ̂ ∈ Rk.
There is no noise, so the learner has no reason to query
the same action twice. Of course, if the learner queries all
the actions, then it knows both µ and the optimal action.
The learner is permitted to randomise. Two objectives
are considered. The first only measures the quality of the
outputted action â, while the second depends on µ̂.
Definition 2.1. A learner is called sound for (H, δ) if
‖µ̂ − µ‖∞ < δ almost surely for all µ ∈ H. It is called
max-sound for (H, δ) if µâ > maxa µa − δ almost surely
for all µ ∈ H.

Denote by qδ(A , µ) the expected number of queries learner
A executes when interacting with the environment specified
by µ and let

cmax
δ (H) = inf

A :A is (H,δ)-max-sound
sup
µ∈H

qδ(A , µ)

cest
δ (H) = inf

A :A is (H,δ)-sound
sup
µ∈H

qδ(A , µ) ,

which are the minimax query complexities for max-
sound/sound learners respectively when interacting with
reward vectors in H and with error tolerance δ. Both
complexity measures are increasing as the hypothesis class
is larger in the sense that if U ⊂ V , then cmax

δ (U) ≤
cmax
δ (V), and similarly for cest

δ . If a learner is sound for
(H, δ) and â = arg max µ̂, then clearly it is also max-sound
for (H, 2δ), which shows that

cmax
2δ (H) ≤ cest

δ (H) . (1)

Our primary interest is to understand cmax
δ (H). Upper

bounds, however, will be proven using Eq. (1) and by
controlling cest

δ (H). Furthermore, in Section 4 we provide
a simple characterisation of cest

δ (H), while cmax
δ (H) is

apparently more subtle. Later we need the following
intuitive result, which says that the complexity of finding a
near-optimal action when the hypothesis set consists of the
unit vectors is linear in the number of actions. The proof is
given in Section A.

Lemma 2.2. cmax
1 ({e1, . . . , ek}) = (k + 1)/2.

It follows from the aforementioned monotonicity that if
{e1, . . . , ek} ⊆ H, then cmax

1 (H) ≥ (k + 1)/2.

3. Negative result
Let Φ ∈ Rk×d. The rows of Φ should be thought of as
feature vectors assigned to each of the k actions; accordingly
we call Φ a feature matrix. Furthermore, when µ ∈ Rk and
a ∈ rows(Φ), we abuse notation by writing µa for the value
of vector µ at the index of row a in Φ. Our interest lies in
the regime where k is much larger than d and where exp(d)
is large.

We consider hypothesis classes where the true reward lies
within an ε-vicinity of range(Φ) as measured in max-norm.
Let HεΦ = range(Φ) + B∞(ε), where B∞(ε) = [−ε, ε]k
is a k-dimensional hypercube. How large is cmax

δ (HεΦ) for
different regimes of δ and ε and feature matrices? As we
shall see, for δ = Ω(ε

√
d) one can keep the complexity

small, while for smaller δ there exist feature matrices for
which the complexity can be as high as the large dimension,
k.

The latter result follows from the core argument of the recent
paper by Du et al. (2019). The next lemma is the key tool,
and is a consequence of the Johnson–Lindenstrauss lemma.
It shows that there exist matrices Φ ∈ Rk×d with k much
larger than d where rows have unit length and all non-equal
rows are almost orthogonal.

Lemma 3.1. For any ε > 0 and d ∈ [k] such that
d ≥ d8 log(k)/ε2e, there exists a feature matrix Φ ∈ Rk×d
with unique rows such that for all a, b ∈ rows(Φ) with
a 6= b, ‖a‖2 = 1 and |a>b| ≤ ε.

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

Lemmas 2.2 and 3.1 together imply the promised result:

Proposition 3.2. For any ε > 0 and d ∈ [k] with d ≥
d8 log(k)/ε2e, there exists a feature matrix Φ ∈ Rk×d such
that cmax

1 (HεΦ) ≥ (k + 1)/2.

Proof. Let Φ be the matrix from Lemma 3.1 with
rows(Φ) = (ai)

k
i=1. We want to show that ei ∈ HεΦ for

all i ∈ [k] and then apply Lemma 2.2. If θ = ai, then
Φθ = (a>1 ai, . . . , a

>
i ai, . . . , a

>
k ai)

>. By the choice of Φ
the ith component is one and the others are all less than ε in
absolute value. Hence, ‖Φθ − ei‖∞ ≤ ε, which completes
the proof.

The proposition has a worst-case flavour. Not all feature
matrices have a high query complexity. For a silly example,
the query complexity of the zero matrix Φ = 0 satisfies
cmax
1 (HεΦ) = 0 provided ε < 1. That said, the matrix

witnessing the claims in Lemma 3.1 can be found with non-
negligible probability by sampling the rows of Φ uniformly
from the surface of the (d− 1)-dimensional sphere. There
is another way of writing this result, emphasising the role
of the dimension rather than the number of actions.

Corollary 3.3. For all δ > ε, there exists a feature matrix
Φ ∈ Rk×d with suitably large k such that

cmax
δ (HεΦ) ≥ 1

2
exp

(
d− 1

8

(ε
δ

)2
)
.

The proof follows by rescaling the features in Proposi-
tion 3.2 and is given in Appendix B.

4. Positive result
The negative result of the previous section is complemented
with a positive result showing that the query complexity
can be bounded independently of k whenever δ = Ω(ε

√
d).

For the remainder of the article we make the following
assumption:

Assumption 4.1. Φ ∈ Rk×d has unique rows and the span
of rows(Φ) is all of Rd.

We discuss the relationship between this result and
Proposition 3.2 at the end of the section.

Proposition 4.2. Let Φ ∈ Rk×d and δ > 2ε(1 +
√

2d).
Then, cmax

δ (HεΦ) ≤ 4d log log d+ 16.

The proof relies on the Kiefer–Wolfowitz theorem, which
we now recall. Given a probability distribution ρ :
rows(Φ) → [0, 1], let G(ρ) ∈ Rd×d and g(ρ) ∈ R be
given by

G(ρ) =
∑

a∈rows(Φ)

ρ(a)aa> , g(ρ) = max
a∈rows(Φ)

‖a‖2G(ρ)−1 .

Theorem 4.3 (Kiefer and Wolfowitz 1960). The following
are equivalent:

1. ρ∗ is a minimiser of g.
2. ρ∗ is a maximiser of f(ρ) = log detG(ρ).
3. g(ρ∗) = d.

Furthermore, there exists a minimiser ρ∗ of g such that
the support of ρ∗ has cardinality at most | supp(ρ)| ≤
d(d+ 1)/2.

The distribution ρ∗ is called an (optimal) experimental
design and the elements of its support are called its core set.
Intuitively, when covariates are sampled from ρ, then g(ρ) is
proportional to the maximum variance of the corresponding
least-squares estimator over all directions in rows(Φ).
Hence, minimising g corresponds to minimising the worst-
case variance of the resulting least-squares estimator. A
geometric interpretation is that the core set lies on the
boundary of the central ellipsoid of minimum volume that
contains rows(Φ). The next theorem shows that there exists
a near-optimal design with a small core set. The proof
follows immediately from part (ii) of lemma 3.9 in the
book by Todd (2016), which also provides an algorithm
for computing such a distribution in roughly order kd2

computation steps.

Theorem 4.4. There exists a probability distribution ρ such
that g(ρ) ≤ 2d and the core set of ρ has size at most
4d log log(d) + 16.

The proof of Proposition 4.2 is a corollary of the following
more general result about least-squares estimators over near-
optimal designs.

Proposition 4.5. Let µ ∈ HεΦ and η ∈ [−β, β]k. Suppose
that ρ is a probability distribution over rows(Φ) satisfying
the conclusions of Theorem 4.4. Then ‖Φθ̂ − µ‖∞ ≤
ε+ (ε+ β)

√
2d, where

θ̂ = G(ρ)−1
∑

a∈rows(Φ)

ρ(a)(µa + ηa)a .

The problem can be reduced to the case where η = 0 by
noting that µ+η ∈ Hε+βΦ The only disadvantage is that this
leads to an additional additive dependence on β.

Proof. Let µ = Φθ + ∆ where ‖∆‖∞ ≤ ε. The difference
between θ̂ and θ can be written as

θ̂ − θ = G(ρ)−1
∑

a∈rows(Φ)

ρ(a)a
(
a>θ + ∆a + ηa

)
− θ

= G(ρ)−1
∑

a∈rows(Φ)

ρ(a)(∆a + ηa)a .

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

Next, for any b ∈ rows(Φ),

〈b, θ̂ − θ〉 =

〈
b,G(ρ)−1

∑
a∈rows(Φ)

ρ(a)(∆a + ηa)a

〉

=
∑

a∈rows(Φ)

ρ(a)(∆a + ηa)〈b,G(ρ)−1a〉

≤ (ε+ β)
∑

a∈rows(Φ)

ρ(a)|〈b,G(ρ)−1a〉|

≤ (ε+ β)

√ ∑
a∈rows(Φ)

ρ(a)〈b,G(ρ)−1a〉2

= (ε+ β)

√ ∑
a∈rows(Φ)

ρ(a)b>G(ρ)−1aa>G(ρ)−1b

= (ε+ β)
√
‖b‖2G(ρ)−1 ≤ (ε+ β)

√
g(ρ) ≤ (ε+ β)

√
2d ,

where the first inequality follows from Hölder’s inequality
and the fact that ‖∆‖∞ ≤ ε, the second by Jensen’s
inequality and the last two by our choice of ρ and
Theorem 4.4. Therefore

〈b, θ̂〉 ≤ 〈b, θ〉+ (ε+ β)
√

2d ≤ µb + ε+ (ε+ β)
√

2d .

A symmetrical argument completes the proof.

Proof of Proposition 4.2. Let ρ be a probability distribution
over rows(Φ) satisfying the conclusions of Theorem 4.4.
Consider the algorithm that evaluates µ on each point
of the support of ρ and computes the least-squares
estimator defined in Proposition 4.5 and predicts â =
arg maxa∈rows(Φ)〈a, θ̂〉. Let a∗ = arg maxa∈rows(Φ) µa
be the optimal action. Then by Proposition 4.5 with η = 0,

µâ ≥ 〈â, θ̂〉 − ε
(

1 +
√

2d
)
≥ 〈a∗, θ̂〉 − ε

(
1 +
√

2d
)

≥ µa∗ − 2ε
(

1 +
√

2d
)
> µa∗ − δ .

Discussion Corollary 3.3 shows that the query complexity
is exponential in d when δ is not much larger than ε, but is
benign when δ = Ω(ε

√
d). The positive result shows that

in the latter regime the complexity is more or less linear in
d. Precisely,

min {δ : cmax
δ (HεΦ) ≤ 4d log log(d) + 16} = O(ε

√
d) .

The message is that there is a sharp tradeoff between query
complexity and error. The learner pays dearly in terms of
query complexity if they demand an estimation error that is
close to the approximation error. By sacrificing a factor of√
d in estimation error, the query complexity is practically

just linear in d.

Comparison to supervised learning As noted by Du
et al. (2019), the negative result does not hold in
supervised learning, where the learner is judged on its
average prediction error with respect to the data generating
distribution. Suppose that a, a1, . . . , an are sampled i.i.d.
from some distribution P on rows(Φ) and the learner
observes (at)

n
t=1 and (µat)

n
t=1.

θ̂ =

(
n∑
t=1

ata
>
t

)−1 n∑
t=1

atµat .

Then, by making reasonable boundedness and span
assumptions on rows(Φ), and by combining the results
in chapters 13 and 14 of (Wainwright, 2019), with high
probability,

E
[
(a>θ̂ − µa)2

∣∣∣ θ̂] = O

(
d

n
+ ε2

)
.

Notice, there is no d multiplying the dependence on the
approximation error. The fundamental difference is that a is
sampled from P . The quantity maxa∈rows(Φ)(a

>θ̂ − µa)2

behaves quite differently, as the lower bound shows.

Feature-dependent bounds The negative result in Sec-
tion 3 shows that there exist feature matrices for which the
learner must query exponentially many actions or suffer
an estimation error that expands the approximation error
by a factor of

√
d. On the other hand, Proposition 4.2

shows that for any feature matrix, there exists a learner that
queries O(d log log(d)) actions for an estimation error of
ε
√
d, roughly matching the lower bound. One might wonder

whether or not there exists a feature-dependent measure that
characterises the blowup in estimation error in terms of the
feature matrix and query budget. One such measure is given
here. Given a set C ⊆ [k] with |C| = q, let ΦC ∈ Rq×d
be the matrix obtained from Φ by restricting to those rows
indexed by C. Define

λq(Φ) = min
C⊂[k],|C|=q

max
v∈Rd\{0}

‖Φv‖∞
‖ΦCv‖∞

.

Proposition 4.6. Let 1 ≤ q < k and δ1 = ε(1 + λq(Φ))
and δ2 > ε(1 + 2λq(Φ)). Then,

cest
δ1 (HεΦ) > q ≥ cest

δ2 (HεΦ) .

The proof is supplied in Appendix C. By (1), it also
holds that cmax

2δ2
(HεΦ) ≤ q. Currently we do not have a

corresponding lower bound, however.

5. Misspecified linear bandits
Here we consider the classic stochastic bandit where the
mean rewards are nearly a linear function of their associated

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

features. We assume for simplicity that no two actions have
the same features. In case this does not hold, a representative
action can be chosen for each feature without changing the
main theorem. Let Φ ∈ Rk×d and µ ∈ HεΦ. In rounds
t ∈ [n], the learner chooses actions (Xt)

n
t=1 with Xt ∈

rows(Φ) and the reward is Yt = µXt
+ ηt where (ηt)

n
t=1 is

a sequence of independent 1-subgaussian random variables.
The optimal action has expected reward µ∗ = maxa∈A µa
and the expected regret is Rn = E[

∑n
t=1 µ

∗ − µXt]. The
idea is to use essentially the same elimination algorithm
as (Lattimore and Szepesvári, 2019, chapter 22), which is
summarised in Algorithm 1. In each episode, the algorithm
computes a near-optimal design over a subset of the actions
that are plausibly optimal. It then chooses each action in
proportion to the optimal design and eliminates arms that
appear sufficiently suboptimal.

Proposition 5.1. When α = 1/(kn) and C is a suitably
large universal constant and maxa µa − mina µa ≤ 1,
Algorithm 1 satisfies

Rn ≤ C
[√

dn log(nk) + εn
√
d log(n)

]
.

In Appendix F, we show that the bound in Proposition 5.1
is tight up to logarithmic factors in the interesting regime
where k is comparable to n.

Proof. Let µ = Φθ + ∆ with ‖∆‖∞ ≤ ε, which exists
by the assumption that µ ∈ HεΦ. We only analyse the
behaviour of the algorithm within an episode, showing that
the least-squares estimator is guaranteed to have sufficient
accuracy so that (a) arms that are sufficiently suboptimal are
eliminated and (b) some near-optimal arms are retained. Fix
any b ∈ A. Using the notation in Algorithm 1,

〈b, θ̂ − θ〉 =

∣∣∣∣∣b>G−1
u∑
s=1

∆Xs
Xs + b>G−1

u∑
s=1

Xsηs

∣∣∣∣∣
≤

∣∣∣∣∣b>G−1
∑
a∈A

u(a)a∆a

∣∣∣∣∣+

∣∣∣∣∣b>G−1
u∑
s=1

Xsηs

∣∣∣∣∣ . (2)

The first term is bounded using Jensen’s inequality as before:∣∣∣∣∣b>G−1
∑
a∈A

u(a)∆aa

∣∣∣∣∣ ≤ ε∑
a∈A

u(a)
∣∣b>G−1a

∣∣
≤ ε

√√√√(∑
a∈A

u(a)

)
b>
∑
a∈A

u(a)G−1aa>G−1b

= ε

√∑
a∈A

u(a)‖b‖2G−1 ≤ ε
√

2du

m
≤ 2ε

√
d ,

where the first inequality follows form Hölder’s inequality,
the second is Jensen’s inequality and the last follows from

the exploration distribution that guarantees ‖b‖2G−1 ≤
2d/m. The second term in Eq. (2) is bounded using standard
concentration bounds. Preciesly, by eq. (20.2) of (Lattimore
and Szepesvári, 2019), with probability at least 1− 2α,∣∣∣∣∣b>G−1

u∑
s=1

Xsηs

∣∣∣∣∣ ≤ ‖b‖G−1

√
2 log

(
1

α

)

≤

√
4d

m
log

(
1

α

)
and |〈b, θ̂ − θ〉| ≤ 2ε

√
d+

√
4d
m log

(
1
α

)
. Continuing with

standard calculations, provided in Appendix D, one gets
that the expected regret satisfies

Rn ≤ C
[√

dn log(nk) + εn
√
d log(n)

]
where C > 0 is a suitably large universal constant. The
logarithmic factor in the second term is due to the fact that
in each of the logarithmically many episodes the algorithm
may eliminate the best remaining arm, but keep an arm that
is at most O(ε

√
d) worse than the best remaining arm.

Algorithm 1 PHASED ELIMINATION

INPUT Φ ∈ Rk×d and confidence level α ∈ (0, 1)
(1) Set m = d4d log log de+ 16 and A = rows(Φ)
(2) Find design ρ : A → [0, 1] with g(ρ) ≤ 2d and
| supp(ρ)| ≤ 4d log log(d) + 16

(3) Compute u(a) = dmρ(a)e and u =
∑
a∈A

u(a)

(4) Take each action a ∈ A exactly u(a) times with
corresponding features (Xs)

u
s=1 and rewards (Ys)

u
s=1

(5) Calculate the vector θ̂:

θ̂ = G−1
u∑
s=1

XsYs with G =
∑
a∈A

u(a)aa>

(6) Update active set:

A ←

{
a ∈ A : max

b∈A
〈θ̂, b− a〉 ≤ 2

√
4d

m
log

(
1

α

)}
.

(7) m← 2m and GOTO (1)

Remark 5.2. When the active set contains fewer than d
actions, then the conditions of Kiefer-Wolfowitz are not
satisfied because A cannot span Rd. Rest assured, however,
since in these cases one can simply work in the smaller
space spanned by A and the analysis goes through without
further changes.

Known approximation error The logarithmic factor in
the second term in the regret bound can be removed when ε
is known by modifying the elimination criteria so that with
high probability the optimal action is never eliminated, as
explained in Remark D.1.

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

Infinite action sets The logarithmic dependence on k
follows from the choice of α, which is needed to guarantee
the concentration holds for all actions. When k =
Ω(exp(d)), the union bound can be improved by a covering
argument or using the argument in the next section. This
leads to a bound of O(d

√
n log(n) + εn

√
d log(n)), which

is independent of the number of arms.

Other approaches We are not the first to consider
misspecified linear bandits. Ghosh et al. (2017) consider
the same setting and show that in the favourable case when
one can cheaply test linearity, there exist algorithms for
which the regret has order min(d,

√
k)
√
n up to logarithmic

factors. While such results a certainly welcome, our focus
is on the case where k has the same order of magnitude as
n and hence the dependence of the regret on ε is paramount.
Another way to obtain a similar result to ours is to use
the Eluder dimension (Russo and Van Roy, 2013), which
should first be generalised a little to accommodate the need
to use an accuracy threshhold that does not decrease with
the horizon. Then the Eluder dimension can be controlled
using either our techniques or the alternative argument by
Van Roy and Dong (2019).

Contextual linear bandits Algorithms based on phased
elimination are not easily adapted to the contextual case,
which is usually addressed using optimistic methods. You
might wonder whether or not LinUCB (Abbasi-Yadkori
et al., 2011) serendipitously adapts to misspecified models
in the contextual case. Gopalan et al. (2016) have shown
that LinUCB is robust in the non-contextual case when ε is
very small. Their conditions, however, depend the structure
of the problem, and in particular on having good control
of the 2-norm of ∆, which may scale like Ω(ε

√
k) and is

too big for large action sets. We provide a negative result
in the supplementary material, as well as a modification
that corrects the algorithm, but requires knowledge of the
approximation error. The modification is a data-dependent
refinement of the bonus used by Jin et al. (2019). An open
question is to find an algorithm for contextual linear bandits
for which the regret similar to Proposition 5.1 and where the
algorithm does not need to know the approximation error.

6. Reinforcement learning
We now consider discounted reinforcement learning with
a generative model, which means the learner can sample
next-states and rewards for any state-action pair of their
choice. The notation is largely borrowed from (Szepesvári,
2010). Fix an MDP with state space [S], action space [A],
transition kernel P , reward function r : [S]× [A]→ [0, 1]
and discount factor γ ∈ (0, 1). The finiteness of the state
space is assumed only for simplicity. As usual, V π and Qπ

refer to the value and action-value functions for policy π

(e.g., V π(s) is the total expected discounted reward incurred
while following policy π in the MDP) and V ∗ and Q∗ the
same for the optimal policy. The learner is given a feature
matrix Φ ∈ RSA×d such that Qπ ∈ HεΦ for all policies
π and where Qπ is vectorised in the obvious way. The
notation Φ(s, a) ∈ Rd denotes the feature associated with
state-action pair (s, a).

The main idea is the observation that ifQ∗ were known with
reasonable accuracy on the support of an approximately
optimal design ρ on the set of vectors (Φ(s, a) : s, a ∈
[S] × [A]), then least-squares in combination with our
earlier arguments would provide a good estimation of the
optimal state-action value function. Approximating Q∗ on
the core set C = supp(ρ) ⊂ [S] × [A] is possible using
approximate policy iteration. For the remainder of this
section let ρ be a design with g(ρ) ≤ 2d and with support C
and G(ρ) =

∑
(s,a)∈C ρ(s, a)Φ(s, a)Φ(s, a)>.

Related work The idea to extrapolate a value function
by sampling from a few anchor state/action pairs has been
used before in a few works. The recent work by Zanette
et al. (2019) consider approximate value iteration in the
episodic setting and do not make a connection to optimal
design. The challenge in the finite-horizon setting is that
one must learn one parameter vector for each layer and,
at least naively, errors propagate multiplicatively. For
this reason using the anchor pairs from the support of an
experimental design would not make the algorithm proposed
by the aforementioned paper practical. Yang and Wang
(2019) assume the transition matrix has a linear structure
and also use least-squares with data from a pre-selected
collection of anchor state/action pairs. Their assumption
is that the features of all state-action pairs can be written
as a convex combination of the anchoring features, which
means the number of anchors is the number of corners
of the polytope spanned by rows(Φ) and may be much
larger than d. One special feature of their paper is that
the dependency on the horizon of the sample complexity is
cubic in 1/(1−γ), while in our theorem it is quartic. Earlier,
Lakshminarayanan et al. (2018) described how anchor states
(with some lag allowed) can be used to reduce the number of
constraints in the approximate linear programming approach
to approximate planning in MDPs, while maintaining error
bounds.

Approximate policy iteration Let π1 be an arbitrary
policy and define a sequence of policies (πk)∞k=1 inductively
using the following procedure. From each state-action pair
(s, a) ∈ C take m roll-outs of length n following policy πk
and let Q̂k(s, a) be the empirical average, which is only
defined on the core set C. The estimation of Qπk is then
extended to all state-action pairs using the features and least-

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

squares

θ̂k = G(ρ)−1
∑

(s,a)∈C

ρ(s, a)Φ(s, a)Q̂k(s, a) Qk = Φθ̂k .

Then πk+1 is chosen to be the greedy policy with respect
to Qk and the process is repeated. The following theorem
shows that for suitable choices of roll-out length n, roll-
out number m and iterations k, the policy πk+1 is nearly
optimal with high probability. Significantly, the choice of
parameters ensures that the total number of samples from
the generative model is independent of S and A.

Theorem 6.1. Suppose that approximate policy iteration is
run with

k =
log
(

1
ε
√
d

)
1− γ

m =
log
(

2k|C|
α

)
2ε2(1− γ)2

n =
log
(

1
ε(1−γ)

)
1− γ

.

Then there exists a universal constant C such that with
probability at least 1− α, the policy πk+1 satisfies

max
s∈[S]

(V ∗(s)− V πk+1(s)) ≤ Cε
√
d/(1− γ)2 ,

When ρ is chosen using Theorem 4.4 so that |C| ≤
4d log log(d) + 16, then the number of samples from the
generative model is kmn|C|, which is

O

 log
(

1
ε(1−γ)

)
log
(

2k|C|
α

)
log
(

1
ε
√
d

)
d log log(d)

ε2(1− γ)4

 .

Before the proof we need two lemmas. The first
controls the propagation of errors in policy iteration
when using Qk rather than Qπk . For policy π, let
Pπ : R[S]×[A] → R[S]×[A] defined by (PπQ)(s, a) =∑
s′ P (s′|s, a)Q(s′, π(s′)).

Lemma 6.2. Let δi = Qi − Qπi and Ei = Pπi+1(I −
γPπi+1)−1(I − γPπi) − Pπ

∗
. Then, Q∗ − Qπk ≤

(γPπ
∗
)k(Q∗ −Qπ0) + γ

∑k−1
i=0 (γPπ

∗
)k−i−1Eiδi.

Proof. This is stated as Eq. (7) in the proof of part (b)
of Theorem 3 of (Farahmand et al., 2010) and ultimately
follows from Lemma 4 of Munos (2003).

The second lemma controls the value of the greedy policy
with respect to a Q function in terms of the quality of the Q
function.

Lemma 6.3 (Singh and Yee (1994), corollary 2). Let π be
greedy with respect to an action-value function Q. Then for
any state s ∈ [S], V π(s) ≥ V ∗(s)− 2

1−γ ‖Q−Q
∗‖∞.

Proof of Theorem 6.1. Hoeffding’s bound and the defini-
tion of the roll-out length shows that for any (s, a) ∈ C,

with probability at least 1− α,

∣∣∣Q̂i(s, a)−Qπi(s, a)
∣∣∣ ≤ 1

1− γ

√
1

2m
log

(
2

α

)
+ ε = 2ε .

At the end we analyse the failure probability of the
algorithm, but for now assume the above inequality holds for
all i ≤ k and (s, a) ∈ C. Let θi = arg minθ ‖Qπi −Φθ‖∞.
Then, by Proposition 4.5 with β = 2ε,

‖Qi −Qπi‖∞ = ‖Φθ̂i −Qπi‖∞ ≤ 3ε
√

2d+ ε
.
= δ .

Since the rewards belong to the unit interval, taking the
maximum norm of both sides in Lemma 6.2 shows that
‖Q∗ −Qπk‖∞ ≤ 2δ/(1− γ) + γk/(1− γ). Then, by the
triangle inequality,

‖Qk −Q∗‖∞ ≤ ‖Qk −Qπk‖∞ + ‖Q∗ −Qπk‖∞

≤ 3δ

1− γ
+

γk

1− γ
.

Next, by Lemma 6.3, for any state s ∈ [S],

V πk+1(s) ≥ V ∗(s)− 2

1− γ
‖Qk −Q∗‖∞

≥ V ∗(s)− 2

(1− γ)2

(
3δ + γk

)
.

All that remains is bounding the failure probability, which
follows immediately from a union bound over all iterations
i ≤ k and state-action pairs (s, a) ∈ C.

7. Conclusions
Are good representations sufficient for efficient learning
in bandits or in RL with a generative model? The
answer depends on whether one accepts a blowup of the
approximation error by a factor of

√
d, and is positive if and

only if this blowup is acceptable. The implication is that
the role of bias/prior information is more pronounced than
in supervised learning where the blowup does not appear.
One may wonder whether the usual changes to the learning
problem, such as considering sparse approximations, could
reduce the blowup. Since sparsity is of little help even
in the realisable setting (Lattimore and Szepesvári, 2019,
chapter 23), we are only modestly optimistic in this regard.
Note also that in reinforcement learning, the blowup is
even harsher: in the discounted case we see that a factor of
1/(1−γ)2 also appears, which we believe is not improvable.

The analysis in both the bandit and reinforcement learning
settings can be decoupled into two components. The first
is to control the query complexity of identifying a near-
optimal action and the second is estimating the value of
an action/policy using roll-outs. This view may be prove

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

fruitful when analysing (more) non-linear classes of reward
function.

There are many open questions. First, in order to compute an
approximate optimal design, the algorithm needs to examine
all features. Second, the argument in Section 6 heavily relies
on the uniform contraction property of the various operators
involved. It remains to be seen whether similar arguments
hold for other settings, such as the finite horizon setting or
the average cost setting. Another interesting open question
is whether a similar result holds for the online setting when
the learner needs to control its regret.

Acknowledgements
Csaba Szepesvári gratefully acknowledges funding from the
Canada CIFAR AI Chairs Program, Amii and NSERC.

8. Bibliography
Y. Abbasi-Yadkori, D. Pál, and Cs. Szepesvári. Improved

algorithms for linear stochastic bandits. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 24, NIPS, pages 2312–2320. Curran
Associates, Inc., 2011.

K. Amin, M. Kearns, and U. Syed. Bandits, query learning,
and the haystack dimension. In Proceedings of the 24th
Annual Conference on Learning Theory, pages 87–106,
2011.

J.-Y. Audibert and S. Bubeck. Best arm identification in
multi-armed bandits. In Proceedings of Conference on
Learning Theory (COLT), 2010.

R. Degenne, W. M. Koolen, and P. Ménard. Non-asymptotic
pure exploration by solving games. In Advances in Neural
Information Processing Systems, pages 14465–14474,
2019.

S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang. Is
a good representation sufficient for sample efficient
reinforcement learning?, 2019.

E. Even-Dar, S. Mannor, and Y. Mansour. Action
elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of
Machine Learning Research, 7(Jun):1079–1105, 2006.

A-m. Farahmand, R. Munos, and Cs. Szepesvári. Error
propagation for approximate policy and value iteration
(extended version). In NIPS, 2010.

V. V. Fedorov. Theory of optimal experiments. Academic
Press, New York, 1972.

A. Ghosh, S. R. Chowdhury, and A. Gopalan. Misspecified
linear bandits. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

Aditya Gopalan, Odalric-Ambrym Maillard, and Moham-
madi Zaki. Low-rank bandits with latent mixtures. arXiv
preprint arXiv:1609.01508, 2016.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably
efficient reinforcement learning with linear function
approximation. arXiv preprint arXiv:1907.05388, 2019.

J. Kiefer and J. Wolfowitz. The equivalence of two
extremum problems. Canadian Journal of Mathematics,
12(5):363–365, 1960.

C. Lakshminarayanan, S. Bhatnagar, and Cs. Szepesvári. A
linearly relaxed approximate linear program for Markov
decision processes. IEEE Transactions on Automatic
Control, 63(4):1185–1191, 2018.

T. Lattimore and Cs. Szepesvári. Bandit Algorithms.
Cambridge University Press, 2019. draft.

R. Munos. Error bounds for approximate policy iteration.
19th International Conference on Machine Learning,
pages 560–567, 2003.

D. Russo and B. Van Roy. Eluder dimension and the
sample complexity of optimistic exploration. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 26, NIPS, pages 2256–2264. Curran
Associates, Inc., 2013.

S. P. Singh and R. C. Yee. An upper bound on the loss from
approximate optimal-value functions. Machine Learning,
16(3):227–233, 1994.

M. Soare, A. Lazaric, and R. Munos. Best-arm identification
in linear bandits. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27,
NIPS, pages 828–836. Curran Associates, Inc., 2014.

Cs. Szepesvári. Algorithms for Reinforcement Learning.
Morgan & Claypool, 2010.

M. J. Todd. Minimum-volume ellipsoids: Theory and
algorithms, volume 23. SIAM, 2016.

Ben Van Roy and Shi Dong. Comments on the Du-Kakade-
Wang-Yang lower bounds, 2019.

M. J. Wainwright. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

L. Yang and M. Wang. Sample-optimal parametric Q-
learning using linearly additive features. In International
Conference on Machine Learning, pages 6995–7004,
2019.

A. Zanette, A. Lazaric, M. J. Kochenderfer, and E. Brunskill.
Limiting extrapolation in linear approximate value
iteration. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages
5616–5625. Curran Associates, Inc., 2019.

A. Proof of Lemma 2.2
Recall that Lemma 2.2 states that

cmax
1 ({e1, . . . , ek}) = (k + 1)/2 .

For the upper bound consider, an algorithm that queries each
coordinate in a random order, stopping as soon as it receives
a nonzero reward, at which point the algorithm can return
µ̂ = µ and â = arg maxµ. Clearly, this algorithm is sound.
Let S ∈ Perm([k]) be a (uniform) random permutation of
[k], which represents the order of the algorithms queries.
Let Ti = min{t ≥ 1 : St = i} be the number of queries
if r = ei. Note that (Ti)i is a random permutation of [k].
Note also that by symmetry E[T1] = · · · = E[Ti]. Hence,
maxi E[Ti] = 1

kE[
∑
i Ti] = (k + 1)/2.

The proof of the lower bound is based on a similar
calculation. First, note that by Yao’s principle it suffices
to show that there exist a distribution P over the problem
instances such that any deterministic algorithm needs to ask
at least (k + 1)/2 queries on expectation when the instance
that the algorithm runs on is chosen randomly from the
distribution. Let P be the uniform distribution. Note that
any deterministic algorithm A can be identified with a fixed
sequence s1, s2, · · · ∈ [k] of queries. Call A dominated if
some other algorithm A′ achieves better query complexity
on any input instance while the query complexity of A′
is never worse than that of A on any other instance.
Clearly, it suffices to consider nondominated algorithms.
Hence, s1, s2, . . . , sk cannot have repeated elements, i.e.,
(s1, s2, . . . , sk) is a permutation of [k]. Further, A must
stop as soon as it receives a nonzero answer or it would be
dominated. This implies that the number of queries issued
byAwhen run on ei is t(i) = min{t ≥ 1 : st = i}. (Since
A is sound and δ ≤ 1, A cannot stop before time t(i) when
running on ei and if stopped later, it would be dominated
by the algorithm that stops at time t(i)). Since (si)i is a
permutation of [k], so is (t(i))i∈[k]. Then, the expected
number of queries issued by A is E[t(I)] = 1

k

∑
i t(i) =

1
k

∑
i i = (k + 1)/2.

B. Proof of Corollary 3.3
By the proof of Lemma 2.2, it should be clear that if
δe1, . . . , δek ∈ H, then cmax

δ (H) ≥ (k + 1)/2. Let

k =

⌊
exp

(
d− 1

8

(ε
δ

)2
)⌋

.

Then, by Lemma 3.1, there exists a feature matrix Φ′ ∈
Rk×d such that for all a 6= b ∈ rows(Φ′), ‖a‖ = 1
and 〈a, b〉 ≤ ε/δ. Let rows(Φ′) = {a1, . . . , ak}. Then,
‖δei − Φ′(δai)‖ ≤ ε and hence δei ∈ HεΦ for all i ∈ [k].
Thus, cmax

δ (HεΦ) ≥ (k + 1)/2. The result follows from the
definition of k.

C. Proof of Proposition 4.6

Algorithm 2 Optimal estimation algorithm
INPUT: Φ ∈ Rk×d and q ∈ [k] and ε ≥ 0
(1) Find C ⊂ [k] with |C| = q minimising

max
{
‖Φu‖∞ : u ∈ Rd, ‖ΦCu‖∞ ≤ 1

}
(2) Probe µ on C
(3) Find θ̂ ∈ Rd such that ‖ΦC θ̂ − µC‖∞ ≤ ε
(4) Return µ̂ = Φθ̂

Upper bound The upper bound is realised by Algo-
rithm 2. Since µ ∈ HεΦ, there exists a θ ∈ Rd and
∆ ∈ B∞(ε) such that µ = Φθ + ∆. By the definition
of the algorithm, ‖µ̂C − µC‖∞ ≤ ε, which implies that

‖ΦC(θ − θ̂)‖∞ = ‖µC −∆C − µ̂C‖∞
≤ ε+ ‖µC − µ̂C‖∞
≤ 2ε .

Next, using the definition of λq ,

‖µ− µ̂‖∞ = ‖Φ(θ − θ̂) + ∆‖∞
≤ ‖Φ(θ − θ̂)‖∞ + ε

≤ ‖ΦC(θ − θ̂)‖∞ max
v∈Rd\{0}

‖Φv‖∞
‖ΦCv‖∞

+ ε

≤ 2ελq(Φ) + ε

< δ2 .

Lower bound Suppose an algorithm is sound with respect
to (HεΦ, δ1). It suffices to show that there exists a µ ∈
HεΦ such that whenever the algorithm halts with non-zero
probability, it has made more than q queries. Let µ = 0 and
suppose the algorithm halts having queried µ on C ⊂ [k]
with non-zero probability and |C| ≤ q. LetR = {µ ∈ HεΦ :
µC = 0} be the set of plausible rewards consistent with the

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

observation. By the assumption that the algorithm is sound
with respect to (HεΦ, δ1), it must be that

2 max
ν∈R
‖ν‖∞ ≤ max

ν,ξ∈R
‖ν − ξ‖∞ ≤ 2δ1 ,

where the first inequality is true since for all ν ∈ R we have
−ν ∈ R. Then,

max
ν∈R
‖ν‖∞

= max
{
‖Φθ + ∆‖∞ :‖ΦCθ‖∞ ≤ ε, θ ∈ Rd,∆ ∈ B∞(ε)

}
= ε+ max

{
‖Φθ‖∞ :‖ΦCθ‖∞ ≤ ε, θ ∈ Rd

}
≥ ε+ ελq(Φ)

≥ δ1 ,

which contradicts soundness and hence |C| > q.

D. Details for proof of Proposition 5.1
The proof is completed in two steps. First we summarise
what has already been established about the within-episode
behaviour of the algorithm. Then, in the second step, the
regret is summed over the episodes.

In-episode behaviour Let F be the σ-algebra generated
by the history up to the start of a given episode and µ̂ be
the least-squares estimate of µ computed by the algorithm
in that episode. Similarly, let m, u and A be the quantities
defined in the given episode of the algorithm. Let a∗ =
arg maxa∈A µa and â = arg maxa∈A µ̂a. Now, for b ∈ A,
let Eb be the event

Eb =

{∣∣∣〈b, θ̂ − θ〉∣∣∣ ≤ 2ε
√
d+

√
4d

m
log

(
1

α

)}
.

We have shown that P(Eb | F) ≥ 1− α, which by a union
bound implies that

P(∪b∈AEb | F) ≥ 1− kα .

By the definition of the algorithm, an action a ∈ A is not
eliminated at the end of the episode if

〈θ̂, â− a〉 ≤ 2

√
4d

m
log

(
1

δ

)
,

which implies that

2

√
4d

m
log

(
1

δ

)
≥ 〈θ̂, â− a〉

≥ 〈θ, a∗ − a〉 − 2

√
4d

m
log

(
1

α

)
− 4ε
√
d .

Hence, if a ∈ A is not eliminated, then

µa ≥ 〈a, θ〉 − ε

≥ 〈a∗, θ〉 − ε− 4

√
4d

m
log

(
1

α

)
− 4ε
√
d

≥ µa∗ − ε− 4

√
4d

m
log

(
1

α

)
− 4ε
√
d .

Because the condition for eliminating arms does not depend
on ε, it is not possible to prove that a∗ is not eliminated with
high probability. What we can show is that at least one near-
optimal action is retained. Suppose that a∗ is eliminated,
then, using the definition of the algorithm,

2

√
4d

m
log

(
1

α

)
< 〈θ̂, â− a∗〉

≤ 〈θ, â− a∗〉+ 2

√
4d

m
log

(
1

α

)
+ 4ε
√
d .

Rearranging shows that

µâ ≥ 〈θ, â〉 − ε

> 〈θ, a∗〉 − ε− 4ε
√
d

≥ µa∗ − 2ε(1 + 2
√
d) . (3)

Of course, â is not eliminated, which means that either a∗ is
retained, or an action with nearly the same reward is. What
we have shown is that arms are eliminated if they are much
worse than a∗ and that some arm with mean close to a∗ is
retained. We now combine these results.

Combining the episodes LetL be the number of episodes
and δ` be the suboptimality of the best arm in the active set at
the start of episode `. By the previous part, with probability
at least 1 − kαL, the good events occur in all episodes.
Suppose for a moment that this happens. Then, by Eq. (3),

δ` ≤ 2ε(`− 1)(1 + 2
√
d) .

Then, letting m` = 2`−1 d4d log log(d) + 16e, the regret is
bounded by

Rn =

L∑
`=2

∑
a∈A`

u`(a)(µ∗ − µa)

≤ m1 +

L∑
`=2

m`

[
δ` + 2

√
4d

m`−1
log

(
1

α

)
+ 4ε
√
d

]

≤ C

[√
dmL log

(
1

α

)
+ εmL log(mL)

√
d

]

≤ C

[√
dn log

(
1

α

)
+ εn

√
d log(n)

]
.

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

The result follows because the regret due to failing
confidence intervals is at most αknL ≤ L ≤ log2(n),
which is negligible relative to the above term.
Remark D.1. When ε is known, the elimination condition
can be changed to

A ←

{
a ∈ A : max

b∈A

〈θ̂, b− a〉
4

≤

√
d

m
log

(
1

δ

)
+ ε
√
d

}
.

Repeating the analysis now shows that the optimal
action is never eliminated with high probability, which
eliminates the logarithmic dependence in the second term
of Proposition 5.1.

E. Linear contextual bandits
In the contextual version of the misspecified linear bandit
problem, the feature matrix changes from round to round.
Let (kt)

n
t=1 be a sequence of natural numbers. At the

start of round t the learner observes a matrix Φt ∈ Rkt×d,
chooses an action Xt ∈ rows(Φt) and receives a reward
Yt = 〈Xt, θ〉 + ηt + ∆(Xt) where ∆ : Rd → R satisfies
‖∆‖∞ ≤ ε. Elimination algorithms are not suitable for
such problems. Here we show that if ε is known, then
a simple modification of LinUCB (Abbasi-Yadkori et al.,
2011) can be effective. You might wonder whether or not
this algorithm works well without modification. The answer
is sadly negative.

Let Gt = I+
∑t
s=1XsX

>
s and define the regularised least-

squares estimator based on data from the first t rounds by

θ̂t = G−1
t

t∑
s=1

XsYs .

Assume for all a ∈ ∪nt=1 rows(Φt) that ‖a‖2 ≤ 1 and
|〈a, θ〉| ≤ 1. The standard version of LinUCB chooses

Xt+1 = arg max
a∈rows(Φt+1)

〈a, θ̂t〉+ ‖a‖G−1
t
βt , (4)

with βt = 1 +

√
2 log (n) + d log

(
1 +

n

d

)
. (5)

The modification chooses

Xt+1 = arg max
a∈rows(Φt+1)

〈a, θ̂t〉+ ‖a‖G−1
t
βt + ε

t∑
s=1

|a>G−1
t Xs| .

(6)

This modification is reminiscent of the algorithm by Jin
et al. (2019), who use a bonus of Ω(t1/2) when using upper
confidence bounds for least-squares estimators for linear
dynamics in reinforcement learning.
Theorem E.1. The regret of the algorithm defined by Eq. (6)
satisfies

Rn = O
(
d
√
n log(n) + nε

√
d log(n)

)
.

Proof sketch. The main point is that the additional bonus
term ensures optimism. Then, the standard regret calculation
shows that

Rn = O

(
d
√
n log(n) + εE

[
n∑
t=1

t−1∑
s=1

|X>t G−1
t−1Xs|

])
.

The latter term is bounded by

n∑
t=1

t−1∑
s=1

|X>t G−1
t−1Xs| ≤ n

√√√√ n∑
t=1

t−1∑
s=1

(X>t G
−1
t−1Xs)2

≤ n

√√√√ n∑
t=1

‖Xt‖2G−1
t−1

= O
(
n
√
d log(n)

)
.

Hence the regret of this algorithm satisfies

Rn = O
(
d
√
n log(n) + εn

√
d log(n)

)
.

Remark E.2. As far as we know, there is no algorithm
obtaining a similar bound when ε is unknown.

Failure of unmodified algorithm That the algorithm
defined by Eq. (5) is not good for contextual bandits follows
from the following example. Let ηt = 0 for all rounds t and

Φodd =
(
ε 0

)
Φeven =

(
0 ε

)
Φlarge =

(
2 1
0 0

)
.

Now suppose for odd rounds t ≤ n/2 the feature matrix is
Φt = Φodd in odd rounds and Φt = Φeven in even rounds.
For rounds t > n/2 the feature matrix is Φlarge. Then let
θ = (1/2,−1/2) and ∆((ε, 0)) = −ε and ∆((0, ε)) = ε.
Hence for t = n/2,

Gt =

(
1 + nε2/4 0

0 1 + nε2/4

)
θ̂t =

(
− nε2/8

1 + nε2/4
,

nε2/8

1 + nε2/4

)
.

Therefore ‖(2, 1)‖2
G−1

t

≤ 20/(nε2) and

〈θ̂t, (2, 1)〉 = − nε2/8

1 + nε2/4
≤ 4

nε2
− 1 .

Hence

〈θ̂t, (2, 1)〉+ ‖(2, 1)‖G−1
t
βt = −1 +O

(√
d log(n)

nε2

)
and this for every suitably large n the algorithm will choose
(0, 0) for all rounds t ≥ n/2 and suffer regret at least n/2.
Thus, if Rn(ε) is the regret on the above problem,

sup
n,ε>0

Rn(ε)

εn
√

log(n)
=∞ ,

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

while for the modified algorithm,

sup
n,ε>0

Rn(ε)

εn
√

log(n)
< +∞ .

F. Lower bounds for linear bandits
The upper bound in Section 5 cannot be improved in the
most interesting regimes, as the following theorem shows:

Theorem F.1. There exists a feature matrix Φ ∈ Rk×d
such that for any algorithm there is a mean reward vector
µ ∈ HεΦ for which

Rn ≥ εmin(n, (k − 1)/2)

√
d− 1

8 log(k)
.

Proof. By the negative result, we may choose Φ ∈ Rk×d
such that

〈a, a〉 = 1 for all a ∈ rows(Φ)

〈a, b〉 ≤
√

8 log(k)

d− 1
for all a, b ∈ rows(Φ) with a 6= b .

Next, let a∗ ∈ rows(Φ) and

θ = δa∗ with δ =

√
d− 1

8 log(k)
,

which is chosen so that µ ∈ HεΦ, where

µa =

{
δ if a = a∗

0 otherwise .

Let τ = max{t ≤ n : As 6= a∗∀s ≤ t}. Then
E[Rn] ≥ δE[τ]. Since the law of the rewards is independent
of a∗ for t ≤ τ , it follows from the randomisation hammer
that E[τ] ≥ min(n, (k − 1)/2) and the result follows.

G. Computation complexity
We briefly discuss the computation complexity of our
algorithms here. Both the bandit and RL algorithms rely on
computing a near-optimal design, which is addressed first.

Computing a near-optimal design The standard method
for computing a near-optimal design is Frank–Wolfe, which
in this setting is often attributed to Fedorov (1972). With
this algorithm and an appropriate initialisation constant
factor approximation of the optimal design can be computed
in O(kd2 log log(d)) computations. For more details we
recommend chapter 3 of the book by Todd (2016), which
also describes a number of improvements, heuristics and
practical guidance.

Bandit algorithm computations Algorithm 1 has at
most O(log(n)) episodes. In each episode it needs
to (a) compute a near-optimal design and (b) collect
data and find the least-squares estimator and (c) perform
action elimination. The computation is dominated by
finding the near optimal design and computing the
covariance matrix G, which leads to a total computation
of O(kd2 log log(d) log(n) + nd2).

RL computations The algorithm described in Section 6
operates in episodes over k episodes. In each episode it
computes an approximate design and performs m roll-outs
of length n from each action in the core set. Assuming
sampling from the generative model is O(1), the total
computation, ignoring logarithmic factors, is

Õ

(
dA

ε2(1− γ)4
+
SAd2

1− γ

)
.

Dishearteningly, the size of the state space appears in the
computation of the optimal design. Hence, while the sample
complexity of our algorithm is independent of the state
space, the computation complexity is not.

	Introduction
	Problem setup
	Negative result
	Positive result
	Misspecified linear bandits
	Reinforcement learning
	Conclusions
	Bibliography
	Proof of lem:obv
	Proof of Corollary 3.3
	Proof of Proposition 4.6
	Details for proof of prop:linear
	Linear contextual bandits
	Lower bounds for linear bandits
	Computation complexity

