
Supplementary Material
Self-supervised Label Augmentation via Input Transformations

A. Comparison with ten-crop
In this section, we compare the proposed aggregation method (SLA+AG) using rotation with a widely-used aggregation
scheme, ten-crop (Krizhevsky et al., 2012), which aggregates the pre-softmax activations (i.e., logits) over a number of
cropped images. As reported in Table 1, the aggregation using rotation performs significantly better than ten-crop.

Table 1. Classification accuracy (%) of the ten-crop and our aggregation using rotation (SLA+AG). The best accuracy is indicated as bold,
and the relative gain over the baseline is shown in brackets.

Dataset Baseline ten-crop SLA+AG

CIFAR10 92.39 93.33 (+1.02%) 94.50 (+2.28%)
CIFAR100 68.27 70.54 (+3.33%) 74.14 (+8.60%)

tiny-ImageNet 63.11 64.95 (+2.92%) 66.95 (+6.08%)

B. Experiments with Composed Transformations
In this section, we present the more detailed experimental results of composed transformations described in the main text
(Section 3.3 and Table 4). We additionally report the performance of the single inference (SLA+SI) with an additional
dataset, Stanford Dogs. When using M = 12 composed transformations, we achieve the best performance, 20.8% and
15.4% relatively higher than baselines on CUB200 and Stanford Dogs, respectively.

Table 2. Classification accuracy (%) of SLA based on the set (each row) of composed transformations. We first choose subsets of rotation
and color permutation (see first two columns) and compose them where M is the number of composed transformations. We use SLA with
the composed transformations when training models. The best accuracy is indicated as bold.

Composed transformations T = Tr × Tc CUB200 Stanford Dogs

Rotation Tr Color permutation Tc M SLA+SI SLA+AG SLA+SI SLA+AG

0◦ RGB 1 54.24 60.62
0◦, 180◦ RGB 2 56.62 58.92 63.57 65.65

0◦, 90◦, 180◦, 270◦ RGB 4 60.85 64.41 65.67 67.03
0◦ RGB, GBR, BRG 3 52.91 56.47 63.26 65.87
0◦ RGB, RBG, GRB, GBR, BRG, BGR 6 56.81 61.10 64.83 67.03

0◦, 180◦ RGB, GBR, BRG 6 56.14 60.87 65.45 68.75
0◦, 90◦, 180◦, 270◦ RGB, GBR, BRG 12 60.74 65.53 66.40 69.95
0◦, 90◦, 180◦, 270◦ RGB, RBG, GRB, GBR, BRG, BGR 24 61.67 65.43 64.71 67.80



C. Self-supervised Label Augmentation with Thousands of Labels
Since the proposed technique (SLA) increases the number of classes in a task, one could wonder that the technique is
scalable with respect to the number of labels. To demonstrate the scalability of SLA, we train ResNet-50 (He et al., 2016)
on ImageNet (Deng et al., 2009) and iNaturalist (Van Horn et al., 2018) datasets with the same experimental settings of
tiny-ImageNet as described in the main text (Section 3.1) except the number of training iterations. In this experiment, we
train models for 900K and 300K iterations (roughly 90 epochs) for ImageNet and iNaturalist, respectively. As reported in
Table 3, our method also provides a benefit on the large-scale datasets.

Table 3. Classification accuracy (%) on ImageNet (Deng et al., 2009) and iNaturalist (Van Horn et al., 2018) with SLA using rotation. N
indicates the number of labels in each dataset. The relative gain over the baseline is shown in brackets. Note that the reported accuracies
are obtained from only one trial.

Dataset N Baseline SLA+SI SLA+AG SLA+SD

ImageNet (Deng et al., 2009) 1000 75.16 75.81 (+0.86%) 77.16 (+2.66%) 76.17 (+1.34%)
iNaturalist (Van Horn et al., 2018) 8142 57.12 61.31 (+7.34%) 62.97 (+10.2%) 61.52 (+7.70%)

D. Combining with A Self-supervised Pre-training Technique
While self-supervised learning (SSL) techniques primarily target unsupervised learning or pre-training, we focus on joint-
supervised-learning (from scratch) with self-supervision to improve upon the original supervised learning model. Thus
our SLA framework is essentially a supervised learning method, and is not comparable with SSL methods that train with
unlabeled data.

Yet, since our SLA is orthogonal from SSL, we could use a SSL technique as a pre-training strategy for our scheme as well.
To validate this, we pre-train ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) using a SOTA contrastive
learning method, SimCLR (Chen et al., 2020), and then fine-tune it on the same dataset. As reported in Table 4, under the
fully-supervised settings, pre-training the network only with SimCLR yields a marginal performance gain. On the other
hand, when using SimCLR for pre-training and ours for fine-tuning, we achieve a significant performance gain, which shows
that the benefit of our approach is orthogonal to pre-training strategies.

Table 4. Classification accuracy (%) on CIFAR-10 (Krizhevsky et al., 2009) with SimCLR (Chen et al., 2020) and our SLA framework.

Initialization Fine-tuning Accuracy (%)

Random initialization Baseline 95.26
SLA+SD (ours) 96.19

SimCLR pre-training Baseline 95.44
SLA+SD (ours) 96.55



E. Implementation with PyTorch
One of the strengths of the proposed self-supervised label augmentation is simple to implement. Note that the joint label
y = (i, j) ∈ [N ]× [M ] can be rewritten as a single label y = M × i+ j where N and M are the number of primary and
self-supervised labels, respectively. Thus self-supervised label augmentation (SLA) can be implemented in PyTorch as
follows. Note that torch.rot90(X, k, ...) is a built-in function which rotates the input tensor X by 90k degrees.

Listing 1. Training script of self-supervised label augmentation.
1 for inputs, targets in train_dataloader:
2 inputs = torch.stack([torch.rot90(inputs, k, (2, 3)) for k in range(4)], 1)
3 inputs = inputs.view(-1, 3, 32, 32)
4 targets = torch.stack([targets*4+k for k in range(4)], 1).view(-1)
5
6 outputs = model(inputs)
7 loss = F.cross_entropy(outputs, targets)
8
9 optimizer.zero_grad()

10 loss.backward()
11 optimizer.step()

Listing 2. Evaluation script of self-supervised label augmentation with single (SLA+SI) and aggregated (SLA+AG) inference.
1 for inputs, targets in test_dataloader:
2 outputs = model(inputs)
3 SI = outputs[:, ::4]
4
5 inputs = torch.stack([torch.rot90(inputs, k, (2, 3)) for k in range(4)], 1)
6 inputs = inputs.view(-1, 3, 32, 32)
7 outputs = model(inputs)
8 AG = 0.
9 for k in range(4):

10 AG = AG + outputs[k::4, k::4] / 4.
11
12 SI_accuracy = compute_accuracy(SI, targets)
13 AG_accuracy = compute_accuracy(AG, targets)

As described above, applying input transformations (e.g., line 2-3 in Listing 1) and label augmentation (e.g., line 4 in
Listing 1) is enough to implement SLA. We here omit the script for SLA with self-distillation (SLA+SD), but remark that
its implementation is also simple as SLA. We think that this simplicity could lead to the broad applicability for various
applications.
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