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Abstract
We propose inertial versions of block coordinate
descent methods for solving non-convex non-
smooth composite optimization problems. Our
methods possess three main advantages compared
to current state-of-the-art accelerated first-order
methods: (1) they allow using two different ex-
trapolation points to evaluate the gradients and to
add the inertial force (we will empirically show
that it is more efficient than using a single extrap-
olation point), (2) they allow to randomly pick-
ing the block of variables to update, and (3) they
do not require a restarting step. We prove the
subsequential convergence of the generated se-
quence under mild assumptions, prove the global
convergence under some additional assumptions,
and provide convergence rates. We deploy the
proposed methods to solve non-negative matrix
factorization (NMF) and show that they compete
favourably with the state-of-the-art NMF algo-
rithms. Additional experiments on non-negative
approximate canonical polyadic decomposition,
also known as non-negative tensor factorization,
are also provided.

1. Introduction
In this paper, we consider the following non-smooth non-
convex optimization problem

minimizex∈E F (x) , where F (x) := f(x)+r(x), (1)

and E = E1 × . . .× Es with Ei, i = 1, . . . , s, being finite
dimensional real linear spaces equipped with norm ‖·‖(i)
and inner product 〈·, ·〉(i), f : E → R is a continuous
but possibly non-smooth non-convex function, and r(x) =
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∑s
i=1 ri(xi) with ri : Ei → R ∪ {+∞} for i = 1, . . . , s

being proper and lower semi-continuous functions.

Problem (1) covers many applications including compressed
sensing with non-convex “norms” (Attouch et al., 2010),
sparse dictionary learning (Aharon et al., 2006; Xu & Yin,
2016), non-negative matrix factorization (NMF) (Gillis,
2014), and “lp-norm” regularized sparse regression prob-
lems with 0 ≤ p < 1 (Blumensath & Davies, 2009; Natara-
jan, 1995). In this paper, we will focus on NMF which
is defined as follows: given X ∈ Rm×n

+ and the integer
r < min(m,n), solve

min
U,V

1

2
‖X − UV ‖2F such thatU ∈ Rm×r

+ , V ∈ Rr×n
+ .

(2)
NMF is a key problem in data analysis and machine learning
with applications in image processing, document classifica-
tion, hyperspecral unmixing and audio source separation,
to cite a few (Cichocki et al., 2009; Gillis, 2014; Fu et al.,
2019). NMF can be written as a problem of the form (1)
with s = 2, letting f(U, V ) = 1

2 ‖X − UV ‖
2
F , and r1

and r2 being indicator functions r1(U) = IRm×r
+

(U), and

r2(V ) = IRr×n
+

(V ). Note that UV =
∑r
i=1 U:iVi:; hence

NMF can also be written as a function of 2× r variables U:i

(the columns of U ) and Vi: (the rows of V ) for i = 1, . . . , r.

1.1. Related works

The Gauss-Seidel iteration scheme, also known as the
block coordinate descent (BCD) method, is a standard ap-
proach to solve both convex and non-convex problems in
the form of (1). Starting with a given initial point x(0), the
method generates a sequence

{
x(k)

}
k≥0

by cyclically up-
dating one block of variables at a time while fixing the
values of the other blocks. Let us denote f (k)

i (xi) :=

f
(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x

(k−1)
s

)
the value of the

objective function for the ith block at the kth iteration of a
BCD method. Based on how the blocks are updated, BCD
methods can typically be classified into three categories:

1. Classical BCD methods update (Grippo & Sciandrone,
2000; Hildreth, 1957) using exact updates:

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi) + ri(xi).
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2. Proximal BCD methods update (Auslender, 1992;
Grippo & Sciandrone, 2000; Razaviyayn et al., 2013)
using exact updates along with a proximal term:

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi)+ri(xi)+

1

2β
(k)
i

‖xi−x(k−1)
i ‖2,

(3)
where β(k)

i is referred to as the stepsize.

3. Proximal gradient BCD methods update (Bolte et al.,
2014; Razaviyayn et al., 2013; Tseng & Yun, 2009)
using a linearization of f

x
(k)
i = argmin

xi∈Ei

〈∇f (k)
i (x

(k−1)
i ), xi − x(k−1)

i 〉

+ ri(xi) +
1

2β
(k)
i

‖xi − x(k−1)
i ‖2.

(4)

Incorporating inertial force is a popular and efficient method
to accelerate the convergence of first-order methods. The
inertial term was first introduced by Polyak’s heavy ball
method (Polyak, 1964), which adds to the new direction
a momentum term equal to the difference of the two pre-
vious iterates; this is also known as extrapolation. While
the gradient evaluations used in Polyak’s method are not
affected by the momentum, the famous accelerated gradient
method of Nesterov (1983; 1998; 2004; 2005) evaluates the
gradients at the points which are extrapolated. In the convex
setting, these methods are proved to achieve the optimal
convergence rate, while the computational cost of each it-
eration is essentially unchanged. In the non-convex setting,
the heavy ball method was first considered by Zavriev &
Kostyuk (1993) to solve an unconstrained smooth minimiza-
tion problem. Two inertial proximal gradient methods were
proposed by Ochs et al. (2014) and Boţ & Csetnek (2016) to
solve (1) with s = 1. The method considered by Ochs et al.
(2014), referred to as iPiano, makes use of the inertial force
but does not use the extrapolated points to evaluate the gra-
dients. iPiano was extended for s > 1 and analysed by Ochs
(2019). Pock & Sabach (2016) proposed iPALM to solve (1)
with s = 2. Xu & Yin (2013; 2017) proposed inertial ver-
sions of proximal BCD, cf. (4). Xu & Yin’s methods need
restarting steps to guarantee the decrease of the objective
function. As stated by Nesterov (2004), this relaxation prop-
erty for some problem classes is too expensive and may not
allow optimal convergence. In another line of works, it is
worth mentioning the randomized BCD methods for solving
convex problems; see Fercoq & Richtarik (2015); Nesterov
(2012). The analysis of this type of algorithms considers the
convergence of the function values in expectation. This is
out of the scope of this work.

1.2. Contribution

In this paper, we propose inertial versions for the proximal
and proximal gradient BCD methods (3) and (4), for solv-

ing the non-convex non-smooth problem (1) with multiple
blocks. For the inertial version of the proximal gradient
BCD (4), two extrapolation points can be used to evaluate
gradients and add the inertial force so that the correspond-
ing scheme is more flexible and may lead to significantly
better numerical performance compared with the inertial
methods using a single extrapolation point; this will be con-
firmed with some numerical experiments (see Section 5
and the supplementary material). The idea of using two
different extrapolation points was first used for iPALM to
solve (1) with two blocks; however, the parameters of the
implemented version of iPALM in the experiments by Pock
& Sabach (2016) are chosen outside the theoretical bounds
established in the paper. Our methods for solving (1) with
multiple blocks allow picking deterministically or randomly
the block of variables to update; it was empirically observed
that randomization may lead to better solutions and/or faster
convergence (Xu & Yin, 2017). Another key feature of our
methods is that they do not require restarting steps. We
extend our methods in the framework of Bregman diver-
gence so that they are more general hence admit potentially
more applications. To prove the convergence of the whole
sequence to a critical point of F and derive its convergence
rate, we combine a modification of the convergence proof
recipe by Bolte et al. (2014) with the technique of using aux-
iliary functions (Ochs et al., 2014). By choosing appropriate
parameters that guarantee the convergence, we apply the
methods to NMF. We also apply it to non-negative canoni-
cal polyadic decomposition (NCPD) in the supplementary
material.

2. The proposed methods: IBP and IBPG
Algorithm 1 describes our two proposed methods: (1) the
inertial block proximal method (IBP) which is a proximal
BCD method with one extrapolation point, and (2) the iner-
tial block proximal gradient method (IBPG) which is a prox-
imal gradient BCD method with two extrapolation points.

Algorithm 1 includes an outer loop which is indexed by k
and an inner loop which is indexed by j. At the jth itera-
tion of an inner loop, only one block is updated. Table 1
summarizes the notation used in the paper. The choice of
the parameters αk,j , βk,j and γk,j in Algorithm 1 that guar-
antee the convergence will be discussed in Section 3. We
can observe from (7) and (8) that using two extrapolation
points do not bring extra computation cost when compared
with using a single extrapolation point (which happens when
α

(k,j)
i = γ

(k,j)
i ). We make the following standard assump-

tion throughout this paper.

Assumption 1 For all k, all blocks are updated after the
Tk iterations performed within the kth outer loop, and there
exists a positive constant T̄ such that s ≤ Tk ≤ T̄ .
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Table 1. Notation

Notation Definition

x(k,j) x at the jth iteration within the kth
outer loop

x̃(k) the main generated sequence (the out-
put)

Tk number of iterations within the kth
outer loop

f
(k,j)
i (xi) a function of the ith block while fixing

the latest updated values of the other
blocks, i.e.,

= f(x
(k,j−1)
1 , . . . , x

(k,j−1)
i−1 , xi, x

(k,j−1)
i+1 , . . . , x

(k,j−1)
s )

F
(k,j)
i (xi) F

(k,j)
i (xi) = f

(k,j)
i (xi) + ri(xi)

x̄
(k,m)
i the value of block i after it has been

updated m times during the kth outer
loop

dki the total number of times the ith block
is updated during the kth outer loop

ᾱ
(k,m)
i the values of α(k,j)

i ,
β̄
(k,m)
i the values of β(k,j)

i ,
γ̄
(k,m)
i and the values of γ(k,j)

i that are used in
(5), (6), (7), (8), (11) and (12) to update
block i from x̄

(k,m−1)
i to x̄(k,m)

i

{x̄(k,m)
i }k≥1 the sequence that contains the

updates of the ith block, i.e.,

{. . . , x̄(k,1)i , . . . , x̄
(k,dki )
i , . . .}

Illustration with NMF Let us illustrate the proposed
methods for NMF; see the supplementary material for the
application to NCPD. We will use IBPG for NMF with 2
blocks of variables, namely U and V , and IBP with 2 × r
blocks of variables, namely U:,i and Vi,: (1 ≤ il ≤ r).
We choose the Frobenius norm for the proximal terms
in (6) and (8). We have ∇Uf = UV V T − XV T and
∇V f = UTUV − UTX, hence the inertial proximal gra-
dient step (8) of IBPG is a projected gradient step. If we
choose Tk = 2 for all k then each inner loop of IBPG up-
dates U and V once. Our algorithm also allows to choose
Tk > 2, hence updating U or V several times before updat-
ing the other one. As explained by Gillis & Glineur (2012),
repeating the update of U and V accelerates the algorithm
compared to the pure cyclic update rule, because the terms
V V T and XV T (resp. UTU and UTX) in the gradient of
U (resp. V ) do not need to be recomputed hence the sec-
ond evaluation of the gradient is much cheaper; namely,
O(mr2) (resp. O(nr2)) vs. O(mnr) operations; while
r � min(m,n) for most applications. Regarding IBP,
the inertial proximal step (6) has a closed form:

Algorithm 1 IBP and IBPG

Initialize: Choose x̃(0) = x̃(−1). Choose a method: IBP
or IBPG. Parameters are chosen as in Section 3.
for k = 1, . . . do
x(k,0) = x̃(k−1).
for j = 1, . . . , Tk do

Choose i ∈ {1, . . . , s} deterministically or ran-
domly such that Assumption 1 is satisfied. Let yi be
the value of the ith block before it was updated to
x

(k,j−1)
i .

For IBP: extrapolate

x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x

(k,j−1)
i − yi

)
, (5)

and compute

x
(k,j)
i = argmin

xi

F
(k,j)
i (xi) +

1

2β
(k,j)
i

‖xi − x̂i‖2 .

(6)
For IBPG: extrapolate

x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x

(k,j−1)
i − yi

)
,

x̀i = x
(k,j−1)
i + γ

(k,j)
i

(
x

(k,j−1)
i − yi

)
,

(7)

and compute

x
(k,j)
i = argmin

xi

〈∇f (k,j)
i (x̀i), xi − x(k,j−1)

i 〉

+ ri(xi) +
1

2β
(k,j)
i

‖xi − x̂i‖2.
(8)

Let x(k,j)
i′ = x

(k,j−1)
i′ for i′ 6= i.

end for
Update x̃(k) = x(k,Tk).

end for

argmin
U:i≥0

∑ 1

2

∥∥X − i−1∑
q=1

U:qVq: −
r∑

q=i+1

U:qVq: − U:iVi:
∥∥2

+
1

2βi

∥∥U:i − Û:i

∥∥2

= max
(

0,
XV Ti: − (UV )V Ti: + U:iVi:V

T
i: + 1/βiÛ:i

Vi:V Ti: + 1/βi

)
,

and a similar update for the rows of V can be derived by
symmetry since ‖X −UV ‖2F = ‖XT −V TUT ‖2F . For the
same reason as above, IBP should update the columns of
U and the rows of V several times before doing so for the
other one.
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2.1. Extension to Bregman divergence

The inertial proximal steps (6) and (8) can be generalized by
replacing ‖.‖ by a Bregman divergence. Let Hi : Ei → R
be a strictly convex function that is continuously differen-
tiable. The Bregman distance associated with Hi is defined
as:

Di(u, v) = Hi(u)−Hi(v)−〈∇Hi(v), u− v〉 ,∀u, v ∈ Ei.

The squared Euclidean distance Di(u, v) = 1
2‖u − v‖22

corresponds to Hi(u) = 1
2‖u‖

2
2.

Definition 1 For a given v ∈ Ei, and a positive number β,
the Bregman proximal map of a function φ is defined by

proxHi

β,φ(v) := argmin
u∈Ei

{
φ(u) +

1

β
Di(u, v)

}
. (9)

Definition 2 For given u1 ∈ int dom g, u2 ∈ Ei and β >
0, the Bregman proximal gradient map of a pair of functions
(φ, g) (g is continuously differentiable) is defined by

GproxHi

β,φ,g(u1, u2)

:= argmin
u∈Ei

{
φ(u) + 〈∇g(u1), u〉+

1

β
Di(u, u2)

} (10)

For notation succinctness, whenever the generating func-
tion is clear from the context, we omit Hi in the notation
of the corresponding Bregman proximal maps. As φ can
be non-convex, proxβ,φ(v) and Gproxβ,φ,g(u1, u2) are set-
valued maps in general. Various types of assumptions can
be made to guarantee their well-definedness; see Eckstein
(1993), Teboulle (1997; 2018) for the well-posedness of
(9), and (Bolte et al., 2018, Lemma 3.1), (Bauschke et al.,
2017, Lemma 2) for the well-posedness of (10). Note that
the proximal gradient maps in (Bauschke et al., 2017; Bolte
et al., 2018) use the same point for evaluating the gradient
and the Bregman distance while ours allow using two dif-
ferent points u1 and u2. This modification is important for
our analysis; however, it does not affect the proofs of the
lemmas in those papers.

Algorithm 2 describes IBP and IBPG in the framework of
Bregman divergence.

Throughout this paper, we assume the following.
Assumption 2 (A1) The function Hi, i = 1, . . . , s, is σi-
strongly convex, continuously differentiable and ∇Hi is
LHi

-Lipschitz continuous.

(A2) The proximal maps (9) and (10) are well-defined.

Note that (A1) holds if Hi satisfies LHiI � ∇2Hi � σiI.
A quadratic entropy distance is a typical example of a Breg-
man divergence that satisfies (A1) (Reem et al., 2019). More
discussion about important properties and how to evaluate
(9) and (10) are given in the supplementary material.

Algorithm 2 IBP and IBPG with Bregman divergence

Initialize: Choose x̃(0) = x̃(−1). Choose a method: IBP
or IBPG. Parameters are chosen as in Section 3.
for k = 1, . . . do
x(k,0) = x̃(k−1).
for j = 1, . . . , Tk do

Choose i ∈ {1, . . . , s} deterministically or ran-
domly such that Assumption 1 is satisfied.
Update of IBP: extrapolate as in (5) and compute

x
(k,j)
i ∈ proxHi

β
(k,j)
i ,F

(k,j)
i

(x̂i) . (11)

Update of IBPG: extrapolate as in (7) and compute

x
(k,j)
i ∈ GproxHi

β
(k,j)
i ,ri,fi

(x̀i, x̂i) . (12)

Let x(k,j)
i′ = x

(k,j−1)
i′ for i′ 6= i.

end for
Update x̃(k) = x(k,Tk).

end for

3. Subsequential convergence
Before providing the subsequential convergence guarantees,
let us elaborate on the notation, in particular x̄(k,m)

i and
dki which will be used much in the upcoming analysis, see
Table 1 for a summary of the notation. The elements of the
sequence x(k,j)

i remain unchanged during many iterations
since only one block is updated within each inner loop of Al-
gorithm 2, that is, we will have x(k,j+1)

i = x
(k,j)
i for many

j’s. To simplify the analysis, we introduce the subsequence
x̄

(k,m)
i of x(k,j)

i that will only record the value of the ith
block when it is actually updated. More precisely, there ex-
ists a subsequence {i1, i2, . . . , idki } of {1, 2, . . . , Tk} such

that x̄(k,m)
i = x

(k,im)
i for all m = 1, 2, . . . , dki . The

previous value of block i before it is updated to x̄
(k,m)
i

is x̄(k,m−1)
i . We have x̄(k,0)

i = x̄
(k−1,dk−1

i )
i = x̃

(k−1)
i

and x̄
(k,dki )
i = x̃

(k)
i . As for x(k,j)

i , we use the notation

x̄
(k,−1)
i = x̄

(k−1,dk−1
i −1)

i .

3.1. Choosing parameters

We first explain how to choose the parameters for IBP and
IBPG within Algorithm 2 (note that Algorithm 1 is a special
case of Algorithm 2) such that their subsequential conver-
gence is guaranteed. Let us point out that ᾱ(k,m)

i , β̄(k,m)
i ,

and γ̄(k,m)
i are the values of α(k,j)

i , β(k,j)
i and γ(k,j)

i that
are used to update block i from x̄

(k,m−1)
i to x̄(k,m)

i .
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Parameters for IBP Let 0 < ν < 1, δ > 1. For m =

1, . . . , dki and i = 1, . . . , s, denote θ(k,m)
i =

(
LHi

ᾱ
(k,m)
i

)2

2νσiβ̄
(k,m)
i

.

Let θ(k,dki +1)
i = θ

(k+1,1)
i . We choose ᾱ(k,m)

i and β̄(k,m)
i

such that, for m = 1, . . . , dki ,

(1− ν)σi

2β̄
(k,m)
i

≥ δθ(k,m+1)
i . (13)

Parameters for IBPG Considering IBPG, we need to
assume that ∇f (k,j)

i is L(k,j)
i -Lipschitz continuous, with

L
(k,j)
i > 0. For notational clarity, we correspondingly use

L̄
(k,m)
i for L(k,j)

i when updating block i from x̄
(k,m−1)
i

to x̄(k,m)
i . To simplify the upcoming analysis, we choose

β̄
(k,m)
i = σi

κL̄
(k,m)
i

with κ > 1. Let 0 < ν < 1, δ > 1.

Denote

λ
(k,m)
i =

1

2

(
γ̄

(k,m)
i +

κLHi
ᾱ

(k,m)
i

σi

)2 L̄
(k,m)
i

ν(κ− 1)
,

for m = 1, . . . , dki and i = 1, . . . , s. Let λ(k,dki +1)
i =

λ
(k+1,1)
i . We choose ᾱ(k,m)

i , β̄(k,m)
i and γ̄(k,m)

i such that,
for m = 1, . . . , dki ,

(1− ν)(κ− 1)L̄
(k,m)
i

2
≥ δλ(k,m+1)

i . (14)

We make the following standard assumption for the bound-
edness of the parameters; see (Xu & Yin, 2013, Assumption
2), (Bolte et al., 2014, Assumption 2).

Assumption 3 For IBP, there exist positive numbers W1, α
and β such that θ(k,m)

i ≥W1, ᾱ(k,m)
i ≤ α and β ≤ β̄(k,m)

i ,
∀ k ∈ N, m = 1, . . . , dki , i = 1, . . . , s.

For IBPG, there exist positive numbers W1, L > 0, α and
γ such that λ(k,m)

i ≥ W1, L̄(k,m)
i ≤ L, ᾱ(k,m)

i ≤ α and
γ̄

(k,m)
i ≤ γ for all k ∈ N, m = 1, . . . , dki and i = 1, . . . , s.

The algorithm iPALM of Pock & Sabach (2016) is a special
case of IBPG when D is the Euclidean distance, s = 2 and
the two blocks are cyclically updated; however, our chosen
parameters are different. In particular, the stepsize β̄(k,m)

i of
iPALM depends on the inertial parameters (Pock & Sabach,
2016, Formula 4.9), while we choose β̄(k,m)

i independently
of ᾱ(k,m)

i and γ̄(k,m)
i . Our parameters allow using dynamic

inertial parameters (see Section 3.3). As also experimentally
tested by (Pock & Sabach, 2016), choosing the inertial pa-
rameters dynamically leads to a significant improvement of
the algorithm performance. The analysis by Pock & Sabach
(2016) does not support this choice of parameters, while
ours guarantee subsequential convergence.

3.2. Subsequential convergence theory

The following proposition serves as a cornerstone to prove
the subsequential convergence.
Proposition 1 Let {x̃(k)} be a sequence generated by Algo-

rithm 2, and consider
{
x̃

(k)
prev

}
with

(
x̃

(k)
prev

)
i

= x̄
(k,dki−1)
i .

Suppose Assumption 1, 2 and 3 are satisfied.

(i) We have
∑∞
k=1

∥∥x̃(k) − x̃
(k)
prev

∥∥2
< ∞ and∑∞

k=1

∑s
i=1

∑dki
m=1

∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥2
<∞.

(ii) If there exists a limit point x∗ of
{
x̃(k)

}
(that is, there

exists a subsequence
{
x̃(kn)

}
converging to x∗), then we

have limn→∞ ri

(
x̄

(kn,m)
i

)
= ri (x∗i ) .

Remark 1 (Relax (13) for block-convex F ) For IBP, if F
is block-wise convex then we can choose ᾱ(k,m)

i and β̄(k,m)
i

satisfying

2(1− ν)σi

β̄
(k,m)
i

≥ δθ(k,m+1)
i , for m = 1, . . . , dki , (15)

and Proposition 1 still holds. Compared to (13), Condition
(15) allows larger values of the extrapolation parameters
ᾱ

(k,m)
i when using the same stepsize β̄(k,m)

i .

Remark 2 (Relax (14) for convex ri’s) If the functions
ri’s are convex (note that f is not necessary block-wise
convex) then we can use a larger stepsize. Specifically, we
can use β̄(k,m)

i = σi/L̄
(k,m)
i and

λ
(k,m)
i =

1

2

(
γ̄

(k,m)
i +

LHi ᾱ
(k,m)
i

σi

)2 L̄
(k,m)
i

ν
,

and choose ᾱ(k,m)
i and γ̄(k,m)

i satisfying

(1− ν)L̄
(k,m)
i

2
≥ δλ(k,m+1)

i , for m = 1, . . . , dki , (16)

and Proposition 1 still holds.

Remark 3 (Relax (14) for block-convex f and convex ri’s)
If the ri’s are convex and f(x) is block-wise convex, then
we can use larger extrapolation parameters. Specifically,
we choose Hi(xi) = 1

2 ‖xi‖
2 and let β̄(k,m)

i = 1/L̄
(k,m)
i

and

λ
(k,m)
i =

(γ̄(k,m)
i

)2

+

(
γ̄

(k,m)
i − ᾱ(k,m)

i

)2

ν

 L̄
(k,m)
i

2
,

where 0 < ν < 1, and choose ᾱ(k,m)
i and γ̄(k,m)

i satisfying

1− ν
2

L̄
(k,m)
i ≥ δλ(k,m+1)

i , for m = 1, . . . , dki .

For these values, Proposition 1 still holds. In Section 5
we numerically show that choosing γ̄(k,m)

i 6= ᾱ
(k,m)
i can

significantly improve the performance of the algorithm.
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We now state the local convergence result. The definitions
of critical points can be found in the supplementary material.

Theorem 1 Suppose Assumption 1, 2 and 3 are satisfied.

(i) For IBP, if F is regular then every limit point of the
sequence

{
x̃(k)

}
generated by Algorithm 2 is a critical

point type I of F . If f is continuously differentiable then
every limit point is a critical point type II of F .

(ii) For IBPG, every limit point of the sequence
{
x̃(k)

}
generated by Algorithm 2 is a critical point type II of F .

3.3. Choice of parameters for NMF

Let us illustrate the choice of parameters for NMF. In the
remainder of this paper, in the context of NMF, we will refer
to IBPG as Algoritm 1 with the choice Tk = 2 (cyclic up-
date of U and V ), and to IBPG-A with the choice Tk > 2 (U
and V are updated several times). IBPG-A is expected to be
more efficient; see the discussion in Section 2. For IBPG and
IBPG-A, we take L̄(k,m)

1 = L̃
(k)
1 =

∥∥(Ṽ (k−1))T Ṽ (k−1)
∥∥

and L̄(k,m)
2 = L̃

(k)
2 =

∥∥(Ũ (k))T Ũ (k)
∥∥ for m ≥ 1. We

take β̄(k,m)
i = 1/L̃

(k)
i , γ̄(k,m)

i = min
{
τk−1
τk

, γ̃

√
L̃

(k−1)
i

L̃
(k)
i

}
and ᾱ

(k,m)
i = ᾰγ̄

(k,m)
i , where τ0 = 1, τk = 1

2 (1 +√
1 + 4τ2

k−1), γ̃ = 0.99 and ᾰ = 1.01. We can verify

that there exists δ > 1 such that γ̆2
(
(ᾰ− 1)2/ν + 1

)
<

(1−ν)/δ with ν = 0.0099. Hence, our choice of parameters
satisfy the conditions of Remark 3.

Regarding IBP, we choose 1/β
(k,m)
i = 0.001 and α(k,m)

i =
α̃(k) = min(β̄, γα̃(k−1)), with β̄ = 1, γ = 1.01 and
α̃(1) = 0.6. This choice of parameters satisfies the con-
ditions of Remark 1.

4. Global convergence
A key tool of the upcoming global convergence (i.e., the
whole sequence converges to a critical point) analysis is the
Kurdyka-Łojasiewicz (KL) function defined as follows.

Definition 3 A function φ(x) is said to have the KL prop-
erty at x̄ ∈ dom ∂ φ if there exists η ∈ (0,+∞], a neigh-
borhood U of x̄ and a concave function ξ : [0, η) → R+

that is continuously differentiable on (0, η), continuous at 0,
ξ(0) = 0, and ξ′(s) > 0 for all s ∈ (0, η), such that for all
x ∈ U ∩ [φ(x̄) < φ(x) < φ(x̄) + η], we have

ξ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1. (17)

dist (0, ∂φ(x)) = min {‖y‖ : y ∈ ∂φ(x)}. If φ(x) has the
KL property at each point of dom ∂φ then φ is a KL function.

The class of KL functions is rich enough to cover many
non-convex non-smooth functions found in practical appli-
cations. Some noticeable examples are real analytic func-

tions, semi-algebraic functions, and locally strongly convex
functions (Bochnak et al., 1998; Bolte et al., 2014).

4.1. Global convergence recipe

Attouch et al. (2010; 2013) and Bolte et al. (2014) were
the first to prove the global convergence of proximal point
algorithms for solving non-convex non-smooth problems.
We note that a direct deployment of the methodology to
our proposed algorithms is not possible since the relaxation
property does not hold (that is, the objective functions are
not monotonically decreasing) and our methods allow for a
randomized strategy. In the following theorem, we modify
the proof recipe of Bolte et al. (2014) so that it is applicable
to our proposed methods.

Theorem 2 Let Φ : RN → (−∞,+∞] be a proper and
lower semicontinuous function which is bounded from below.
Let A be a generic algorithm which generates a bounded
sequence

{
z(k)

}
by z(0) ∈ RN , z(k+1) ∈ A(z(k)), k =

0, 1, . . . Assume that there exist positive constants ρ1, ρ2

and ρ3 and a non-negative sequence {ζk}k∈N such that the
following conditions are satisfied

(B1) Sufficient decrease property:

ρ1‖z(k) − z(k+1)‖2 ≤ ρ2ζ
2
k ≤ Φ(z(k))− Φ(z(k+1)),

∀ k = 0, 1, . . .

(B2) Boundedness of subgradient:

‖w(k+1)‖ ≤ ρ3ζk, w
(k) ∈ ∂Φ(z(k)),∀k = 0, 1, . . .

(B3) KL property: Φ is a KL function.

(B4) A continuity condition: If a subsequence {z(kn)} con-
verges to z̄ then Φ(z(kn))→ Φ(z̄) as n→∞.

Then we have
∑∞
k=1 ζk < ∞ and {z(k)} converges to a

critical point of Φ.

We remark that if we take ζk = ‖z(k) − z(k+1)‖ then The-
orem 2 recovers the proof recipe of Bolte et al. (2014).
The following theorem establish the convergence rate under
Łojasiewicz property.

Theorem 3 Suppose Φ is a KL function and ξ(a) of Defi-
nition 3 has the form ξ(a) = Ca1−ω for some C > 0 and
ω ∈ [0, 1). Then we have

(i) If ω = 0 then {z(k)} converges after a finite number of
steps.

(ii) If ω ∈ (0, 1/2] then there exists ω1 > 0 and ω2 ∈ [0, 1)
such that

∥∥z(k) − z̄
∥∥ ≤ ω1ω

k
2 .

(iii) If ω ∈ (1/2, 1) then there exists ω1 > 0 such that∥∥z(k) − z̄
∥∥ ≤ ω1k

−(1−ω)/(2ω−1).



Inertial Block Proximal Method

4.2. Global convergence of IBP and IBPG

We need the use of the following auxiliary function

Ψ(ý, y̆) := F (ý) + ρD(ý, y̆),

where ρ > 0 and D(ý, y̆) =
∑s
i=1Di(ýi, y̆i). Recall that

(x̃
(k)
prev)i = x̄

(k,dki−1)
i . Let us consider the sequence

{
Y (k)

}
with Y (k) =

(
ý(k), y̆(k)

)
=
(
x̃(k), x̃

(k)
prev

)
. We then have

Ψ(Y (k)) = F (x̃(k)) + ρD(x̃(k), x̃(k)
prev), (18)

‖Y (k)−Y (k+1)‖2 = ‖x̃(k)−x̃(k+1)‖2+‖x̃(k)
prev−x̃(k+1)

prev ‖2.

We define

ϕ2
k :=

s∑
i=1

d
(k+1)
i∑
m=0

‖x̄(k+1,m)
i − x̄(k+1,m−1)

i ‖2

=

s∑
i=1

d
(k+1)
i∑
m=1

‖x̄(k+1,m)
i − x̄(k+1,m−1)

i ‖2

+ ‖x̃(k) − x̃(k)
prev‖2.

We make the following additional assumption.
Assumption 4 The sequences

{
x̃(k)

}
k∈N generated by Al-

gorithm 2 are bounded.

In Proposition 2 we will prove that Ψ(Y (k)) is non-
increasing; thus, Ψ(Y (k)) is upper bounded by Ψ(Y (−1)).
Moreover, note that D(x̃(k), x̃

(k)
prev) ≥ 0. Hence, from

(18) this implies that F
(
x̃(k)

)
is also upper bounded by

Ψ
(
Y (−1)

)
. Therefore, we can say that Assumption 4 is

satisfied when F has bounded level sets. Denote σ =
min {σ1, . . . , σs} and LH = max {LH1

, . . . , LHs
}.

The following proposition gives an upper bound for the sub-
gradients and a sufficient decrease property for

{
Ψ
(
Y (k)

)}
.

Proposition 2 Suppose Assumption 1, 2, 3 and 4 hold.

(i) Suppose f is continuously differentiable and ∇f is Lips-
chitz continuous on bounded subsets of E (this is a standard
assumption, see (Xu & Yin, 2013, Lemma 2.6), (Bolte et al.,
2014, Assumption 2 iv)). We have ‖q̂(k+1)‖ = O(ϕk) for
some q̂(k) ∈ ∂Ψ

(
Y (k)

)
.

(ii) Together with the condition in Proposition 2 (i), assume
that there exists a constant W2 such that ∀ k ∈ N, m =
1, . . . , dki and i = 1, . . . , s, we have θ(k,m)

i ≤ W2 for IBP,
λ

(k,m)
i ≤ W2 for IBPG and δ > (LHW2)/(σW1). Let
ρ = δW1

LH
+ W2

σ in (18) and let ρ2 = δσW1

2LH
− W2

2 . Then

Ψ(Y (k))−Ψ(Y (k+1)) ≥ ρ2ϕ
2
k.

We are now ready to state our global convergence result.

Theorem 4 Assume F is a KL-function and the conditions
of Proposition 2 are satisfied. Then the whole sequence
{x̃(k)} generated by IBP or IBPG converges to a critical
point type II of F .

We note that
∥∥Y (k) − Y ∗

∥∥ ≥ ∥∥x̃(k) − x∗
∥∥, hence the con-

vergence rate of the sequence {x̃(k)} is at least the same
order as the rate of {Y (k)}. If Ψ is a KL function with
ξ(a) = Ca1−ω , then we can apply Theorem 3 to derive the
convergence rate of {Y (k)}.

Remark 4 Note that we need the additional condition δ >
LHW2

σW1
in order to obtain the global convergence in Theorem

4. Therefore, it makes sense to show that there exists δ such
that Condition (14) for IBPG (or Condition (13) for IBP) is
also satisfied. See the supplementary material for the proof.

The parameters of IBP for NMF in Section 3.3 satisfy the
conditions for global convergence.

5. Numerical results for NMF
In this section, we compare our IBP, IBPG and IBPG-A (see
Section 3.3) with the following NMF algorithms:

+ A-HALS: the accelerated hierarchical alternating least
squares algorithm (Gillis & Glineur, 2012). A-HALS out-
performs standard projected gradient, the popular multi-
plicative updates and alternating non-negative least squares
(Kim et al., 2014; Gillis, 2014).

+ E-A-HALS: the acceleration version of A-HALS proposed
by Ang & Gillis (2019). This algorithm was experimentally
shown to outperform A-HALS. This is, as far as we know,
one of the most efficient NMF algorithms. Note that E-A-
HALS is a heuristic with no convergence guarantees.

+ APGC: the accelerated proximal gradient coordinate de-
scent method proposed by Xu & Yin (2013) which corre-
sponds exactly to IBPG with γ̃ = ᾰ = 0.9999.

+ iPALM: the inertial proximal alternating linearized mini-
mization method proposed by Pock & Sabach (2016).

We define the relative errors relerrork =
‖X−Ũ(k)Ṽ (k)‖

F

‖X‖F
.

We let emin = 0 for the experiments with low-rank synthetic
data sets, and in the other experiments emin is the lowest
relative error obtained by any algorithms with any initializa-
tions. We define E(k) = relerrork − emin. These are the
same settings as in (Gillis & Glineur, 2012). All tests are
preformed using Matlab R2015a on a laptop Intel CORE i7-
8550U CPU @1.8GHz 16GB RAM. The code is available at
https://github.com/LeThiKhanhHien/IBPG

Experiments with synthetic data sets. Two low-rank
matrices of size 200 × 200 and 200 × 500 are generated
by letting X = UV , where U and V are generated by
commands rand(m, r) and rand(r,n) with r = 20. For

https://github.com/LeThiKhanhHien/IBPG
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Figure 1. Average value of E(k) with respect to time on 2 random low-rank matrices: 200× 200 (the left) and 200× 500 (the right).

each X , we run all algorithms with the same 50 random
initializations U0 = rand(m, r), V0 = rand(r,n), and for
each initialization we run each algorithm for 20 seconds.
Figure 1 illustrates the evolution of the average ofE(k) over
50 initializations with respect to time.

To compare the accuracy of the solutions, we generate 80
random m× n matrices, m and n are random integer num-
bers in the interval [200,500]. For each X we run the algo-
rithms for 20 seconds with 1 random initialization. Table 2
reports the average and standard deviation (std) of the errors.
It also provides a ranking between the different algorithms:
the ith entry of the ranking vector indicates how many times
the corresponding algorithm obtained the ith best solution.

We observe that (i) in terms of convergence speed and the
final errors obtained, IBPG-A outperforms the other algo-
rithms, and (ii) APGC and iPALM converge slower than
IBPG and APGC produces worse solutions. This illustrates
the fact that using two extrapolated points may lead to a
faster convergence.

Experiments with real data sets. In these experiments,
we will only keep the best performing algorithms, namely
IBPG-A and E-A-HALS, along with APGC for our obser-
vation purpose. For each data set, we generate 35 random
initializations and for each initialization we run each al-
gorithm for 200 seconds. We test the algorithms on two
widely used hyperspectral images, namely the Urban and
San Diego data sets; see (Gillis et al., 2015). We let r = 10.

Figure 2 reports the evolution of the average value of E(k),

Table 2. Average, standard deviation and ranking of the value of
E(k) at the last iteration among the different runs on the low-rank
synthetic data sets. The best performance is highlighed in bold.

Algorithm mean ± std ranking
A-HALS 1.227 10−3 ± 7.365 10−4 ( 1, 0, 3, 4, 7, 24, 41)
E-A-HALS 8.501 10−4 ± 6.882 10−4 (16, 10, 12, 13, 17, 3, 9)
IBPG-A 5.03610−4±5.522 10−4 (39, 10, 14, 10, 3, 2, 2)
IPG 1.209 10−3 ± 7.386 10−4 ( 0, 3, 5, 7, 15, 39, 11)
APGC 8.726 10−4 ± 6.561 10−4 ( 3, 10, 14, 22, 18, 3, 10)
IBPG 6.621 10−4 ± 6.371 10−4 (17, 17, 15, 11, 14, 2, 4)
iPALM 6.759 10−4 ± 6.302 10−4 (17, 22, 13, 12, 6, 7, 3)

Table 3. Average error, standard deviation and ranking among the
different runs for urban and SanDiego data sets.

Algorithm mean ± std ranking
E-A-HALS 0.018823± 6.739 10−4 (17, 28, 25)

IBPG-A 0.018316± 9.745 10−4 (53, 15, 2)
APGC 0.018728± 7.779 10−4 (0, 27, 43)

and Table 3 reports the average error, standard deviation and
ranking of the final value of E(k) among the 70 runs (2 data
sets with 35 initializations for each data set).

We see that IBPG-A outperforms E-A-HALS and APGC
both in terms of convergence speed and accuracy.

6. Conclusion
We have analysed inertial versions of proximal BCD and
proximal gradient BCD methods for solving non-convex
non-smooth composite optimization problems. Our meth-
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Figure 2. Average value of E(k) with respect to time on 2 hyperspectral images: urban (the left) and SanDiego (the right).

ods do not require restarting steps, and allow the use of
randomized strategies and of two extrapolation points. We
first proved sub-sequential convergence of the generated se-
quence to a critical point of F (Theorem 1) and then, under
some additional assumptions, convergence of the whole se-
quence (Theorem 4). We showed that the proposed methods
compared favourably with state-of-the-art algorithms for
NMF. Additional experiments on NMF and NCPD are given
in the supplementary material. Exploring other Bregman
divergences for IBP and IBPG to solve NMF and NCPD
may lead to other efficient algorithms for NMF and NCPD.
This is one of our future research directions.
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SUPPLEMENTARY MATERIAL

A. Preliminaries
In this section, we give important definitions and properties that allow us to provide our convergence results.

A.1. Preliminaries of non-convex non-smooth optimization

Let g : E→ R ∪ {+∞} be a proper lower semicontinuous function.

Definition 4 (i) For any x ∈ dom g, and d ∈ E, we denote the directional derivative of g at x in the direction d by

g′ (x; d) = lim inf
τ↓0

g(x+ τd)− g(x)

τ
.

(ii) For each x ∈ dom g, we denote ∂̂g(x) as the Frechet subdifferential of g at x which contains vectors v ∈ E satisfying

lim inf
y 6=x,y→x

1

‖y − x‖
(g(y)− g(x)− 〈v, y − x〉) ≥ 0.

If x 6∈ dom g, then we set ∂̂g(x) = ∅.

(iii) The limiting-subdifferential ∂g(x) of g at x ∈ dom g is defined as follows.

∂g(x) :=
{
v ∈ E : ∃x(k) → x, g

(
x(k)

)
→ g(x), v(k) ∈ ∂̂g

(
x(k)

)
, v(k) → v

}
.

The following definition, see (Tseng, 2001, Section 3), is necessary in our convergence analysis for the inertial version of (3)
without the smoothness assumption on f .

Definition 5 (i) We say that x∗ ∈ dom F is a critical point type I of F if F ′(x∗; d) ≥ 0,∀ d.

(ii) x∗ ∈ dom F is said to be a coordinatewise minimum of F if

F (x∗ + (0, . . . , di, . . . , 0)) ≥ F (x∗),∀ di ∈ Ei,∀ i = 1, . . . , s.

(iii) We say that F is regular at x ∈ dom F if for all d = (d1, . . . , ds) such that

F ′ (z; (0, . . . , di, . . . , 0)) ≥ 0, i = 1, . . . , s,

then F ′(x; d) ≥ 0.

It is straightforward to see from the definition that if F is regular at x∗ and x∗ is a coordinate-wise minimum point of F
then x∗ is also a critical point type I of F . We refer the readers to Lemma 3.1 in (Tseng, 2001) for the sufficient conditions
that imply the regularity of F . When f is assumed to be smooth (for the analysis of inertial version of (4)), Definition 6 will
be used.

Definition 6 We call x∗ ∈ dom F a critical point type II of F if 0 ∈ ∂F (x∗) .

We note that if x∗ is a minimizer of F then x∗ is a critical point type I and type II of F .

A.2. Kurdyka-Łojasiewicz functions

The following lemma (see Lemma 6 of Bolte et al. 2014) is the cornerstone to establish the global convergence of our
proposed methods.

Lemma 1 (Uniformized KL property) Let φ be a proper and lower semicontinuous function. Assuming that φ satisfies
the KL property and is constant on a compact set Ω. Then there exist ε > 0, η > 0 and a function ξ satisfying the conditions
in Definition 3 such that for all x̄ ∈ Ω and

x ∈ {x ∈ E : dist(x,Ω) < ε} ∩ [φ(x̄) < φ(x) < φ(x̄) + η]

we have
ξ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1.
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A.3. Bregman proximal maps

We now recall some useful properties of Bregman distance in the following lemmas. Their proofs can be found in (Chen &
Teboulle, 1993; Bauschke & Combettes, 2011).

Lemma 2 (i) If Hi is strongly convex with constant σi, that is,

Hi(u) ≥ Hi(v) + 〈∇Hi(v), u− v〉+
σi
2
‖u− v‖2,∀u, v ∈ Ei

then
Di(u, v) ≥ σi

2
‖u− v‖2,∀u, v ∈ Ei.

(ii) If∇Hi is LHi -Lipschitz continuous, then

Di(u, v) ≤ LHi

2
‖u− v‖2,∀u, v ∈ Ei.

Lemma 3 Let Di(u, v) be the Bregman distance associated with Hi.

(i) (The three point identity) We have:

Di(u, v) +Di(v, w) = Di(u,w) + 〈∇Hi(w)−∇Hi(v), u− v〉 ,∀u, v, w ∈ Ei.

(ii) (Property 1 of Tseng 2008). Let z+ = argminu φ(u) +Di(u, z), where φ is a proper convex function. Then for all
u ∈ Ei we have

φ(u) +Di(u, z) ≥ φ(z+) +Di(z
+, z) +Di(u, z

+).

The following inequality is crucial for our convergence analysis.

Lemma 4 For a given ŵ ∈ Ei, if w+ ∈ proxHi

β,φ(ŵ) then for all w ∈ Ei we have

φ(w+) +
1

β
Di

(
w+, w

)
≤ φ(w) +

1

β

〈
∇Hi(ŵ)−∇Hi(w), w+ − w

〉
.

Proof: It follows from the definition of w+ that

φ
(
w+
)

+
1

β
Di

(
w+, ŵ

)
≤ φ(w) +

1

β
Di (w, ŵ) .

On the other hand, by Lemma 3 (i) we get

Di

(
w+, ŵ

)
−Di (w, ŵ) = Di

(
w+, w

)
−
〈
∇Hi (ŵ)−∇Hi (w) , w+ − w

〉
.

The result follows. �

If φ is convex, applying Lemma 3 (ii), we get the following lemma. Lemma 5 will be used when the function ri is convex.

Lemma 5 For a given ŵ ∈ Ei, if w+ ∈ proxHi

β,φ(ŵ) and φ is convex then for all w ∈ Ei we have

φ(w+) +
1

β
Di

(
w+, ŵ

)
+

1

β
Di

(
w,w+

)
≤ φ(w) +

1

β
Di (w, ŵ) .

It is crucial to be able to compute efficiently the Bregman proximal maps in (9) and (10). When Di is the Euclidean distance,
the maps reduce to the classical proximal/proximal gradient maps. We refer the readers to (Parikh & Boyd, 2014) for a
comprehensive discussion on how to evaluate the classical maps.



Inertial Block Proximal Method

In (Bauschke et al., 2017, Section 3.1), the authors present a splitting mechanism to evaluate (10) when u1 and u2 are
identical. Following their methodology, we first define a Bregman gradient operator as follows:

pβ,g(u1, u2) := argmin

{
〈∇g(u1), u〉+

1

β
Di(u, u2) : u ∈ Ei

}
.

Writing the optimality conditions for (10) together with formal computations (see (Bauschke et al., 2017, Section 3.1) for
the details), we can prove that

Gproxβ,φ,g(u1, u2) = proxβ,φ (pβ,g(u1, u2)) ,

and
pβ,g(u1, u2) = ∇H∗i (∇Hi(u2)− β∇g(u1)) , (19)

where H∗i is the conjugate function of Hi. From (19), we see that the calculation of pβ,g(u1, u2) depends on the calculation
of∇H∗i . Hence, once we can evaluate H∗i , it is straighforward to evaluate pβ,g(u1, u2). A very simple example is the case
Di (u, u2) = 1

2 ‖u− u2‖22 for which pβ,g(u1, u2) = u2 − β∇g(u1); see (Auslender & Teboulle, 2006; Bauschke et al.,
2017; Teboulle, 2018) for more examples. Regarding to the evaluation of (9) in the general setting of Bregman distances, we
note that the evaluation can be very difficult and refer the readers to (Bauschke et al., 2017, Section 5), (Bolte et al., 2018,
Section 5) and (Teboulle, 2018, Section 6) for some specific examples and discussions.

B. Proofs
B.1. Proof of Proposition 1

Proof for IBP

(i) Applying Lemma 4 for (11) with β = β
(k,j)
i , w = x

(k,j−1)
i , w+ = x

(k,j)
i , ŵ = x̂i we have

F
(k,j)
i

(
x

(k,j)
i

)
+ 1

β
(k,j)
i

Di

(
x

(k,j)
i , x

(k,j−1)
i

)
≤ F (k,j)

i

(
x

(k,j−1)
i

)
+ 1

β
(k,j)
i

〈
∇Hi (x̂i)−∇Hi

(
x

(k,j−1)
i

)
, x

(k,j)
i − x(k,j−1)

i

〉
(a)

≤ F
(k,j)
i

(
x

(k,j−1)
i

)
+

LHi

β
(k,j)
i

∥∥∥x̂i − x(k,j−1)
i

∥∥∥ ∥∥∥x(k,j)
i − x(k,j−1)

i

∥∥∥
(b)

≤ F
(k,j)
i

(
x

(k,j−1)
i

)
+

(
LHi

α
(k,j)
i

)2

2νσiβ
(k,j)
i

∥∥∥x(k,j−1)
i − yi

∥∥∥2

+ σiν

2β
(k,j)
i

∥∥∥x(k,j)
i − x(k,j−1)

i

∥∥∥2

,

where we use the Lipschitz continuity of∇Hi in (a), use (5) and the inequality ab ≤ a2/(2s) + sb2/2 in (b). Together with
the inequality Di (w1, w2) ≥ σi

2 ‖w1 − w2‖2 (see Lemma 2) and noting that F
(
x(k,j)

)
= F

(k,j)
i

(
x

(k,j)
i

)
, we get

F
(
x(k,j)

)
+ σi(1−ν)

2β
(k,j)
i

∥∥∥x(k,j)
i − x(k,j−1)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

(
LHi

α
(k,j)
i

)2

2νσiβ
(k,j)
i

∥∥∥x(k,j−1)
i − yi

∥∥∥2

. (20)

Note that yi, x
(k,j−1)
i and x(k,j)

i are 3 consecutive iterates of x̄(k,−1)
i , . . . , x̄

(k,dki )
i . Summing up Inequality (20) for j = 1 to

Tk, and combining with (13) we obtain

F
(
x(k,Tk)

)
+
∑s
i=1

∑dki
m=1 δθ

(k,m+1)
i

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x(k,0)

)
+
∑s
i=1

∑dki
m=1 θ

(k,m)
i

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

,
(21)

which implies

F
(
x̃(k)

)
+
∑s
i=1 δθ

(k,dki +1)
i

∥∥∥x̄(k,dki )
i − x̄(k,dki−1)

i

∥∥∥2

+
∑s
i=1

∑dki−1
m=1 (δ − 1)θ

(k,m+1)
i

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x̃(k−1)

)
+
∑s
i=1 θ

(k,1)
i

∥∥∥x̃(k−1)
i −

(
x̃

(k−1)
prev

)
i

∥∥∥2

,

(22)
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where
∑b
i=a(.)i = 0 if a > b. Note that

∥∥∥x̄(k,dki )
i − x̄(k,dki−1)

i

∥∥∥2

=
∥∥∥x̃(k)

i −
(
x̃

(k)
prev

)
i

∥∥∥2

. Hence from (22) we get

F
(
x̃(k)

)
+ δ

∑s
i=1 θ

(k+1,1)
i

∥∥∥x̃(k)
i −

(
x̃

(k)
prev

)
i

∥∥∥2

+
∑s
i=1

∑dki−1
m=1 (δ − 1)θ

(k,m+1)
i

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x̃(k−1)

)
+
∑s
i=1 θ

(k,1)
i

∥∥∥x̃(k−1)
i −

(
x̃

(k−1)
prev

)
i

∥∥∥2

.

(23)

Summing up Inequality (23) from k = 1 to k = K we obtain

F
(
x̃(K)

)
+ (δ − 1)

K∑
k=1

s∑
i=1

θ
(k+1,1)
i

∥∥∥x̃(k)
i −

(
x̃(k)

prev

)
i

∥∥∥2

+

K∑
k=1

s∑
i=1

dki−1∑
m=1

(δ − 1)θ
(k,m+1)
i

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x̃(0)

)
+

s∑
i=1

θ
(1,1)
i

∥∥∥x̃(0)
i − x̃

(−1)
i

∥∥∥2

.

(24)

Note that F is lower bounded and θ(k,m)
i ≥W1 > 0. We deduce the result from (24).

(ii) We derive from Proposition 1 (i) that

{∥∥∥x̃(k) − x̃(k)
prev

∥∥∥}
k≥1

and


dki∑
m=1

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥

k≥1

converge to 0. (25)

By Assumption 1, dki ≥ 1 and dki is finite. We also note that x̄
(kn,d

kn
i )

i = x̃
(kn)
i . Therefore, as∑dkn

i
m=1

∥∥∥x̄(kn,m)
i − x̄(kn,m−1)

i

∥∥∥ → 0, we deduce that
{
x̄

(kn,m)
i

}
m=0,...,dkn

i

also converges to x∗i . Then, let k in (25)

be kn − 1 and note that x̄(kn,0)
i = x̃

(kn−1)
i , x̄(kn,−1)

i =
(
x̃

(kn−1)
prev

)
i
. We thus have x̄(kn,−1)

i → x∗i . At the kn-th inner loop,

we recall that x̂i = x̄
(kn,m−1)
i + ᾱ

(kn,m)
i

(
x̄

(kn,m−1)
i − x̄(kn,m−2)

i

)
. Hence x̂i also converges to x∗i . From (11), for all

xi ∈ Ei we have

f
(
x(kn,j)

)
+ ri

(
x̄

(kn,m)
i

)
+ 1

β̄
(kn,m)
i

Di

(
x̄

(kn,m)
i , x̂i

)
≤ f (kn,j)

i (xi) + ri (xi) + 1

β̄
(kn,m)
i

Di (xi, x̂i) .
(26)

In (26), let xi = x∗i and let n→∞ to get lim supn→∞ ri

(
x̄

(kn,m)
i

)
≤ ri (x∗i ) . Furthermore, as ri is lower semicontinuous,

we have lim infn→∞ ri

(
x̄

(kn,m)
i

)
≥ ri (x∗i ). This completes the proof.

Proof for IBPG

(i) From the assumption that∇f (k,j)
i is L̄(k,m)

i -Lipschitz continuous, we have

f
(k,j)
i

(
x̄

(k,m)
i

)
≤ f (k,j)

i

(
x̄

(k,m−1)
i

)
+
〈
∇f (k,j)

i

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
+
L̄

(k,m)
i

2

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

.

(27)
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Applying Lemma 4 with φ(w) =
〈
∇f (k,j)

i (x̀i) , w − x̄(k,m−1)
i

〉
+ ri (w), w+ = x̄

(k,m)
i , ŵ = x̂i, and w = x̄

(k,m−1)
i we

get 〈
∇f (k,j)

i (x̀i) , x̄
(k,m)
i − x̄(k,m−1)

i

〉
+ ri

(
x̄

(k,m)
i

)
+

1

β̄
(m)
i

Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
≤ ri

(
x̄

(k,m−1)
i

)
+

1

β̄
(m)
i

〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
.

(28)

Note that σi

2

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
. From (27) and (28), we get

f
(k,j)
i

(
x̄

(k,m)
i

)
+ ri

(
x̄

(k,m)
i

)
≤ f (k,j)

i

(
x̄

(k,m−1)
i

)
+
〈
∇f (k,j)

i

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
+ ri

(
x̄

(k,m)
i

)
+
L̄

(k,m)
i

σi
Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
≤ f (k,j)

i

(
x̄

(k,m−1)
i

)
+
〈
∇f (k,j)

i

(
x̄

(k,m−1)
i

)
−∇f (k,j)

i (x̀i), x̄
(k,m)
i − x̄(k,m−1)

i

〉
+

(
L̄

(k,m)
i

σi
− 1

β̄
(k,m)
i

)
Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
+ ri

(
x̄

(k,m−1)
i

)
+

1

β̄
(k,m)
i

〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
.

This implies

f
(k,j)
i

(
x̄

(k,m)
i

)
+ ri

(
x̄

(k,m)
i

)
+

(κ− 1)L̄
(k,m)
i

2

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ f (k,j)
i

(
x̄

(k,m−1)
i

)
+ ri

(
x̄

(k,m−1)
i

)
+ L̄

(k,m)
i

∥∥∥x̀i − x̄(k,m−1)
i

∥∥∥ ∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥
+
κLHi

L̄
(k,m)
i

σi

∥∥∥x̂i − x̄(k,m−1)
i

∥∥∥∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥
= f

(k,j)
i

(
x̄

(k,m−1)
i

)
+ ri

(
x̄

(k,m−1)
i

)
+

(
γ̄

(k,m)
i +

κLHi
ᾱ

(k,m)
i

σi

)
L̄

(k,m)
i

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥
Note that x(k,j)

i = x̄
(k,m)
i , x(k,j−1)

i = x̄
(k,m−1)
i . We apply the Young inequality to get

F
(
x(k,j)

)
+

(κ− 1)L̄
(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+
ν(κ− 1)L̄

(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

+
1

2

(
γ̄

(k,m)
i +

κLHi ᾱ
(k,m)
i

σi

)2
L̄

(k,m)
i

ν(κ− 1)

∥∥∥x̄(k,m−2)
i − x̄(k,m−1)

i

∥∥∥2

,

where 0 < ν < 1. We then have

F
(
x(k,j)

)
+

(1− ν)(κ− 1)L̄
(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

1

2

(
γ̄

(k,m)
i +

κLHi ᾱ
(k,m)
i

σi

)2
L̄

(k,m)
i

ν(κ− 1)

∥∥∥x̄(k,m−2)
i − x̄(k,m−1)

i

∥∥∥2

.

(29)
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Summing up Inequality (29) from j = 1 to Tk we obtain

F
(
x(k,Tk)

)
+

s∑
i=1

dki∑
m=1

(1− ν)(κ− 1)L̄
(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

≤ F
(
x(k,0)

)
+

s∑
i=1

dki∑
m=1

λ
(k,m)
i

∥∥∥x̄(k,m−2)
i − x̄(k,m−1)

i

∥∥∥2

.

Together with Condition (14), we see that this inequality is similar to (21). Hence, we can use the same technique as in the
proof for IBP to obtain the result.

(ii) For all xi ∈ Ei, from (12) have〈
∇f (k,j)

i (x̀i), x̄
(k,m)
i

〉
+ ri

(
x̄

(k,m)
i

)
+

1

β̄k,mi
Di

(
x̄

(k,m)
i , x̂i

)
≤
〈
∇f (k,j)

i (x̀i), xi

〉
+ ri (xi) +

1

β̄k,mi
Di (xi, x̂i) .

(30)

Similarly to the proof for IBP, we can prove x̀i → x∗i , x̂i → x∗i ; and consequently, by choosing xi = x∗i in (30) we have

ri

(
x̄

(kn,m)
i

)
→ ri(x

∗
i ) as n→∞.

B.2. Proof of Remark 1

Applying Lemma 5 for (11) we have

F
(i,j)
i

(
x̄

(k,m)
i

)
+ 1

β̄
(k,m)
i

Di

(
x̄

(k,m)
i , x̂

)
+ 1

β̄
(k,m)
i

Di

(
x̄

(k,m−1)
i , x̄

(k,m)
i

)
≤ F (i,j)

i

(
x̄

(k,m)
i

)
+ 1

β̄
(k,m)
i

Di

(
x̄

(k,m−1)
i , x̂

)
.

Applying Lemma 3, we get

Di

(
x̄

(k,m)
i , x̂i

)
−Di

(
x̄

(k,m−1)
i , x̂i

)
= Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
−
〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
.

(31)

Therefore, we have

F
(k,j)
i

(
x̄

(k,m)
i

)
+ 2

β̄
(k,m)
i

Di

(
x̄

(k,m−1)
i , x̄

(k,m)
i

)
≤ F (k,j)

i

(
x̄

(k,m)
i

)
+ 1

β̄
(k,m)
i

〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
≤ F (k,j)

i

(
x̄

(k,m)
i

)
+ LHi

ᾱ
(k,m)
i

β̄
(k,m)
i

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥
≤ F (k,j)

i

(
x̄

(k,m)
i

)
+ νσi

β̄
(k,m)
i

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

+

(
LHi

ᾱ
(k,m)
i

)2

4νσiβ̄
(k,m)
i

∥∥∥x̄(k,m−2)
i − x̄(k,m−1)

i

∥∥∥2

.

We then obtain

F
(
x(k,j)

)
+ (1−ν)σi

β̄
(k,m)
i

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

(
LHi

ᾱ
(k,m)
i

)2

4νσiβ̄
(k,m)
i

∥∥∥x̄(k,m−2)
i − x̄(k,m−1)

i

∥∥∥2

.
(32)

We have obtained an inequality which is similar to (20). We therefore continue with the same technique as in the proof of
Proposition 1 to get the result.
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B.3. Proof of Remark 2

If ri is convex then
〈
∇f (k,j)

i (x̀i), w − x̄(k,m−1)
i

〉
+ ri(w) is also convex. Applying Lemma 5 for (12) we have〈

∇f (k,j)
i (x̀i), x̄

(k,m)
i − x̄(k,m−1)

i

〉
+ ri(x̄

(k,m)
i ) +

L̄
(k,m)
i

σi
Di

(
x̄

(k,m)
i , x̂i

)
+
L̄

(k,m)
i

σi
Di

(
x̄

(k,m−1)
i , x̄

(k,m)
i

)
≤ ri(x̄(k,m−1)

i ) +
L̄

(k,m)
i

σi
Di

(
x̄

(k,m−1)
i , x̂i

)
.

(33)

Together with (27) we have

f
(k,j)
i

(
x̄

(k,m)
i

)
+ ri

(
x̄

(k,m)
i

)
+

L̄
(k,m)
i

σi
Di

(
x̄

(k,m)
i , x̂i

)
≤ f (k,j)

i

(
x̄

(k,m−1)
i

)
+ ri

(
x̄

(k,m−1)
i

)
+

L̄
(k,m)
i

σi
Di

(
x̄

(k,m−1)
i , x̂i

)
+
〈
∇f (k,j)

i

(
x̄

(k,m−1)
i

)
−∇f (k,j)

i (x̀i), x̄
(k,m)
i − x̄(k,m−1)

i

〉
.

(34)

Together with (31) we obtain

F
(
x(k,j)

)
+

L̄
(k,m)
i

σi
D
(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
≤ F

(
x(k,j−1)

)
+

L̄
(k,m)
i

σi

〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m−1)
i

)
, x̄

(k,m)
i − x̄(k,m−1)

i

〉
+
〈
∇f (k,j)

i

(
x̄

(k,m−1)
i

)
−∇f (k,j)

i (x̀i), x̄
(k,m)
i − x̄(k,m−1)

i

〉
,

from which we have

F
(
x(k,j)

)
+

L̄
(k,m)
i

2

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

L̄
(k,m)
i LHi

σi
ᾱ

(k,m)
i

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥
+L̄

(k,m)
i γ̄

(k,m)
i

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥
≤ F

(
x(k,j−1)

)
+

νL̄
(k,m)
i

2

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

+ 1
2

(
LHi

ᾱ
(k,m)
i

σi
+ γ̄

(k,m)
i

)2
L̄

(k,m)
i

ν

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

,

where 0 < ν < 1. Therefore, we have

F
(
x(k,j)

)
+

(1−ν)L̄
(k,m)
i

2

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+ 1

2

(
LHi

ᾱ
(k,m)
i

σi
+ γ̄

(k,m)
i

)2
L̄

(k,m)
i

ν

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

.
(35)

We get a similar inequality with (29). Summing up Inequality (35) from j = 1 to Tk and continuing with the same techniques
as in the proof of Proposition 1, we get the result.

B.4. Proof of Remark 3

Using the technique in (Xu & Yin, 2013, Lemma 2.1), we first prove that

F
(
x(k,j)

)
+

(1−ν)L̄
(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

((
γ̄

(k,m)
i

)2

+

(
γ̄
(k,m)
i −ᾱ(k,m)

i

)2

ν

)
L̄

(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

.
(36)

Indeed, we derive from (12) that〈
∇f (k,j)

i (x̀i) + ḡ
(k,m)
i +

∇Hi

(
x̄

(k,m)
i

)
−∇Hi (x̂i)

β̄
(k,m)
i

, x̄
(k,m−1)
i − x̄(k,m)

i

〉
≥ 0, (37)
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where ḡ(k,m)
i ∈ ∂ri

(
x̄

(k,m)
i

)
. On the other hand, since ri is convex and f (k,j)

i is L̄(k,m)
i -smooth , we have ri

(
x̄

(k,m−1)
i

)
−

ri

(
x̄

(k,m)
i

)
≥
〈
ḡ

(k,m)
i , x̄

(k,m−1)
i − x̄(k,m)

i

〉
, and

f
(k,j)
i (x̀i)− f (k,j)

i

(
x̄

(k,m)
i

)
+
L̄

(k,m)
i

2

∥∥∥x̀i − x̄(k,m)
i

∥∥∥2

≥
〈
∇f (k,j)

i (x̀i), x̀i − x̄(k,m)
i

〉
.

Together with (37) we have

ri

(
x̄

(k,m−1)
i

)
− ri

(
x̄

(k,m)
i

)
− f (k,j)

i

(
x̄

(k,m)
i

)
+ f

(k,j)
i (x̀i) +

L̄
(k,m)
i

2

∥∥∥x̀i − x̄(k,m)
i

∥∥∥2

≥ 1

β̄
(k,m)
i

〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m)
i

)
, x̄

(k,m−1)
i − x̄(k,m)

i

〉
−
〈
∇f (k,j)

i (x̀i), x̄
(k,m−1)
i − x̀i

〉
.

We then apply the convexity property of f (k,j)
i to obtain

ri

(
x̄

(k,m)
i

)
+ f

(k,j)
i

(
x̄

(k,m)
i

)
+ 1

β̄
(k,m)
i

〈
∇Hi (x̂i)−∇Hi

(
x̄

(k,m)
i

)
, x̄

(k,m−1)
i − x̄(k,m)

i

〉
≤ ri

(
x̄

(k,m−1)
i

)
+ f

(k,j)
i

(
x̄

(k,m−1)
i

)
+

L̄
(k,m)
i

2

∥∥∥x̀i − x̄(k,m)
i

∥∥∥2

.

Note that Hi(xi) = ‖xi‖2 /2. We then have

F
(
x(k,j)

)
+ 1

β̄
(k,m)
i

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

L̄
(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

+
L̄

(k,m)
i

(
γ̄
(k,m)
i

)2

2

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

+L̄
(k,m)
i

(
γ̄

(k,m)
i − ᾱ(k,m)

i

)〈
x̄

(k,m−1)
i − x̄(k,m−2)

i , x̄
(k,m−1)
i − x̄(k,m)

i

〉
,

which implies that

F
(
x(k,j)

)
+

L̄
(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

≤ F
(
x(k,j−1)

)
+

L̄
(k,m)
i

2

(
γ̄

(k,m)
i

)2 ∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

+ν
L̄

(k,m)
i

2

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

+
L̄

(k,m)
i

(
γ̄
(k,m)
i −ᾱ(k,m)

i

)2

2ν

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

.

Hence we get Inequality (36). In other words, we have a similar inequality with (29). We then continue with the same
techniques as in the proof of Proposition 1 to get the result.

B.5. Proof of Theorem 1

(i) Let n in (26) go to∞. We have that

F (x∗) ≤ F (x∗1, . . . , xi, . . . , x
∗
s) +

1

β̀
Di (xi, x

∗
i ) ,∀xi ∈ Ei. (38)

Inequality (38) shows that x∗i is a minimum point of xi 7→ F (x∗1, . . . , xi, . . . , x
∗
s)+ 1

β̀
Di (xi, x

∗
i ). Note that∇Di (xi, x

∗
i ) =

∇Hi(xi)−∇Hi(x
∗
i ), hence the directional derivative of xi 7→ Di (xi, x

∗
i ) at x∗i along di equals 0 for all di ∈ Ei. Hence,

from (38) we deduce that F ′ (x∗; (0, . . . , di, . . . , 0)) ≥ 0,∀di ∈ Ei. Together with the regularity assumption gives the
result.

When f is continuously differentiable, Attouch et al. (2010, Proposition 2.1) shows that ∂F (x∗) = {∂x1
F (x∗)} × . . .×

{∂xs
F (x∗)} . Together with (38) (which implies 0 ∈ ∂xi

F (x∗)), we obtain 0 ∈ ∂F (x∗).

(ii) As f (k,j)
i is L̄(k,m)

i -smooth, we have

f
(k,j)
i

(
x̄

(k,m)
i

)
≤ f (k,j)

i (xi) +
〈
∇f (k,j)

i (xi) , x̄
(k,m)
i − xi

〉
+
L̄

(k,m)
i

2

∥∥∥x̄(k,m)
i − xi

∥∥∥2

.
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Together with (30) we obtain

f
(k,j)
i

(
x̄

(k,m)
i

)
+ ri

(
x̄

(k,m)
i

)
≤ f (k,j)

i (xi) +
〈
∇f (k,j)

i (xi)−∇f (k,j)
i (x̀i) , x̄

(k,m)
i − xi

〉
+ ri(xi)

+
1

β̄k,mi
Di (xi, x̂i)−

1

β̄k,mi
Di

(
x̄

(k,m)
i , x̂i

)
+
L̄

(k,m)
i

2

∥∥∥x̄(k,m)
i − xi

∥∥∥2

≤ f (k,j)
i (xi) + ri(xi) +

〈
∇f (k,j)

i (xi)−∇f (k,j)
i

(
x̄

(k,m)
i

)
, x̄

(k,m)
i − xi

〉
+
〈
∇f (k,j)

i

(
x̄

(k,m)
i

)
−∇f (k,j)

i (x̀i) , x̄
(k,m)
i − xi

〉
+

1

β̀
Di(xi, x̂i)

+
Ĺ

2σi
Di

(
xi, x̄

(k,m)
i

)
.

(39)

Let k = kn in (39). Similarly to the proof of Theorem 1(i), we take n→∞ to obtain

F (x∗) ≤ f(x∗1, . . . , xi, . . . , x
∗
s) + ri(xi) +

(
1

β̆
+

Ĺ

2σi

)
Di (xi, x

∗
i ) ,∀xi ∈ Ei.

Hence, 0 ∈ ∂xi
F (x∗). Together with ∂F (x∗) = {∂x1

F (x∗)} × . . .× {∂xs
F (x∗)}, this completes the proof.

B.6. Proof of Theorem 2

To prove Theorem 2, we use the same methodology established in (Bolte et al., 2014) (see the proof of (Bolte et al., 2014,
Theorem 1 (i))). It is worth noting that the same techniques were used in the recent paper (Ochs, 2019) to prove an abstract
inexact convergence theorem, see Section 3 of (Ochs, 2019).

We first prove that Φ is constant on the set w
(
z(0)
)

of all limit points of
{
z(k)

}
. Indeed, from Condition (B1), we derive

that Φ
(
z(k)

)
is non-increasing. Together with the fact that it is bounded from below, we deduce that Φ

(
z(k)

)
converges to

some value Φ̄. Therefore, Condition (B4) shows that if z̄ ∈ w
(
z(0)
)

then Φ (z̄) = Φ̄.

Condition (B1) and the fact that Φ is bounded from below imply
∥∥z(k) − z(k+1)

∥∥→ 0. As proved in (Bolte et al., 2014,
Lemma 5), we then have w

(
z(0)
)

is connected and compact.

If there exists an integer k̄ such that Φ
(
z(k̄)

)
= Φ̄ is trivial due to Condition (B1). Otherwise Φ (z̄) < Φ

(
z(k)

)
for all

k > 0. As Φ
(
z(k)

)
→ Φ̄, we derive that for any η > 0, there exists a positive integer k0 such that Φ

(
z(k)

)
< Φ (z̄) + η for

all k > k0. On the other hand, there exists a positive integer k1 such that dist
(
z(k), w

(
z(0)
))
< ε for all k > k1. Applying

Lemma 1 we have

ξ′
(

Φ
(
z(k)

)
− Φ (z̄)

)
dist

(
0, ∂Φ

(
z(k)

))
≥ 1, for any k > l := max{k0, k1}. (40)

From Condition (B2) we get

ξ′
(

Φ
(
z(k)

)
− Φ (z̄)

)
≥ 1

ρ3ζk−1
. (41)

Denote Ai,j = ξ
(
Φ(z(i))− Φ(z̄)

)
− ξ

(
Φ(z(j))− Φ(z̄)

)
. From the concavity of ξ, Condition (B1) and Inequality (41) we

obtain

Ak,k+1 ≥ ξ′
(

Φ
(
z(k)

)
− Φ (z̄)

) [
Φ
(
z(k)

)
− Φ

(
z(k+1)

)]
≥ ρ2ζ

2
k

ρ3ζk−1
.

Hence we get 2ζk ≤ 2
√

ρ3
ρ2
Ak,k+1ζk−1 ≤ ζk−1 + ρ3

ρ2
Ak,k+1. Summing these inequalities from k = l+ 1, . . . ,K we obtain

2

K∑
k=l+1

ζk ≤
K−1∑
k=l

ζk +
ρ3

ρ2

K∑
k=l+1

Ak,k+1 ≤
K∑

k=l+1

ζk + ζl +
ρ3

ρ2
Al+1,K+1.
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This implies that for all K > l we have

K∑
k=l+1

ζk ≤ ζl +
ρ3

ρ2
ξ
(

Φ
(
z(l+1)

)
− Φ̄

)
. (42)

Hence,
∑∞
k=1 ζk < +∞. Condition (B1) then gives us

∑∞
k=1

∥∥z(k+1) − z(k)
∥∥ < ∞. The whole sequence

{
z(k)

}
thus

converges to some z̄. Together with Condition (B2) and the closedness property of ∂Φ, we have 0 ∈ ∂Φ(z̄), that is, z̄ is a
critical point of Φ.

B.7. Proof of Theorem 3

Inequality (17) becomes
C(1− ω)dist(0, ∂Φ(z)) ≥ (Φ(z)− Φ(z̄))ω. (43)

If ω = 0 then let I := {k ∈ N : Φ(z(k)) > Φ(z∗)}. Suppose I is infinite, then the sequence
{

Φ(z(k))− Φ(z∗)
}
k∈I

of the

right side of (43) is just a constant 1. However, the left of (49) goes to 0. Hence I is finite; as such, the sequence {z(k)}
converges in a finite number of steps.

Denote ∆k =
∑∞
p=k ζp, we have

∆k ≥
∞∑
p=k

ρ1

ρ2

∥∥∥z(p) − z(p+1)
∥∥∥ ≥ ρ1

ρ2

∥∥∥z(k) − z̄
∥∥∥ .

Let us assume Φ(z(k)) > Φ(z∗) (the case Φ(z(k0)) = Φ(z∗) for some k0 is trivial, see proof of Theorem 2), and use the
same notations as in the proof of Theorem 2. From Inequality (42), which yields

∑K
l=k ζl ≤ ζk−1 + ρ3

ρ2
ξ
(
Φ
(
z(k)

)
− Φ̄

)
,

and Inequality (43) we have

∆k ≤ ∆k−1 −∆k +
ρ3

ρ2
C
(

Φ
(
z(k)

)
− Φ̄

)1−ω

≤ ∆k−1 −∆k +
ρ3

ρ2
C
(
C(1− ω)w(k)

)(1−ω)/ω

.

Together with Condition (B2) we obtain

∆k ≤ ∆k−1 −∆k +
ρ3

ρ2
C1/ω((1− ω)ρ3)(1−ω)/ω (∆k−1 −∆k)

(1−ω)/ω

We then can follow the same technique of the proof of (Attouch & Bolte, 2009, Theorem 2) to get the result.

B.8. Proof of Proposition 2

We first prove the following additional proposition. We remind that σ = min {σ1, . . . , σs} and LH = max {LH1 , . . . , LHs}.

Proposition 3 We have

(i) ϕ2
k ≥ 1

2(T̄−s+1)

∥∥Y (k) − Y (k+1)
∥∥2

.

(ii) Denote
∇H = (∇H1, . . . ,∇Hs) , and∇2H =

(
∇2H1, . . . ,∇2Hs

)
.

Let q(k) ∈ ∂F
(
x̃(k)

)
. Denote

q̂(k) =
(
q(k) + ρ∇H

(
x̃(k)

)
−∇H

(
x̃(k)

prev

)
, ρ∇2H

(
x̃(k)

prev

) [
x̃(k)

prev − x̃(k)
])
.

If f is smooth, then we have q̂(k) ∈ ∂Ψ
(
Y (k)

)
, and∥∥∥q̂(k)

∥∥∥2

≤ 2
∥∥∥q(k)

∥∥∥2

+O

(∥∥∥x̃(k) − x̃(k)
prev

∥∥∥2
)
. (44)
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Proof: (i) We use the inequality (a1 + . . .+ an)2 ≤ n(a2
1 + . . .+ a2

n) and d(k)
i ≤ T̄ − s+ 1 to obtain

ϕ2
k ≥

∑s
i=1

∑d
(k+1)
i
m=1

∥∥∥x̄(k+1,m)
i − x̄(k+1,m−1)

i

∥∥∥2

≥
∑s
i=1

(
1/d

(k+1)
i

)∥∥∥∥∥x̄
(
k+1,d

(k+1)
i

)
i − x̄(k+1,0)

i

∥∥∥∥∥
2

≥ 1
T̄−s+1

∥∥x̃(k+1) − x̃(k)
∥∥2
.

(45)

Note that
(
x̃

(k+1)
prev

)
i

= x̄

(
k+1,d

(k+1)
i −1

)
i . Similarly to (45), we have

ϕ2
k =

s∑
i=1

d
(k+1)
i −1∑
m=0

∥∥∥x̄(k+1,m)
i − x̄(k+1,m−1)

i

∥∥∥2

≥ 1

(T̄ − s+ 1)

∥∥∥x̃(k+1)
prev − x̃(k)

prev

∥∥∥2

. (46)

Summing up (45) and (46) we get the result.

(ii) Similarly to (Attouch et al., 2010, Proposition 2.1), we can prove that

∂Ψ (ý, y̆) = {∂F (ý) + ρ∇H(ý)−∇H(y̆)} ×
{
ρ∇2H (y̆) [y̆ − ý]

}
. (47)

Therefore, q̂(k) ∈ ∂Ψ
(
Y (k)

)
. We have∥∥∥q̂(k)

∥∥∥2

=
∥∥∥q(k) + ρ∇H

(
x̃(k)

)
− ρ∇H

(
x̃(k)

prev

)∥∥∥2

+ ρ2
∥∥∥∇2H

(
x̃(k)

prev

) [
x̃(k)

prev − x̃(k)
]∥∥∥2

≤ 2
∥∥∥q(k)

∥∥∥2

+ 2ρ2L2
H

∥∥∥x̃(k) − x̃(k)
prev

∥∥∥2

+ ρ2
∥∥∥∇2H

(
x̃(k)

prev

) [
x̃(k)

prev − x̃(k)
]∥∥∥2

,

where we use the inequality (a+ b)2 ≤ 2a2 + 2b2 and the Lipschitz continuity of ∇Hi. Finally, note that ∇2Hi � LHI,
where I is the identity operator. Then (44) follows. �

We now prove Proposition 2.

PROOF FOR IBP

For all k ≥ 0, we have
∥∥x̃(k)

∥∥ ≤ C1 (see Assumption 4) and
∥∥∥x̄(k,m)

i − x̄(k,m−1)
i

∥∥∥ ≤ C2 (see Proposition 1). Furthermore,∥∥∥x̄(k,m)
i

∥∥∥ ≤ ∥∥∥x̄(k,0)
i

∥∥∥+
∑m
j=1

∥∥∥x̄(k,j)
i − x̄(k,j−1)

i

∥∥∥. Hence,
∥∥∥x̄(k,m)

i

∥∥∥ ≤ C1 +mC2 ≤ C1 + (T̄ − s+ 1)C2. In other words,

the sequence
{
x̄

(k,m)
i

}
k≥0,m=1,...,dki

is bounded. Consequently, the sequence
{
x(k,j)

}
k≥0,j=1,...,Tk

is bounded.

(i) We denote∇if(x) = ∇xi
f(x) and let

q̄
(k,m)
i =

1

β̄
(k,m)
i

(
∇Hi (x̂i)−∇Hi

(
x̄

(k,m)
i

))
+∇if

(
x(k,Tk)

)
−∇f (k,j)

i

(
x

(k,j)
i

)
.

Let LG is the Lipschitz constant of ∇f on the bounded set containing the sequence
{
x(k,j)

}
k≥0,j=1,...,Tk

. From (11) we

get q̄(k,m)
i ∈ ∇if

(
x̃(k)

)
+ ∂ri

(
x̄

(k,m)
i

)
. Also note that ∇f (k,j)

i

(
x

(k,j)
i

)
= ∇if

(
x(k,j)

)
. Hence,

∥∥∥q̄(k,m)
i

∥∥∥2

≤
2LH

∥∥∥x̂i−x̄(k,m)
i

∥∥∥2

β + 2LG
∥∥x(k,j) − x(k,T )

∥∥2

≤ 4LH

β

∥∥∥x̄(k,m−1)
i − x̄(k,m)

i

∥∥∥2

+ 4LHα
2

β

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

+2LG
∥∥x(k,j) − x(k,T )

∥∥2
.

(48)

We also note that ∥∥x(k,j) − x(k,T )
∥∥2

= O
(∑T−1

i=j

∥∥x(k,i) − x(k,i+1)
∥∥2
)

= O

(∑s
i=1

∑d
(k)
i
m=1

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2
)
.
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Therefore, from (48) we deduce that
∥∥∥q̄(k,m)
i

∥∥∥2

= O
(
ϕ2
k−1

)
.

We now let q̄(k) =
(
q̄

(k,dk1 )
1 , . . . , q̄

(k,dks )
s

)
. Since q̄(k,dki )

i ∈ ∇if
(
x̃(k)

)
+ ∂ri

(
x̃

(k)
i

)
, we have q̄(k) ∈ ∂F

(
x̃(k)

)
by

Proposition 3. From
∥∥∥q̄(k,dki )
i

∥∥∥2

= O
(
ϕ2
k−1

)
, we can easily obtain

∥∥q̄(k)
∥∥ = O (ϕk−1). Hence, there exists a positive

number ρ3 such that ∥∥∥q̄(k+1)
∥∥∥ ≤ ρ3ϕk. (49)

Combined with Proposition 3(ii), we get the result.

(ii) From Inequality (21), we have

F
(
x̃(k−1)

)
+ 2W2

σ

∑s
i=1

∑dki
m=1Di

(
x̄

(k,m−1)
i , x̄

(k,m−2)
i

)
≥ F

(
x̃(k)

)
+W2

∑s
i=1

∑dki
m=1

∥∥∥x̄(k,m−1)
i − x̄(k,m−2)

i

∥∥∥2

≥ F
(
x̃(k)

)
+ δW1

∑s
i=1

∑dki
m=1

∥∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥∥2

≥ F
(
x̃(k)

)
+ 2δW1

LH

∑s
i=1

∑dki
m=1Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
.

(50)

Denote

ak =

s∑
i=1

dki∑
m=1

Di

(
x̄

(k,m−1)
i , x̄

(k,m−2)
i

)
and bk =

s∑
i=1

dki∑
m=1

Di

(
x̄

(k,m)
i , x̄

(k,m−1)
i

)
.

From (50) we get F
(
x̃(k−1)

)
+ 2W2

σ ak ≥ F
(
x̃(k)

)
+ 2δW1

LH
bk. We thus obtain

F
(
x̃(k−1)

)
+ ρak − F

(
x̃(k)

)
− ρbk ≥

(
δW1

LH
− W2

σ

)
(ak + bk)

≥
(
δW1

LH
− W2

σ

)
σ
2ϕ

2
k = ρ2ϕ

2
k.

(51)

Note that ak − bk = D
(
x̃(k−1), x̃

(k−1)
prev

)
−D

(
x̃(k), x̃

(k)
prev

)
and ak + bk ≥ σ

2ϕ
2
k−1. Hence, from (51) we deduce that

F
(
x̃(k)

)
+ ρD

(
x̃(k), x̃(k)

prev

)
− F

(
x̃(k+1)

)
− ρD

(
x̃(k+1), x̃(k+1)

prev

)
≥ ρ2ϕ

2
k.

Together with (18) we obtain the result.

PROOF FOR IBPG

(i) Let

q̄
(k,m)
i =

1

β̄
(k,m)
i

(
∇Hi (x̂i)−∇Hi

(
x̄

(k,m)
i

))
+∇if

(
x(k,Tk)

)
−∇f (k,j)

i (x̀i) .

From (12), we get q̄(k,m)
i ∈ ∇if

(
x̃(k)

)
+ ∂ri

(
x̄

(k,m)
i

)
. Let us recall that the sequences

{
x̄

(k,m)
i

}
k≥0,m=1,...,dki

and{
x(k,j)

}
k≥0,j=1,...,Tk

are bounded. Furthermore, we have

‖x̀i‖ =
∥∥∥x̄(k,m−1)

i + γ̄
(k,m)
i

(
x̄

(k,m−1)
i − x̄(k,m−2)

i

)∥∥∥
≤
∥∥∥x̄(k,m−1)

i

∥∥∥+ γ
∥∥∥x̄(k,m−1)

i − x̄(k,m−2)
i

∥∥∥ .
Hence, x̀i is also bounded. As a consequence, the value of x̀, which is formed by replacing the i-th block of x(k,j−1) by
x̀i = x̄

(k,m−1)
i + γ̄

(k,m)
i

(
x̄

(k,m−1)
i − x̄(k,m−2)

i

)
, is also bounded. Let LG be the Lipschitz constant of∇f on the bounded
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set containing x(k,j) and x̀. Note that∇if (x̀) = ∇f (k,j)
i (x̀i). We have∥∥∥∇if (x(k,Tk)

)
−∇f (k,j)

i (x̀i)
∥∥∥2

=
∥∥∥∇if (x(k,Tk)

)
−∇if

(
x(k,j)

)
+∇if

(
x(k,j)

)
−∇if (x̀)

∥∥∥2

≤ 2LG

∥∥∥x(k,Tk) − x(k,j)
∥∥∥2

+ 2LG

∥∥∥x(k,j) − x̀
∥∥∥2

= 2LG

∥∥∥x(k,Tk) − x(k,j)
∥∥∥2

+ 2LG

∥∥∥x̄(k,m)
i − x̀i

∥∥∥2

.

We then continue with the same technique as in the proof for IBP to get the bound in (49).

(ii) The proof is follows exactly the same steps as for IBP.

B.9. Proof of Theorem 4

We now use Theorem 2 to prove the global convergence for both IBP and IBPG. We verify the Conditions (B1)-(B4) in
Theorem 2 for the auxiliary function Ψ and the sequence

{
Y (k)

}
k∈N. Proposition 3(i) and Proposition 2 show that the

Conditions (B1) and (B2) are satisfied. Since F is a KL-function, Ψ is also a KL function. Hence Condition (B3) is satisfied.

Suppose Y ∗ ∈ w
(
Y (0)

)
is a limit point of

{
Y (k)

}
, then there exists a subsequence {kn} such that

{
Y (kn)

}
={(

x̃(kn), x̃
(kn)
prev

)}
converges to Y ∗. We remind that if

{
x̃(kn)

}
converges to x∗ then

{
x̃

(kn)
prev

}
also converges to x∗.

Hence Y ∗ = (x∗, x∗). Moreover, from Theorem 1, we have x∗ is a critical point of F , that is, 0 ∈ ∂F (x∗). Hence, we
derive from (47) that 0 ∈ ∂Ψ(Y ∗), that is, Y ∗ is a critical point of Ψ. On the other hand, from Proposition 1(ii) we have
F
(
x̃(kn)

)
→ F (x∗) (choose m = dkni ). Therefore, (18) implies that Ψ

(
Y (kn)

)
converges to Ψ(Y ∗). And consequently,

Condition (B4) is satisfied. Applying Theorem 2, we have that the sequence
{
Y (k)

}
converges to (x∗, x∗). Hence the

sequence
{
x̃(k)

}
converges to x∗.

B.10. Proof of Remark 4

Let us prove it for IBPG, it would be similar for IBP. Indeed, such δ would exist if we have (1−ν)(κ−1)L̄
(k,m)
i

2λ
(k,m+1)
i

> LHW2

σW1
,

which would be satisfied if ν(1−ν)(κ−1)2L̄
(k,m)
i

L̄
(k,m+1)
i ξ

(k,m+1)
i

> LHW2

σW1
, where ξ(k,m)

i =
(
γ̄

(k,m)
i +

κLHi
ᾱ

(k,m)
i

σi

)2
. In other words, δ would

exist if we have
σν(1− ν)(κ− 1)2L̄

(k,m)
i

LH L̄
(k,m+1)
i

W1

W2
> ξ

(k,m+1)
i . (52)

Suppose ξ1 ≤ ξk,mi ≤ ξ2 and 0 < L1 ≤ L̄(k,m) ≤ L2. We then have W1

W2
= ξ1L1

ξ2L2
, and (52) holds if

σν(1−ν)(κ−1)2L̄
(k,m)
i L1

LH L̄
(k,m+1)
i L2

> ξ2. Therefore, if we choose in advance two constants ξ1 and ξ2 such that ξ2 <
σν(1−ν)(κ−1)2L2

1

LHL2
2

and 0 < ξ1 < ξ2, then there always exists ξ(k,m)
i accordingly such that Condition (52) is satisfied.

C. Additional experiments
C.1. Experiments on NMF

FULL-RANK SYNTHETIC DATA SETS

Two full-rank matrices of size 200 × 200 and 200 × 500 are generated by MATLAB command X = rand(m,n). We
take r = 20. For each matrix X , we run all algorithms with the same 50 random initializations W0 = rand(m, r) and
V0 = rand(r,n), and for each initialization we run each algorithm for 20 seconds. Figure 3 illustrates the evolution of the
average of E(k) over 50 initializations with respect to time.

We then generate 80 full-rank matrices X = rand(m,n), with m and n being random integer numbers in the interval
[200,500]. For each matrix X , we run the algorithms for 20 seconds with a single random initialization. Table 4 reports the
average, standard deviation (std) and ranking of the relative errors.
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Figure 3. Average value of E(k) with respect to time on 2 random full-rank matrices: 200× 200 (left) and 200× 500 (right).

Table 4. Average, standard deviation and ranking of the value of E(k) at the last iteration among the different runs on full-rank synthetic
data sets. The best performance is highlighted in bold.

Algorithm mean ± std ranking
A-HALS 0.450056± 7.688 10−3 ( 5, 17, 11, 10, 10, 11, 16)

E-A-HALS 0.450055± 7.684 10−3 (13, 11, 8, 17, 8, 7, 16)
IBPG-A 0.450052± 7.682 10−3 (25, 5, 11, 7, 7, 16, 9)

IPG 0.450057± 7.686 10−3 (14, 14, 10, 10, 11, 16, 5)
APGC 0.450060± 7.682 10−3 ( 7, 7, 18, 12, 12, 9, 15)
IBPG 0.450062± 7.671 10−3 (13, 10, 10, 10, 18, 7, 12)

iPALM 0.450060± 7.683 10−3 ( 4, 15, 12, 15, 15, 12, 7)

We observe the following:

• In both cases, IBPG-A and E-A-HALS have similar convergence rate, but IBPG-A converges to better solution than
E-A-HALS more often. IBPG-A outperforms the others.

• IBPG performs better than APGC and iPALM in terms of final error obtained, while the convergence speeds are similar.

SPARSE DOCUMENT DATA SETS

We test the algorithms on the same six sparse document data sets with r = 10 as in (Ang & Gillis, 2019). Figure 4 reports
the evolution of the average of E(k) over 35 initializations, and Table 5 reports the average error, standard deviation and
ranking of the final value of E(k) among the 210 runs (6 data sets with 35 initializations for each data set).

For these sparse datasets, E-A-HALS converges with the fastest rate, followed by IBPG-A. However, IBPG-A generates in
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Figure 4. Average value of E(k) with respect to time on 6 document data sets: Classic (top left), Hitech (top right), La1 (middle left),
Ohscal (middle right), Reviews (bottom left) and Sports (bottom right).

average the best final solutions.
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Table 5. Average, standard deviation and ranking of the value of E(k) at the last iteration among the different runs on the document data
sets. The best performance is highlighted in bold.

Algorithm mean ± std ranking
E-A-HALS 0.881969± 3.021 10−2 (73, 55, 82)

IBPG-A 0.881921± 3.021 10−2 (87, 68, 55)
APGC 0.881992± 3.019 10−2 (51, 86, 73)

C.2. Non-negative approximate canonical polyadic decomposition (NCPD)

We consider the following NCPD problem: given a non-negative tensor T ∈ RI1×I2×...×IN and a specified order r, solve

min
X(1),...,X(N)

f :=
1

2

∥∥∥T −X(1) ◦ . . . ◦X(N)
∥∥∥2

F
such that X(n) ∈ RIn×r+ , n = 1, . . . , N, (53)

where the Frobenius norm of a tensor T ∈ RI1×I2×...×IN is defined as ‖T‖F =
√∑

i1,...,iN
T 2
i1i2...iN

, and the tensor

product X = X(1) ◦ . . . ◦X(N) is defined as

Xi1i2...iN =

r∑
j=1

X
(1)
i1j
X

(2)
i2j

. . . X
(N)
iN j

, for in ∈ {1, . . . , In}, n = 1, . . . , N.

Here X(n)
ij is the (i, j)-th element of X(n). Let us denote

B(i) = X(N) � · · · �X(i+1) �X(i−1) � · · · �X(1), (54)

where � is the Khatri-rao product. Then the gradient of f with respect to X(i) is

∇X(i)f =
(
X(i)

(
B(i)

)T − T[i]

)
B(i), (55)

where T[i] is the mode-i matricization of T . We see that the gradient ∇X(i)f is Lipschitz continuous with the constant

L(i) = ‖
(
B(i)

)T
B(i)‖, where B(i) is defined in (54) and ‖ · ‖ is the operator norm.

As for NMF, we can write (53) as a problem of the form (1) with s = N variables. We then can apply IBPG for NCPD and
use the same extrapolation parameters as NMF, see Section 3.3. DenoteB(p)

k−1 = X
(N)
k−1�· · ·�X

(p+1)
k−1 �X

(p−1)
k �· · ·�X(1)

k

and L(p)
k =

∥∥∥(B(p)
k

)T
B

(p)
k

∥∥∥. Algorithm 3 describes the pseudo code of IBPG when applied for solving the NCPD problem

(53). Step 5 of Algorithm 3 indicates that we cyclically update the factors X(i). Note that IBPG described in Algorithm 1
allows to randomly select one factor among the N factors to update as long as all factors are updated after Tk iterations,
leading to other variants of IBPG when applied to solve the NCPD problem. In our experiments, we implement Algorithm 3,
which is the cyclic update version.

In the following, we consider the three-way NCPD problem, i.e.,

min
U,V,W

f := ‖T − U ◦ V ◦W‖2F such that U ∈ RI×r+ , V ∈ RJ×r+ ,W ∈ RK×r+ .

and compare our algorithm IBPG-A (i.e., Step 8–10 of Algorithm 3 are repeated several times for updating each factor U ,
V , W before doing so for the next factor) with APGC (Xu & Yin, 2013), A-HALS (Cichocki et al., 2009; Gillis & Glineur,
2012), and ADMM (Huang et al., 2016). We note that it was empirically showed in (Xu & Yin, 2013, Section 4.2) that
APGC outperforms the two ANLS based methods that are ANLS active set methods and ANLS block pivot methods.

Similarly to the NMF experiments, we define the relative errors relerrork =
‖X−U(k)◦V (k)◦W (k)‖

F

‖X‖F
andE(k) = relerrork−

emin.
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Algorithm 3 IBPG for NCPD

1: Initialization: Choose δw = 0.99, β = 1.01, t0 = 1, and initial factor matrices
(
X

(1)
−1 , . . . , X

(N)
−1

)
=
(
X

(1)
0 , . . . , X

(N)
0

)
.

Set k = 1.
2: Set X(i)

pr = X
(i)
−1, i = 1, . . . , N . % X

(i)
pr is to save the previous value of block i.

3: Set X(i)
cr = X

(i)
0 , i = 1, . . . , N . % A

(i)
cr is to save the current value of block i.

4: repeat
5: for i = 1, . . . , N do
6: Compute tk = 1

2

(
1 +

√
1 + 4t2k−1

)
, ŵk−1 = tk−1−1

tk
and

w
(i)
k−1 = min

ŵk−1, δw

√√√√L
(i)
k−2

L
(i)
k−1

 .

7: repeat
8: Compute two extrapolation points

X̂(i,1) = X(i)
cr + w

(i)
k−1

(
X(i)

cr −X(i)
pr

)
,

and
X̂(i,2) = X(i)

cr + βw
(i)
k−1

(
X(i)

cr −X(i)
pr

)
9: Set X(i)

pr = X
(i)
cr .

10: Update X(i)
cr by projected gradient step:

X(i)
cr = max

(
0, X̂(i,2) − 1

L
(i)
k−1

(
X̂(i,1)

(
B

(i)
k−1

)T − T[i]

)
B

(i)
k−1

)
.

11: until some criteria is satisfied
12: Set X(i)

k = X
(i)
cr .

13: end for
14: Set k = k + 1.
15: until some criteria is satisfied

C.2.1. EXPERIMENTS WITH SYNTHETIC DATA SETS

Four three-way tensor of size 100× 100× 100, 100× 100× 500, 100× 500× 500 and 500× 500× 500 are generated
by letting X = U ◦ V ◦ V , where U , V and W are generated by commands rand(I, r), rand(J, r) and rand(K, r) with
r = 20. For each X we run all algorithms with the same 50 random initializations U0 = rand(I, r), V0 = rand(J, r) and
W0 = rand(K, r). For each initialization we run each algorithm for 20 seconds. Figure 5 illustrates the evolution of the
average of E(k) over 50 initializations with respect to time.

We observe that IBPG-A converges with the fastest rate followed by ADMM and A-HALS.

To compare the accuracy of the solutions, we generate 50 random I × J ×K tensors with I , J , K being random integer
numbers in the interval [100, 500]. For each tensor we run the algorithms for 20 seconds with 1 random initialization. Table
6 reports the average, the standard deviation of the errors and the ranking vector of the relative errors.

Table 6. Average, standard deviation and ranking of the value of E(k) at the last iteration among the different runs on the synthetic data
sets. The best performance is highlighted in bold

Algorithm mean ± std ranking
IBPG-A 3.39810−9 ± 2.010 10−8 (49, 1, 0, 0)
APGC 1.505 10−4 ± 3.548 10−4 ( 1, 0, 0, 49)

ADMM 1.108 10−8 ± 3.513 10−8 (18, 22, 10, 0)
A-HALS 1.734 10−8 ± 5.038 10−8 (19, 10, 21, 0)
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Figure 5. Average value of E(k) with respect to time on 4 synthetic data sets: 100× 100× 100 (top left), 100× 100× 500 (top right),
100× 500× 500 (bottom left) and 500× 500× 500 (bottom right).

We can see that IBPG-A outperforms the other algorithms in term of the accuracy of the solutions.

C.2.2. EXPERIMENTS WITH REAL DATA SETS

We test the algorithms on two real data sets that are CBCL – a face image data set (Shashua & Hazan, 2005) and Urban – a
hyperspectral image data set (Gillis et al., 2015).

The CBCL data set can be considered as a three-way tensor of the size 19× 19× 2429 that is formed from 2429 of 19× 19
images from the MIT CBCL database. We test different ranks r = 20, r = 30 and r = 40. For each r, we run all algorithms
with the same 50 random initializations and for each initialization we run each algorithm for 20 seconds. Figure 6 shows the
evolution of E(k) over 50 initializations, and Table 7 reports the average error, standard deviation and ranking of the final
value of E(k) among 150 runs (three values of r with 50 initializations for each r).

The Urban data set can be considered as a three-way tensor of the size 307× 307× 162 that is formed from 162 channels of
307 × 307 pixels. We test different ranks r = 6, r = 8 and r = 10. For each r, we run all algorithms with the same 50
random initializations and for each initialization we run each algorithm for 20 seconds. Figure 7 shows the evolution of
E(k) over 50 initializations, and Table 8 reports the average error, standard deviation and ranking of the final value of E(k)
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Figure 6. Average value of E(k) with respect to time on the CBCL data set with different rank: r = 20 (above left), r = 30 (above right)
and r = 40 (below).

Table 7. Average, standard deviation and ranking of the value of E(k) at the last iteration among the different runs on the CBCL data set.
The best performance is highlighted in bold

Algorithm mean ± std ranking
IBPG-A 0.013751± 3.4019 10−3 (58, 46, 29, 17)
APGC 0.013772± 3.4016 10−3 (37, 36, 49, 28)

ADMM 0.013799± 3.3932 10−3 (21, 27, 39, 63)
A-HALS 0.013778± 3.4078 10−3 (34, 41, 33, 42)

among 150 runs (three values of r with 50 initializations for each r).

We can observe that IBPG-A outperforms the other algorithms both in terms of convergence speed and accuracy.



Inertial Block Proximal Method

2 4 6 8 10 12 14 16 18 20

Time (s.)

10-14

10-12

10-10

10-8

10-6

10-4

||X
-U

.V
.W

|| F
 / 

||X
|| F

 -
e

m
in

IBPG-A
APGC
ADMM
A-HALS

0 2 4 6 8 10 12 14 16 18 20

Time (s.)

10-4

10-3

||X
-U

.V
.W

|| F
 / 

||X
|| F

 -
e

m
in

IBPG-A
APGC
ADMM
A-HALS

2 4 6 8 10 12 14 16 18 20

Time (s.)

10-4

10-3

||X
-U

.V
.W

|| F
 / 

||X
|| F

 -
e

m
in

IBPG-A
APGC
ADMM
A-HALS

Figure 7. Average value of E(k) with respect to time on the Urban data set with different rank: r = 6 (above left), r = 8 (above right)
and r = 10 (below).

Table 8. Average, standard deviation and ranking of the value of E(k) at the last iteration among the different runs on the Urban data set.
The best performance is highlighted in bold

Algorithm mean ± std ranking
IBPG-A 0.130624± 7.5499 10−3 (107, 20, 13, 10)
APGC 0.130630± 7.5461 10−3 ( 6, 34, 56, 54)

ADMM 0.130627± 7.5470 10−3 (31, 50, 45, 24)
A-HALS 0.130642± 7.5410 10−3 (12, 40, 36, 62)


