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1. Organization of the document
This document is organized as follows. Firstly, the math-
ematical derivations can be found in section 2. Then, we
present the theoretical analysis (section 3) followed by their
proofs (section 4). Implementation details and further re-
sults are presented in section 5 and 6 respectively. In partic-
ular, following additional results can be found.

• Empirical evidence on spectral sparsity of information
matrix (section 6.1).
• Effects of low rank approximation on approximation

quality of information matrix (section 6.2).
• Effects of diagonal correction, data-set size, and critical

review on KFAC on toy data (section 6.3).
• Effects of hyperparameters N and τ (section 6.4).
• Different architectures on ImageNet data-set and a time

complexity analysis (section 6.5).

2. Mathematical Derivations
2.1. Problem Statement

Let us assume that DNNs parameter posterior is estimated
with MND layer-wise. Without diagonal approximation or
Kronecker factorization of the covariance matrix (or simi-
larly IM), the computational complexity of several opera-
tions namely storage, inversion and Cholesky decomposition
becomes intractable. For example, if there exists a layer
with 1 million parameters, the storage of covariance alone
scales quadratic. If we use the simple formula for back-of-
the envelope computations: total RAM for an N ×N double
precision matrix requires N2 ∗ 8

109 gigabytes, storing a co-
variance matrix for N = 1000000 requires 8000 gigabytes,
which is computationally intractable for most of modern
computers. Consequently, cubic in cost operations such as
inversion or Cholesky decomposition is not feasible in a
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Table 1. Bounds on space complexity when compared to a
naive strategy. We compare the several operations with a naive
strategy to our presented derivations, which is the main results
of our work. Here, L << N where L can be chosen with fidelity
vs cost trade-off. This shows the sparse information form as a
scalable Gaussian posterior family, providing alternatives to the
diagonal covariance assumption or matrix normal distribution.

Operations Space Complexity
Naive Strategy Ours

Storage O(N2) O(L + na + mg)
Inversion O(N3) O(L3)
Cholesky O(N3) O(L3)
Decomposition

naive strategy. This is a reason why the current approaches
use diagonal approximation or Kronecker factorization of
the covariance matrix if MND is the chosen posterior family.

Following this statement, we list the memory-wise infeasi-
ble operations in detail: (i) naively extracting diagonal ele-
ments of (UA ⊗UG)Λ(UA ⊗UG)T and (Ua ⊗Ug)Λ1:L(Ua ⊗

Ug)T , naively storing, inverting and Cholesky decomposing
(Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D (iii) naively storing (UA⊗UG)
and performing LRA on (UA⊗UG)Λ(UA⊗UG)T . Our solu-
tion to the first two points are derived in this section while
we have proposed an algorithm in the main manuscript to
tackle the challenges of the last point.

Table 1 shows the main result on space complexity, where
the proposed sparse information form of DNNs posterior is
also analyzed. Without resorting to mean-field approxima-
tions or matrix normal distribution, we show an alternative
form of MND is also possible. Mathematical derivations we
present below make this possible. Note that the inversion
scheme considered is Gauss–Jordan elimination.

2.2. Diagonal Correction without Full Evaluation

Directly evaluating UA ⊗UG may not be computationally
feasible for modern DNNs. Therefore, we derive the ana-
lytical form of the diagonal elements for (UA⊗UG)Λ(UA⊗

UG)T without having to fully evaluate the Kronecker prod-
uct. Let UA ∈ R

n×n and UG ∈ R
m×m be the square ma-

trices. Λ ∈ Rmn×mn is a diagonal matrix by construction.
V = UA ⊗UG ∈ R

mn×mn is a Kronecker product with ele-
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ments vi, j with i = m(α−1) +γ and j = m(β−1) + ζ (from
definition of Kronecker product). Then, the diagonal entries
of (UA⊗UG)Λ(UA⊗UG)T can be computed as follows:

[
(UA⊗UG)Λ(UA⊗UG)T

]
ii

=

nm∑
j=1

(vi, j

√
Λ j)2 (1)

Derivation: As a first step of the derivation, we express
(A⊗B)Λ(A⊗B)T in the following form:

(UA⊗UG)Λ(UA⊗UG)T = (UA⊗UG)Λ
1
2 Λ

1
2 (UA⊗UG)T

=

[
(UA⊗UG)Λ

1
2

] [
(UA⊗UG)Λ

1
2

]T

= UUT

Then, diag(UUT )i =
[
UUT

]
ii

=
∑nm

j=1 u2
i j by definition. Now,

we let (UA ⊗UG)Λ
1
2 = VΛ

1
2 with Λ

1
2 being again a diag-

onal matrix. Therefore, ui j = vi, j
√

Λ j due to the multipli-
cation with a diagonal matrix from a right hand side. Sub-
stituting back these results in

[
(UA⊗UG)Λ(UA⊗UG)T

]
ii

=∑nm
j=1(vi, j

√
Λ j)2 which completes the derivation. Formulat-

ing equation 1 for the non-square matrices (which results
after a low rank approximation) such as Ua ∈ R

n×a and
Ug ∈ R

m×g and paralleling this operation are rather trivial
and hence, we omit this part of the derivation.

2.3. Low Rank Sampler - Analytical Form

For a full Bayesian analysis which is approximated by a
Monte Carlo integration, sampling is a crucial operation for
predicting uncertainty. We start by stating the problem.

Problem statement: Consider drawing samples θs
t =

vec(W s
t ) ∈ Rnm from the proposed sparse information form:

θs
t ∼ N

−1(θIV
MAP, (Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D) (2)

Drawing such samples from a covariance form of MND re-
quires finding a symmetrical factor of the covariance matrix
(e.g. Chloesky decomposition) which is cubic in cost O(N3).
Even worse, when represented in an information form as
in (2), it requires first an inversion of information matrix
and then the computation of a symmetrical factor which
overall constitutes two operations of cost O(N3). Clearly, if
N lies in a high dimension such as 1 million, even storing is
obvious not feasible, let alone the sampling computations.
Therefore, we need a sampling computation that (a) keeps
the Kronecker structure while sampling so that first, the
storage is memory-wise feasible, and then (b) the operations
that require cubic cost such as inversion, must be performed
in the dimensions of low rank L instead of full parameter
dimensions N. We provide the solution below.

Analytical solution: Let us define Xl ∈ Rmn and Xs ∈ Rm×n

as the samples from a standard Multivariate Normal Distri-
bution in (3) where we denote the followings: 0nm ∈ R

nm,
Imn ∈ R

mn×mn, 0n×m ∈ R
n×m, In ∈ R

n×n and Im ∈ R
m×m. Note

that these sampling operations are cheap.

Xl ∼ N(0nm, Inm) or Xs ∼MN(0n×m, In, Im). (3)

Furthermore, we denote θs
t = vec(W s

t ) ∈ Rmn, θMAP =

vec(WMAP) ∈ Rmn as a sample from equation 2 and its mean
as a vector respectively. We also note that Λ1:L ∈ R

L×L

and D ∈ Rmn×mn are the low ranked form of the re-scaled
eigen-values and the diagonal correction term as previously
defined. Ua ∈ R

n×a and Ug ∈ R
m×g are the eigenvectors of

low ranked eigen-basis so that n ≥ a, m ≥ g and L = ag.
Then, the samples of 2 can be computed analytically as1:

θs
t = θMAP + FcXl where,

Fc = D−
1
2

(
Inm−D−

1
2 (Ua⊗Ug)Λ

1
2
1:L

(C−1 + VT
s Vs)−1Λ

1
2
1:L(Ua⊗Ug)T D−

1
2

)
.

(4)

Firstly, the symmetrical factor Fc ∈ Rmn×mn in (4) is a func-
tion of matrices that are feasible to store as they involve
diagonal matrices or small matrices in a Kronecker struc-
ture. Furthermore,

Vs = D−
1
2 (Ua⊗Ug)Λ

1
2
1:L

C = A−T
c (Bc− IL)A−1

c with Ac and Bc

(5)

being the Cholesky decomposed matrices of VT
s Vs ∈ R

L×L

and VT
s Vs + IL ∈ R

L×L such that:

AcAT
c = VT

s Vs and

BcBT
c = VT

s Vs + IL.
(6)

Consequently, the matrices in (4) are defined as C ∈ RL×L,
(C−1 + VT

s Vs) ∈ RL×L and IL ∈ R
L×L. In this way, the two

operations namely Cholesky decomposition and inversion
that are cubic in cost O(N3) are reduced to the low rank
dimension L with complexity O(L3).

Derivation: Firstly, note that sampling from a standard mul-
tivariate Gaussian for Xl or Xs is computationally cheap (see
equation 3). Given a symmetrical factor for the covariance
Σ = FcFcT

(e.g. by Cholesky decomposition), samples can
be drawn via θMAP + FcXl as depicted in (4). Our deriva-
tion involves finding such symmetrical factor for the given

1We show how the Kronecker structure of Fc can be exploited
to compute FcXl in the derivation only.
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form of covariance matrix while exploring the Kronecker
structure for the sampling computations so that the space
complexity is bounded to O(L3) instead of O(N3).

Let us first reformulate the covariance (inverse of informa-
tion matrix) as follows.

Σ =

(
(Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D

)−1

=

[
D

1
2
(
D−

1
2 (Ua⊗Ug)Λ

1
2
1:L

Λ
1
2
1:L(Ua⊗Ug)T D−

1
2 + Inm

)
D

1
2

]−1

= D−
1
2

[(
(D−

1
2 (Ua⊗Ug)Λ

1
2
1:L)

(D−
1
2 (Ua⊗Ug)Λ

1
2
1:L)T + Inm

)]−1
D−

1
2

= D−
1
2
[
VsVT

s + Inm
]−1

D−
1
2 .

(7)

Here, we define: Vs = D−
1
2 (Ua ⊗Ug)Λ

1
2
1:L. Now, a sym-

metrical factor for Σ = FcFcT
can be found by exploiting

the above structure. We let Wc be a symmetrical factor for
VsVT

s + Inm so that Fc = D−
1
2 Wc−1

is the symmetrical factor
of Σ. Following the work of Ambikasaran & O’Neil (2014)
the symmetrical factor Wc can be found using equations:

Wc = Inm + VsCVT
s

C = A−T
c (Bc− IL)A−1

c .
(8)

Note that A and B are Cholesky decomposed matrices of
VT

s Vs ∈ R
L×L and VT

s Vs + IL ∈ R
L×L respectively. As a first

result, this operation is bounded by complexity O(L3) in-
stead of the full parameter dimension N. Calculations of
VT

s Vs can also be performed in iterations similar to deriva-
tions shown in section 2.2. Now the symmetrical factor for
Σ can be expressed as follows.

Fc = D−
1
2 W−1 = D−

1
2 (Inm + VsCVT

s )−1

= D−
1
2

(
Inm−Vs(C−1 + VT

s Vs)−1VT
s

)
.

(9)

Woodbury’s Identity is used here. Now, by substitution:

θs
t = θMAP + FcXl where,

Fc = D−
1
2

(
Inm−Vs(C−1 + VT

s Vs)−1VT
s

)
= D−

1
2

(
Inm−D−

1
2 (Ua⊗Ug)Λ

1
2
1:L

(C−1 + VT
s Vs)−1Λ

1
2
1:L(Ua⊗Ug)T D−

1
2

)
.

(10)

This completes the derivation of (4). As a result, the inver-
sion operation is bounded by complexity O(L3). Further-
more, the derivation constitutes smaller matrices Ua and
Ug or diagonal matrices D and Imn which can be stored as
vectors. In short the complexity has significantly reduced.

Now we further derive computations that exploits rules of
Kronecker products. Consider:

FcXl = D−
1
2

(
Inm−D−

1
2 (Ua⊗Ug)Λ

1
2
1:L

(C−1 + VT
s Vs)−1Λ

1
2
1:L(Ua⊗Ug)T D−

1
2

)
Xl.

(11)

Then, it follows by defining inverted matrix Lc = (C−1 +

VT
s Vs)−1 ∈ RL×L with a cost O(L3):

FcXl = D−
1
2

(
Inm−D−

1
2 (Ua⊗Ug)Λ

1
2
1:LLc

Λ
1
2
1:L(Ua⊗Ug)T D−

1
2

)
Xl.

(12)

We further reduce this by evaluating D−
1
2 and defining Xl

D =

D−
1
2 Xl ∈ Rmn and Pc = Λ

1
2
1:LLcΛ

1
2
1:L ∈ R

L×L. We note that
this multiplication operation is memory-wise feasible.

FcXl = Xl
D−

(
D−1(Ua⊗Ug)Pc(Ua⊗Ug)T Xl

D

)
. (13)

Now, we map Xl
D to matrix normal distribution by an

unvec(·) operation so that Xs
D = unvec(Xl

D) ∈ Rm×n or equiv-
alently Xl

D = vec(Xs
D). Using a widely known relation

for Kronecker product that is - (Ua ⊗ Ug)T vec(Xs
D) =

vec(UT
g Xs

DUa), it follows:

FcXl = Xl
D−

(
D−1(Ua⊗Ug)Pcvec(UT

g Xs
DUa)

)
. (14)

Note that matrix multiplication is performed with small
matrices. Repeating a similar procedure as above we obtain
the equation below for Xs

P = Pc (Ua⊗Ug)T Xl
D,

FcXl = Xl
D−

(
D−1(Ua⊗Ug)Xs

P

)
= Xl

D−

(
D−1vec(UgXs

PUT
a )

)
.

(15)

This completes the derivation. Lastly, we provide a remark
below to summarize the main points.



Model Uncertainty of Neural Networks in Sparse Information Form

Remark: We presented a new derivation to sample from (2),
a low-rank and information formulation of MND. This an-
alytical solution ensures (a) O(N3) >> O(L3) for Cholesky
decomposition, (b) O(N3) >> O(L3) for a matrix inversion,
(c) storage of small matrices Ug, Ua, a diagonal matrix D
and identity matrices and finally (d) matrix multiplications
that only involve these matrices. This is a direct benefit of
our proposed LRA that preserves Kronecker structure in
eigenvectors. Furthermore, this result shows the sparse in-
formation form as a new scalable Gaussian posterior family
for approximate Bayesian inference.

3. Theoretical Analysis and Results
Some of the interesting theoretical properties are as follows
with proofs provided in section 4.

3.1. More Accurate Information Matrix

Theoretical results of adding a diagonal correction term to
Kronecker factored eigenbasis are captured below.

Lemma 1: Let I be the real information matrix, and let
Iinf and Iefb be the INF and EFB estimates of it respectively.
It is guaranteed to have

∥∥∥I− Iefb
∥∥∥

F ≥
∥∥∥I− Iinf

∥∥∥
F .

Corollary 1: Let Ikfac and Iinf be KFAC and our estimates
of real information matrix I respectively. Then, it is guaran-
teed to have

∥∥∥I− Ikfac
∥∥∥

F ≥
∥∥∥I− Iinf

∥∥∥
F .

For interested readers, find the proof
∥∥∥I− Ik f ac

∥∥∥
F ≥

‖I− Iefb‖F in George et al. (2018). Note that
∥∥∥I− Ik f ac

∥∥∥
F ≥

‖I− Iefb‖F may not mean that
∥∥∥∥I−1− I−1

k f ac

∥∥∥∥
F
≥

∥∥∥I−1− I−1
efb

∥∥∥
F

or vice versa. Yet, our proposed approximation yields better
estimates than KFAC in the information form of MND.

3.2. Properties of Low-Rank Information Matrix

To our knowledge, the proposed sparse IM have not been
studied before. Therefore, we theoretically motivate its
design and validity for better insights.

Lemma 2: Let I be the real Fisher information matrix,
and let Îinf, Iefb and Ikfac be the low rank INF, EFB and
KFAC estimates of it respectively. Then, it is guaranteed to
have

∥∥∥ diag(I)− diag(Iefb)
∥∥∥

F ≥
∥∥∥ diag(I)− diag(Îinf)

∥∥∥
F =

0 and
∥∥∥ diag(I)−diag(Ikfac)

∥∥∥
F ≥

∥∥∥ diag(I)− diag(Îinf)
∥∥∥

F =

0. Furthermore, if the eigenvalues of Îinf contains all non-
zero eigenvalues of Iinf, it follows:

∥∥∥I− Iefb
∥∥∥

F ≥
∥∥∥I− Îinf

∥∥∥
F .

Lemma 2 shows the optimally in capturing the diagonal
variance while indicating that our approach also becomes
effective in estimating off-diagonal entries if IM contains
many close to zero eigenvalues. Validity of this assump-
tion has been studied by Sagun et al. (2018) where it is
shown that the Hessian of overparameterized DNNs tend

to have many close-to-zero eigenvalues. Intuitively, from
a graphical interpretation of IM, diagonal entries indicate
information present in each nodes and off-diagonal entries
are links of these nodes. Our sparsification scheme reduces
the strength of the weak links while keeping the diagonal
variance exact. This is a result of the diagonal correction
after LRA which exploits spectrum sparsity of IM.

Lemma 3: The low rank matrix Σ̂ =(
(Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D

)−1
∈ RN×N is a non-

degenerate covariance matrix if the diagonal correction
matrix D and LRA (Ua ⊗ Ug)Λ1:L(Ua ⊗ Ug)T are both
symmetric and positive definite. This condition is satisfied
if (Ua⊗Ug)Λ1:L(Ua⊗Ug)T

ii < E
[
δθ2

i

]
for all i ∈ {1,2, · · · ,d}

and with Λ1:L * 0.

This comments on validity of the resulting posterior (a suffi-
cient condition only) and proves that sparsifying the matrix
can lead to a valid non-degenerate covariance if two con-
ditions are met. As non-degenerate covariance can have a
uniquely defined inverse, it is important to check these two
conditions. We note that searching the rank can be auto-
mated with off-line computations that does not involve any
data. Thus, it does not introduce significant overhead. In
case D does not turn out to be, there are still several tech-
niques that can deal with it. We recommend eigen-value
clipping (Chen et al., 2018) or finding nearest positive semi-
definite matrices (Higham, 1988). For a side note, above
Lemma provides a sufficient condition and even if D is not
positive definite, there is no indication that the given repre-
sentation is an invalid form of covariance. These conditions
have been a conservative guideline to make the likelihood
term non-degenerate which we found to work well in prac-
tice. Lastly, D−1 is more numerically stable when we add a
prior precision term and a scaling factor (ND +τI)−1.

Before introducing the next theoretical property we define,

Îtop
1:K = (UA⊗UG)1:KΛ1:K(UA⊗UG)T

1:K (16)

as a low rank EFB estimates of true Fisher that preserves
top K eigenvalues. Similarly, Îtop

1:L can be defined which
preserves top L eigenvalues. In contract, our proposal to
preserve Kronecker structure in eigenvectors Î1:L is denoted
as shown below. Now, we start our analysis with Lemma 2.

Î1:L = (Ua⊗Ug)Λ1:L(Ua⊗Ug)T . (17)

Lemma 4: Let I ∈ RN×N be the real Fisher information
matrix, and let Îtop

1:K ∈ R
N×N , Îtop

1:L ∈ R
N×N and Î1:L ∈ R

N×N

be the low rank estimates of I of EFB obtained by preserving
top K, L and top K plus additional J resulting in L eigenval-
ues. Here, we define K < L. Then, the approximation error
of Î1:L is as follows:

∥∥∥∥I− Îtop
1:L

∥∥∥∥
F
≥

∥∥∥I− Î1:L
∥∥∥

F ≥

∥∥∥∥I− Îtop
1:K

∥∥∥∥
F

.
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This bound provides an insight that if preserving top L
eigenvalues result in prohibitively too large covariance ma-
trix, our LRA provides an alternative to preserving top
K eigenvalues given that K < L. In practice, note that
Î1:L is a memory-wise feasible option as we formulate
Î1:L = (Ua ⊗Ug)Λ1:L(Ua ⊗Ug)T which preserves the Kro-
necker structure in eigenvectors. This can be a case where
evaluating (Ua⊗Ug) or (Ua⊗Ug)1:K is not feasible to store.

4. Proofs
4.1. More Accurate of Information Matrix

Proposition 1: Let I ∈ RN×N be the real information matrix,
and let Iinf ∈ RN×N and Îinf ∈ RN×N be our estimates of it
with rank d and k such that k < d. Their diagonal entries
are equal that is Iii = Iinfii = Îinfii for all i = 1, . . . , N.

proof: The proof trivially follows from the definitions of I ∈
RN×N , Iinf ∈ RN×N and Îinf ∈ RN×N . As the exact Fisher is an
expectation on outer products of back-propagated gradients,
its diagonal entries equal Iii = E

[
δθ2

i

]
for all i = 1, 2, . . . , N.

In the case of full ranked Iin f , substituting Dii = E
[
δθ2

i

]
−∑nm

j=1(vi, j
√

Λ j)2 with
∑nm

j=1(vi, j
√

Λ j)2 = (UA ⊗UG)Λ(UA ⊗

UG)T
ii results in equation 18 for all i = 1, 2, . . . , N.

Iin fii = (UA⊗UG)Λ(UA⊗UG)T
ii + Dii

= (UA⊗UG)Λ(UA⊗UG)T
ii +E

[
δθ2

i

]
− (UA⊗UG)Λ(UA⊗UG)T

ii

= E
[
δθ2

i

] (18)

Similarly, we substitute D̂ii = E
[
δθ2

i

]
−

∑L
j=1(v̂i, j

√
Λ1:L)2

with
∑L

j=1(v̂i, j
√

Λ1:L)2 = (Ua ⊗Ug)Λ1:L(Ua ⊗Ug)T
ii which

results in equation 19 for all i = 1, 2, . . . , N.

Îin fii = (Ua⊗Ug)Λ1:L(Ua⊗Ug)T
ii + Dii

= (Ua⊗Ug)Λ1:L(Ua⊗Ug)T
ii +E

[
δθ2

i

]
− (Ua⊗Ug)Λ1:L(Ua⊗Ug)T

ii

= E
[
δθ2

i

] (19)

Therefore, we have Iii = Iinfii = Îinfii for all i = 1, 2, . . . , N.

Lemma 1: Let I be the real information matrix, and let
Iinf and Iefb be the INF and EFB estimates of it respectively.
It is guaranteed to have

∥∥∥I− Iefb
∥∥∥

F ≥
∥∥∥I− Iinf

∥∥∥
F .

proof: Let e2 = ‖A−B‖2F define a squared Frobenius norm
of error between the two matrices A ∈ RN×N and B ∈ RN×N .

Now, e2 can be formulated as,

e2
b = ‖A−B‖2F

=
∑

i

(A−B)2
ii +

∑
i

∑
j,i

(A−B)2
i j

(20)

The first term of equation 20 belongs to errors of diagonal
entries in B w.r.t A whilst the second term is due to the
off-diagonal entries.

Now, it follows that,

‖I− Iefb‖F ≥ ‖I− Iinf‖F
e2

e f b ≥ e2
in f∑

i(I− Iefb)2
ii +

∑
i
∑

j,i(I− Iefb)2
i j ≥∑

i(I− Iinf)2
ii +

∑
i
∑

j,i(I− Iinf)2
i j∑

i(I− Iefb)2
ii +

∑
i
∑

j,i(I− Iefb)2
i j ≥

∑
i
∑

j,i(I− Iinf)2
i j∑

i(I− Iefb)2
ii +

∑
i
∑

j,i(I− Iefb)2
i j ≥

∑
i
∑

j,i(I− Iefb)2
i j

Note that
∑

i(I− Iinf)2
ii = 0 using proposition 1. Furthermore,∑

i
∑

j,i(I− Iinf)2
i j =

∑
i
∑

j,i(I− Iefb)2
i j since by definition,

Iefb and Iinf have the same off-diagonal terms.

Corollary 1: Let Ikfac and Iinf be KFAC and our estimates
of real information matrix I respectively. Then, it is guaran-
teed to have

∥∥∥I− Ikfac
∥∥∥

F ≥
∥∥∥I− Iinf

∥∥∥
F .

For interested readers, find the proof
∥∥∥I− Ik f ac

∥∥∥
F ≥

‖I− Iefb‖F in George et al. (2018).

4.2. Properties of Low-Rank Information Matrix

Lemma 2: Let I be the real Fisher information matrix,
and let Îinf, Iefb and Ikfac be the low rank INF, EFB and
KFAC estimates of it respectively. Then, it is guaranteed to
have

∥∥∥ diag(I)− diag(Iefb)
∥∥∥

F ≥
∥∥∥ diag(I)− diag(Îinf)

∥∥∥
F =

0 and
∥∥∥ diag(I)−diag(Ikfac)

∥∥∥
F ≥

∥∥∥ diag(I)− diag(Îinf)
∥∥∥

F =

0. Furthermore, if the eigenvalues of Îinf contains all non-
zero eigenvalues of Iinf, it follows:

∥∥∥I− Iefb
∥∥∥

F ≥
∥∥∥I− Îinf

∥∥∥
F .

proof: The first part follows from proposition 1
which states that for all the elements i, Iii = Îinf,∥∥∥ diag(I)−diag(Iefb)

∥∥∥
F ≥

∥∥∥ diag(I)−diag(Îinf)
∥∥∥

F = 0 and∥∥∥ diag(I)−diag(Ikfac)
∥∥∥

F ≥
∥∥∥ diag(I)−diag(Îinf)

∥∥∥
F = 0. This

results by the design of the method, in which, we correct
the diagonals in parameter space after LRA.

For the second part of the proof, lets recap that Lemma
2 (Wely’s idea on eigenvalue perturbation) that removing
zero eigenvalues does not affect the approximation error in
terms of Frobenius norm. This then implies that off-diagonal
elements of Îinf and Iefb are equivalent. Then,:

‖I− Iefb‖F ≥
∥∥∥I− Îinf

∥∥∥
F

e2
e f b ≥ e2

in f
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ii +

∑
i
∑

j,i(I− Îinf)2
i j∑

i(I− Iefb)2
ii +

∑
i
∑

j,i(I− Iefb)2
i j ≥

∑
i
∑

j,i(I− Îinf)2
i j∑

i(I− Iefb)2
ii +

∑
i
∑

j,i(I− Iefb)2
i j ≥

∑
i
∑

j,i(I− Iefb)2
i j

Again,
∑

i(I− Îinf)2
ii = 0 according to proposition 1 for all

the elements i, which completes the proof.

Lemma 3: The low rank matrix Σ̂ =(
(Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D

)−1
∈ RN×N is a non-

degenerate covariance matrix if the diagonal correction
matrix D and LRA (Ua ⊗ Ug)Λ1:L(Ua ⊗ Ug)T are both
symmetric and positive definite. This condition is satisfied if
(Ua ⊗Ug)Λ1:L(Ua ⊗Ug)T

ii < E
[
δθ2

i

]
for all i ∈ {1,2, · · · ,N}

and with Λ1:L * 0.

proof: Let us first rewrite Îinf = (Ua⊗Ug)Λ1:L(Ua⊗Ug)T +

D in the following form.

(Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D =

(Ua⊗Ug)Λ
1
2
1:LΛ

1
2
1:L(Ua⊗Ug)T + D

=

[
(Ua⊗Ug)Λ

1
2
1:L

] [
(Ua⊗Ug)Λ

1
2
1:L

]T
+ D

= UUT + D

(21)

Now, if D and (Ua⊗Ug)Λ1:L(Ua⊗Ug)T is both symmetric
and positive definite, it follows that for an arbitrary vector
x ∈ Rd, xT UUT x > 0 as eigenvalues Ri > 0 by construc-
tion. Furthermore, xT Dx > 0 also holds by the definition of
positive definiteness. Therefore, we have xT (UUT + D)x =

xT UUT x + xT Dx > 0 which leads to the proof that Iinf is
positive definite if D and (Ua⊗Ug)Λ1:L(Ua⊗Ug)T is both
symmetric and positive definite. As this results in non-
degenerate IM, the covariance Σ is non-degenerate as well.

Trivially following the definition of Dii = E
[
δθ2

i

]
− (UA ⊗

UG)Λ(UA⊗UG)T
ii , Dii > 0 for all i when (Ua⊗Ug)Λ1:L(Ua⊗

Ug)T
ii < E

[
δθ2

i

]
. Again, by the definition of Λii =

E
[
(VTδθ)2

i

]
≥ 0, Λ1:L containing no zero eigenvalues re-

sult in the positive definite matrix (Ua⊗Ug)Λ1:L(Ua⊗Ug)T ,
which completes the proof.

Lemma 4: Let I ∈ RN×N be the real Fisher information
matrix, and let Îtop

1:K ∈ R
N×N , Îtop

1:L ∈ R
N×N and Î1:L ∈ R

N×N

be the low rank estimates of I of EFB obtained by preserving
top K, L and top K plus additional J resulting in L eigenval-
ues. Here, we define K < L. Then, the approximation error
of Î1:L is as follows:

∥∥∥∥I− Îtop
1:L

∥∥∥∥
F
≥

∥∥∥I− Î1:L
∥∥∥

F ≥

∥∥∥∥I− Îtop
1:K

∥∥∥∥
F

.

proof: From the definition, (UA ⊗ UG)Λ(UA ⊗ UG)T =

VΛVT is PSD as Λii = E
[
(VTδθ)2

i

]
≥ 0 for all elements i and

VVT = I with I as an identity matrix (orthogonality). Natu-

rally, low rank approximations (UA⊗UG)1:LtopΛ1:Ltop (UA⊗

UG)T
1:Ltop , (UA ⊗UG)1:KtopΛ1:Ktop(UA ⊗UG)T

1:Ktop and (Ua ⊗

Ug)Λ1:L(Ua ⊗Ug)T = (UA ⊗UG)1:LΛ1:L(UA ⊗UG)T
1:L are

again PSD by the fact that low rank approximation does
not introduce negative eigenvalues.

Now, a well known fact from dimensional reduction lit-
erature is that low rank approximation preserving the top
eigenvalues result in best approximation errors in terms
of Frobenius norm for the given rank. Informally stating
Wely’s ideas on eigenvalue perturbation:

Let B ∈ Rm×n with rank smaller or equal to p (one can also
use complex space C instead of R) and let E = A−B with
A ∈ Rm×n. Then, it follows that,

‖A−B‖2F = σ1(A−B)2 + · · ·+σµ(A−B)2

≥ σp+1(A−B)2 + · · ·+σµ(A−B)2

=
∥∥∥A−B1:p

∥∥∥2
F ,

(22)

where σ1, · · ·σµ are the singular values of A with µ =

min(n,m). The convention here is thatσi(A) is the ith largest
singular value and σi(A) = 0 for i > rank(A). Using this in-
sight, and the fact that in the given settings, squared singular
values are variances in new space lead to:

∥∥∥∥I− Îtop
1:K

∥∥∥∥
F
≥

∥∥∥I− Î1:L
∥∥∥

F ≥

∥∥∥∥I− Îtop
1:L

∥∥∥∥
F

This completes the proof of Lemma 4.

5. Implementation Details
The following experiments are implemented using Tensor-
flow (Abadi et al., 2016): (i) toy regression, (ii) UCI bench-
mark, (iii) active learning and (iv) classification on MNIST
and CIFAR10. The KFAC library from Tensorflow 2 was
used to implement the Fisher estimator (Martens & Grosse,
2015) for our methods and the works of Ritter et al. (2018a).
On the other hand, Pytorch (Paszke et al., 2019) has been
used for ImageNet and adversarial defense experiments 3.
The plug-and-play code is made available for Pytorch.

Note that empirical Fisher usually is not a good estimate
of the Hessian, as it is typically biased (Martens & Grosse,
2015; Kunstner et al., 2019). Instead, KFAC library of-
fers several estimation modes. We have used the gradients
mode for KFAC whereas the exact mode was used for Diag.
NVIDIA Tesla and 1080Ti are used for all the experiments.

2Available at https://github.com/tensorflow/kfac
3Available at TBD

https://github.com/tensorflow/kfac
TBD
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Table 2. UCI benchmark. Root mean squared error (RMSE) is reported for the used set-up of UCI benchmark experiments. Note that as
test log-likelihood depends on accuracy (in addition to uncertainty estimation), we have used linearized LA on the output space so that
the test accuracy or RMSE is kept the same amongst the compared LA-based approaches. Our model overfits in some datasets so that
effectiveness of having Bayesian Neural Network can be seen clearly. This also does not affect our results as all LA-based methods are
built on top of the same model.

Datasets Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht

RMSE 3.361±0.929 6.181±0.727 0.573±0.070 0.164±0.005 0.010±0.0001 4.322±0.153 4.516±0.123 0.637±0.034 9.568±1.132
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Figure 1. Evaluating predictive uncertainty on UCI datasets. We report test log likelihood on the y-axis and compare Diag, KFAC,
EFB, INF variants, NN and Exact. Here, exact refers Laplace Approximation using the block-wise exact information matrix while NN
denotes a deterministic neural network. Using linear approximation to the predictive uncertainty (MacKay, 1992a), accuracy between
each methods are kept the same, which ensures fair comparisons using test log likelihood. Higher the better.

5.1. Small scale experiments

The training details are as follows: Adam has been used
with a learning rate of 0.001 with zero prior precision or
L2 regularization coefficient (τ = 0.2 for KFAC, τ = 0.45
for Diag, N = 1 and τ = 0 for both FB and INF have been
used). Mean squared error (MSE) loss is used. The exact
block-wise Hessian and their approximations for the given
setup contained zero values on its diagonals. This can be
interpreted as zero variance in the IM, meaning no informa-
tion, resulting in an IM being degenerate for the likelihood
term. In such cases, the covariance may not be uniquely
defined (Thrun et al., 2004). Therefore, we treated these
variances as deterministic, making the IM non-degenerate
(similar findings reported by MacKay (1992b)). We have
used Numpyro (Phan et al., 2019) for the implementations
of HMC, with 50000 samples. For BBB, we have used an
open-source implementation 4 where the Gaussian noise is
sampled in a batch initially, and a symmetric sampling is
deployed. Lastly, Kmc = 100 samples were used.

Experiments on UCI benchmark 5 have been conducted to
evaluate various IM estimates and their effects on predictive
uncertainty estimation. We evaluate LA-based approaches
only which has an advantage that the only differences be-
tween each approaches are approximations of IM. To ex-
plain, inference principle, network architectures, and train-
ing convergence can be kept the same. We note that, this is

4Available at https://github.com/ThirstyScholar/
bayes-by-backprop

5Dataset and splits have been taken from https://github.
com/yaringal/DropoutUncertaintyExps.

difficult for approaches based on variational inference. Due
to this, meaningful comparisons can be often difficult as
specific details such as number of epochs can have signifi-
cant effects on the results (Mukhoti et al., 2018). In this line
of argument, we have further used so-called linearized LA
(MacKay, 1992a; Foong et al., 2019) instead of sampling
based evaluation (Gal, 2016; Ritter et al., 2018a):

p(y∗|x∗, x,y) ≈ N( fθMAP (x∗),Σalea +δθ(x∗)T Σepisδθ(x∗)).

As shown, the mean of prediction fθMAP (x∗) depends only on
the new test data x∗. As test log-likelihood depends on the
accuracy of the predictor, we can keep the accuracy of the
predictors the same among-st various LA-based approaches
(reported in table 2). Furthermore, as the covariance ma-
trix for predictive uncertainty only depends on aleatoric
uncertainty Σalea, gradients on the new test input δθ(x∗)
and episdemic uncertainty Σepis, comparisons between LA-
based approaches are simpler as the experiments can be
implemented in a way that the difference lies only in vari-
ous approximations of Σepis. Closely following Foong et al.
(2019), layer-wise exact IM has been established and the
same hyperparameter settings are applied across other LA-
based approaches 6. Figure 1 reports the results of UCI
experiments where we compare the reliability of uncertainty
estimates using the test log-likelihood as a measure. As
shown, we find that our approach compares well to the oth-
ers. Note that in Power and Protein, LA approaches were

6We also present the results of sampling based evaluations in
section 6.4 where we extensively search hyperparameters for each
LA methods separately.

https://github.com/ThirstyScholar/bayes-by-backprop
https://github.com/ThirstyScholar/bayes-by-backprop
https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/DropoutUncertaintyExps
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under-performing even when compared to a deterministic
DNN. This is a known limitation of LA: the approximated
posterior may cover areas of low probability mass, the ap-
proaches perform similar to a deterministic DNN or become
unstable. Here, our experiments also indicate that improve-
ments in terms of Frobenius norm of error may not directly
translate to performance in uncertainty estimation, atleast
for LA, which requires in-depth treatment for future works.

5.2. Active Learning Experiments

Details of experiment settings are as follows: we split each
one into training, validation, and test set with 20, 100 (which
is reasonable when compared with the size of test set) and
100 data points randomly for 20 times, respectively. The
remaining points serve as pool set, in which we are not
allowed to obtain their labels. So we have 20 splits in this
experiment. Once the model chooses the data point in the
pool set and move it into the training set, its label becomes
available, which simulates the scenario where humans an-
notate it. The experiments progress as follows: firstly, we
trained the model with the initial training set and select one
point from pool set which will be put into the training set
with its label. Then we train the model again and proceed
into the next iteration. In each iteration, we evaluate our
model on the test set and report the root mean square error
(RMSE). We select the model during training and the corre-
sponding hyperparameter (τ) based on its performance on
the validation set. While the range of N is [0.5∗N,1.0∗N],
where N is the size of the training set in current iteration.
The range of τ is [1,200,400]. For other hyperparameters,
we use learning rate of 0.01 for boston housing and energy,
0.001 for wine and L2 regularization of 0.0 for boston hous-
ing and wine, 1e−5 for energy. The mini-batch size is set
to the initial size of training set, 20. Only 1 point is selected
in each iteration and the number of iteration is set to 20.
Regarding model selection, we use early stopping based on
the RMSE on the validation set and the maximum epoch is
set to 40.

5.3. MNIST and CIFAR10 Experiments

For MNIST, the dropout layer is used to the FC layers with
a rate of 0.6. An important information is the size of each
layers. The first layer constitutes 32 filters with 5 by 5
kernel, followed by the second layer with 64 filters and 5
by 5 kernel. The first fully connected layer then constitutes
1024 units and the last one ends with 10 units. We note that,
this validates our method on memory efficiency as the third
layer has a large number of parameters, and its covariance,
being quadratic in its size, cannot be stored in our utilized
GPUs. For CIFAR10 experiments, the most relevant settings
are: the first layer constitutes 5 by 5 kernel with 64 filters.
This is then again followed by the same. Units of 384, 192,
and 10 have been used for the fully connected layers. Lastly,

Table 3. Necessity of low rank approximation and reduction in
complexity. Reduced dimensions from N to the chosen rank L
per layer are reported for both MNIST and CIFAR10 experiments.
CNN stand for convolution while FC is for fully connected layers.
The complexity of sampling O(N3) are reduced to O(L3). Em-
ployed strategy here was to keep the maximum for the rank K,
which results in a seemingly arbitrary rank L.

MNIST Dim N [-] Dim L [-] Percent [%]

CNN-1 800 450 56.25
CNN-2 51200 5185 10.12
FC-1 3211264 5625 0.18
FC-2 10240 4775 46.63

CIFAR Dim N [-] Dim L [-] Percent [%]
CNN-1 4800 4800 100
CNN-2 102400 2112 2.06
FC-1 884736 3980 0.45
FC-2 73728 5499 7.45
FC-3 1920 1920 100

random cropping, flipping, brightness changes and contrast
are the applied data augmentations.

Implementation of deep ensemble (Lakshminarayanan et al.,
2017) is kept rather simple by not using the adversarial train-
ing, but we combined 15 networks that were trained with
different initialization. The same architecture and training
procedure were used for all. For dropout, we have tried
a grid search of dropout probabilities of 0.5 and 0.8, and
have reported the best results. For the methods based on
LA, we have performed grid search on hyperparameters N
of (1, 50000, 100000) and 100 values of τ were tried using
known class validation set. Note that for every method, and
different datasets, each method required different values of
τI to give a reasonable accuracy. Figure 3 depicts examples
on MNIST where minimum ECE were selected. The LRA is
imposed as a way to tackle the challenges of computational
intractability. To empirically access the reduction in com-
plexity, we depict the parameter and low rank dimensions N
and L respectively in table 3. As shown, LRA based sam-
pling computations reduce the computational complexity
significantly. Furthermore, this explains the necessity of
LRA - certain layers (e.g. FC-1 of both MNIST and CIFAR
experiments) are computationally intractable to store, infer
and sample.

5.4. ImageNet Experiments

To demonstrate that our method does not require changes
in the training procedure, we used pre-trained weights from
Pytorch 7. Results are discussed in section 6.5. SWAG and
SWA are the available baselines which have been evaluated
on the ImageNet dataset and implementations are officially

7Available at https://pytorch.org/docs/stable/
torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
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Figure 2. Hyperparameter search Results of random hyperparameter search for DenseNet121. From left to right: Diag Acc., Diag ECE,
KFAC Acc. and KFAC ECE. Red crosses indicate configurations that where not invertible due to degeneracy or numerical instability. For
accuracy, higher is better while for ECE lower is better.
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Figure 3. Grid search results. For Diag (left two figures) and KFAC (right two) an extensive grid search has been conducted to ensure
fair comparison. Here, we report the results with pseudo observation term of 50000 on MNIST. This ensures that a main difference to
DEF Laplace is the expression for model uncertainty as the inference and network architectures are kept the same.

open-sourced 8. We closely followed the described exper-
imental procedure. For the out-of-domain data we have
used artistic impressions and paintings of landscapes and
objects 9. Lastly, performing multiple forward passes for
the entire validation set is still a computationally expensive
task. We therefore chose Kmc = 30 during inference, which
we empirically found sufficient for the convergence, similar
to Maddox et al. (2019).

We performed an extensive hyperparamter search for all
LA methods using 100 randomly sampled pairs of N and
τ selected from a log-scale between 0 and 10. We resorted
to random search instead of grid search, as it tends to yield
stronger results with a smaller number of samples (Bergstra
& Bengio, 2012). The results for the accuracy (Acc.) and
expected calibration error (ECE) are shown in figure 2. The
ECE can be extremely low in insufficiently regularized areas,
because the accuracy is also very low there, which is why
we show the results for both metrics.

8Available at https://github.com/wjmaddox/swa_
gaussian

9Available at https://www.kaggle.com/c/
painter-by-numbers/data

6. Further Results and Critical Analysis
6.1. Spectral Sparsity of Information Matrix

One of the key insight behind our work is that information
matrix of overparameterized DNNs tends to have close to
zero eigenvalues (equivalently sparse in its spectrum). Is
this true for the considered experiments? To answer this
question, we plot the eigenvalue histograms in figure 13.
Figure 13 shows that the empirical findings of Sagun et al.
(2018) hold well in our experiment set up. Two concrete
observations are found: (i) with varying depth (figures 4, 5,
6, 7, 8), IM showed tendency to get more sparse (especially
on the maximum eigenvalue), and (ii) with varying number
of parameters in each layers (figures 9, 10, 11, 12) IM
showed to be more sparse with the number of parameters.
One possible insight is that the information of individual
parameters tends to be smaller if there are more parameters
for explaining the same amount of data.

6.2. Effects of Low Rank Approximation

We additionally study the effects of LRA on the approxi-
mation quality of IM when compared to the exact, block
diagonal IM. We include exact diagonal approximation to

https://github.com/wjmaddox/swa_gaussian
https://github.com/wjmaddox/swa_gaussian
https://www.kaggle.com/c/painter-by-numbers/data
https://www.kaggle.com/c/painter-by-numbers/data
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Figure 7. Resnet18
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Figure 8. Resnet50
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Figure 9. MNIST (layer 1)
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Figure 10. MNIST (layer 2)
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Figure 11. MNIST (layer 3)
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Figure 12. MNIST (layer 4)

Figure 13. Eigenvalue histogram. For figures 4 to 8, the eigen-
values of ImageNET architectures are shown. Here, x-axis plots
the values whereas y-axis shows the counts in a log scale. From
figure 9 to 12, we show the eigenvalues of MNIST (layer-wise
differentiated. These figures empirically shows that the spectrum
of information matrix is sparse (tend to have many values close
to zeros) for all the considered architectures. Furthermore, in the
considered set-up for MNIST dataset, more overparameterized
layer tends to have more close-to-zero eigenvalues even within the
same architecture.

6 4 2 0 2 4 6
200

150

100

50

0

50

100

150

200

Figure 14. Diag
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Figure 15. EFB
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Figure 16. FB

6 4 2 0 2 4 6
200

150

100

50

0

50

100

150

200

Figure 17. INF with rank 1

Figure 18. Uncertainty on toy regression. The black dots and
the black lines are data points (x, y). The red and blue lines show
predictions of the deterministic Neural Network and the mean
output respectively. Upto three standard deviations are shown with
blue shades.

the true IM while decrease the ranks of INF in steps of
25%. The results are depicted in table 4 which shows that
due to the sparsity of IM, the error (with a measure on nor-
malized frobenius norm) does not drastically increase with
lower ranks. Diagonal approximation also results in the
most severe approximation error on off-diagonal elements.

6.3. Additional Results on Toy Regression Experiments

Table 4. UCI benchmark: The normalized Frobenius norm of
errors for the off-diagonal approximations w.r.t the true Fisher are
depicted.

Dataset Off-diagonals
Diag INF (75%) INF (50%) INF (25%)

Boston 1.000 ± 0.000 0.524±0.006 0.524±0.006 0.520±0.006
Concrete 1.000 ± 0.000 0.506±0.008 0.506±0.008 0.508±0.008
Energy 1.000 ± 0.000 0.504±0.006 0.504±0.006 0.514±0.006
Kin8nm 1.000 ± 0.000 0.526±0.005 0.526±0.005 0.546±0.005
Naval 1.000 ± 0.000 0.465±0.003 0.465±0.003 0.465±0.003
Power 1.000 ± 0.000 0.492±0.008 0.492±0.008 0.502±0.008
Protein 1.000 ± 0.000 0.541±0.021 0.541±0.021 0.541±0.021
Wine 1.000 ± 0.000 0.535±0.009 0.535±0.009 0.546±0.009
Yacht 1.000 ± 0.000 0.516±0.007 0.516±0.007 0.526±0.007
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Figure 20. KFAC
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Figure 21. OKF Σ
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Figure 22. KFAC Σ

Figure 23. Toy regression uncertainty and covariance visual-
ization (only the first layer is shown here). OKF Laplace means
using equation 23 without further approximation in equation 24.

6.3.1. Effects of diagonal correction.

What is the relation between keeping diagonal elements of
IM exact and predictive uncertainty? As effects of regular-
izing hyperparameters are removed to certain extent in the
toy experiment, we study above mentioned question within
this limited but controllable set-up.

For this purpose, we depict Diag, EFB, FB (layer-wise true
IM) and INF with rank 1. The most comparable fit to HMC
is given by FB while INF with rank 1 deteriorates when
compared to its full rank counterpart. EFB for this set-up,
produces considerable misfit to HMC. Importantly, since the
only difference between EFB and DEF Laplace is a diagonal
correction term, these results suggest that keeping diagonals
of IM exact can result in accurate predictive uncertainty.

6.3.2. KFAC - a critical analysis.

Ritter et al. (2018a;b) reports that KFAC requires smaller
sets of hyperparameters than Diag, which may suggest that
KFAC produces better fits to the true posterior. Instead, we
find that KFAC’s approximation step for the prior incorpo-
ration may result in this phenomena. Concretely, lets define
two variants as:

NIkfac +τI = N(A⊗G) +τI or (23)
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Figure 24. the Hessian [20].
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Figure 26. Visualization of the approximate information ma-
trix with different data points. Only the first layer chosen for
the analysis. With increasing data points, the resulting information
matrix becomes less degenerate.

NIkfac +τI ≈
(√

NAi−1 +
√
τI

)
⊗

(√
NGi+

√
τI

)
. (24)

Here, equation 24 has been the approximation step of Rit-
ter et al. (2018a;b) while equation 23 is an exact variant.
We denote the later as OKF. By reproducing the results of
Ritter et al. (2018a), we depict the results in figure 23, in
which we plot the predictive uncertainty obtained from OKF
and KFAC under the same hyperparameter settings. Fur-
thermore, a direct plot of covariance matrix can be found
as well for the same hyperparameters. These results show
that without the approximation step in equation 24, KFAC
requires higher regularization hyperparameters, as similar
as Diag. Looking into the covariance matrix directly, we
also find that the magnitude of KFAC is smaller with this ap-
proximation. Therefore, our findings are that KFAC, due to
the given approximation in incorporation of prior, requires
smaller sets of regularization hyperparameters. Furthermore,
as OKF does not seem to result in a similar phenomena, it
might be difficult to conclude that KFAC, when compared
to Diag, produces better fit to the true posterior.

6.3.3. Effects of data points size.

We now study the effects of dataset size to number of pa-
rameters. For this, we compare the dataset size 100 and
20. Results are depicted in figure 26. Notably, at using 20
data points resulted in more number of zero diagonal entries
and corresponding rows and columns. This might be due to
overparameterization of the model which results in under
determined Hessian.

6.4. Effects of hyperparameters - UCI benchmark

Instead of linearized LA, we investigate the performance
of LA-based methods with a full Bayesian analysis on UCI
benchmarks. Rather than reporting the best performance of
each methods with a single selected hyperparameter choice,
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Figure 27. Boston Hyperparameter Landscape. Test-log likelihood on the z-axis. Ranging hyperparameters are display on XY plane.
Maximum values are also displayed for Diag, KFAC, INF with two different ranks, and FB (true block-diagonal information matrix).
Except KFAC, all LA-based approaches show similar behavior. Concrete, energy and protein showed similar tendency.
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Figure 28. Kin8nm Hyperparameter Landscape. Test-log likelihood on the z-axis. Ranging hyperparameters are display on XY plane.
Maximum values are also displayed for Diag, KFAC, INF with two different ranks, and FB (true block-diagonal information matrix). All
LA-based approaches show different behavior. Naval, power, wine and yacht datasets have similar tendency.
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Figure 29. Calibration results on large scale experiments: From left to right: ResNet50, ResNet152, DenseNet121 and DenseNet161.
Our method tends to outperform SWA and SWAG while being competitive to other fine tuned LA-based approaches.
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Figure 30. Out-of-domain: From left to right: ResNet50, ResNet152, DenseNet121 and DenseNet161. Our method tends to significantly
outperform SWA and SWAG while being competitive to other fine tuned LA-based approaches.
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we perform extensive grid searches and show the perfor-
mance landscape. Such performance landscape can be in-
formative for studying how more accurate approximation of
information matrix translates to uncertainty estimation un-
der the effects of hyperparameters. Note that this is possible
on UCI datasets due to the small scale of the set up.

To this end, we search 10000 hyperparameters sets for each
methods except KFAC, where we increase the size to 20000
hyperparameters 10. The range of hyperparameters sets
have been chosen differently for each datasets so that all the
methods produce reliable predictions. We draw 100 Kmc
samples for each predictions in order to have acceptable
range of convergence for monte-carlo integration. Results
are shown in figures 27 and 28 where we report following
observations which falls into two categories.

• Type 1 landscape: Experiments on datasets namely
boston housing, concrete, energy and protein showed
similar behaviors. As seen in figure 27, the perfor-
mance landscape (test log-likelihood) show similar
curves for all the methods except KFAC. The maxi-
mum achievable performance have been found also
similar with a marginal difference.
• Type 2 landscape: Experiments on datasets namely

kin8nm, naval, power, wine and yacht showed a dif-
ferent tendency than type 1. While no methods signifi-
cantly outperformed the other uniformly across all the
datasets, the curve showed different behavior than type
1 as reported in figure 28. Each methods also showed
different performance landscape.

These experiments suggest that for type 1, the benefits from
having more accurate Fisher information is marginal. This
suggests that improvements on accuracy of IM w.r.t Frobe-
nius norm of error may not directly translate to more accu-
rate uncertainty estimation within this context of LA.

For type 2 however, interesting differences can be found
in the sense that INF variants and FB showed significantly
more regimes of hyperparameter sets that outputs higher log-
likelihood which can be benefits of having more accurate
Fisher information matrix - when only smaller number of
hyperparameter searches are possible, more accurate IM can
result in better quality of predictive uncertainty. Understand-
ing the causes of these behaviors to full generality seem a
challenging research question as LA is tightly coupled with
loss landscape of DNNs and further, how optimization af-
fects generality and the shape of true posterior. One possible
explanation for type 1 is that maintaining a single τ and N
for all the layers may force all the methods to be regularized
for fitting a few sharply peaked local mode of true posterior,

10We have doubled the search space for KFAC as it requires
smaller sets of hyperparameters due to equation 24 instead of
equation 23. Following this observation, we further decreased the
minimum τ.

hindering the benefits of having more accurate estimates of
true Fisher information.

6.5. Additional ImageNet Results

The calibration and OOD detection experiments presented
in the main text on ResNet18 were performed identically
for the four additional architectures. We show the results
in figures 29 and 30. The observations from the main text
hold for the additional networks. All LA-based approaches
can reduce the calibration error significantly compared to
the deterministic network and SWA and are as good or
better than SWAG. In out-of-domain separation, we find that
the LA-based approaches perform comparably strong and
are far superior to the other methods across all considered
networks.

Table 5. Wall clock time analysis on sampling. Mean and stan-
dard deviation over 1000 draws are reported with a single thread.

Architecture Diag [ms] KFAC [ms] EFB [ms] INF [ms]

ResNet18 1.24 ± 0.06 8.23 ± 0.04 9.28 ± 0.06 4.74 ± 0.08
ResNet50 1.94 ± 0.11 15.47 ± 0.18 16.89 ± 0.09 12 ± 0.25
ResNet152 5.4 ± 0.07 32.08 ± 0.5 35.55 ± 0.07 32.62 ± 0.15

DenseNet121 4.41 ± 0.14 8.92 ± 0.19 10.22 ± 0.13 25.03 ± 0.65
DenseNet161 5.86 ± 0.11 16.48± 0.03 18.84 ± 0.54 35.95 ± 0.35

Table 5 also the wall clock analysis for sampling. Interest-
ingly, for ResNet variants, INF is more efficient than KFAC
and EFB due to the effects of low rank approximation. On
the other hand, DenseNet variants have many small layers
and therefore, rank reduction is less noticeable and cannot
outweigh the disadvantage of having a more number of
smaller operations in a sampling procedure. While KFAC
and EFB maintain similar size matrices, EFB sampling is
slower than KFAC, also due to more number of operations.
Diag is as expected, the most efficient method. We note
however, that Bayesian Neural Networks in general, has a
disadvantage that prediction time is atleast 30 times slower
(assuming 30 samples are taken) and thus, there may not be
any practical advantages.

Table 6. Wall clock time analysis on information matrix com-
putation. Values are rounded to the nearest.

Architecture Diag [min] KFAC [min] EFB [min] INF [min]

ResNet18 30 120 165 165
ResNet50 82 210 300 300

ResNet152 180 510 720 720
DenseNet121 100 360 465 465
DenseNet161 180 870 1060 1060

Next, table 6 reports the wall clock analysis for IM com-
putations. In our implementation, EFB is computed after
having KFAC and therefore, it takes more time than KFAC.
Original implementation of EFB contains amortize eigen-
decomposition and can be made more efficient than KFAC.
INF is an offline procedure, and provides negligible over-
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head to EFB. The total computation time for all the methods
are less than a day on ImageNet, and thus, this analysis
shows practicality and scalability of LA-based approaches.
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