
Accelerated Message Passing for Entropy-Regularized MAP Inference

A. Numerical Experiments Details

All experiments were run on an Intel Core i7 processor with 16 GB RAM. We consider two different metrics.

1. The first metric is the original primal objective value (P), which is the actual value we wish to minimize. Since the
optimization is done in the dual variables, we use Proj to project the point µ� onto L2 and report the projection’s
function value, additively normalized with respect to the optimal value.

2. The second metric emphasizes the first by reporting the log-competitive ratio between the standard and accelerated
variants of the the algorithms. The competitive ratio is computed as log

⇣
hC,bµEMP�µ

⇤i
hC,bµAccel-EMP�µ⇤i

⌘
, where bµEMP and bµAccel-EMP

are the projections due to Proj of the outputs of EMP and Accel-EMP, respectively, and µ⇤ is a minimizer over L2.
The same is computed for SMP and Accel-SMP. Thus, positive values at a given time indicate that the accelerated
variant has lower error on the original objective.
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Figure 2. The competitive ratio of SMP with respect to
Accel-SMP on (P) is compared across random graphs
of varying sizes n = 9, 36, and 81.

Message Passing Algorithms We implemented the message pass-
ing algorithms with their update rules exactly as prescribed in Algo-
rithms 1, 2, and 3. The algorithms are compared with respect to the
number of updates (i.e. iterations); however, we note that the cost
of each update is greater for SMP and Accel-SMP since they both
require computing slacks of the entire neighborhood surrounding a
give vertex.

Block-Coordinate Methods In addition to studying the empirical
properties of the message passing algorithms, we present a supple-
mentary empirical comparison with block-coordinate descent and its
accelerated variant (Lee & Sidford, 2013). The purpose of this inclu-
sion is to standardize how much we expect acceleration to improve
the algorithms. We chose a stepsize of 1/⌘. We note that each update
in block-coordinate descent is essentially as expensive as an update
of EMP.

This choice of cost vectors C ensures that vertices cannot be trivially
set to their minimal vertex potentials to achieve a reasonable objective
value; the MAP algorithm must actually consider pairwise interactions.
We evaluated each of the four algorithms on the same graph with ⌘ =
1000. Due to the inherent stochasticity of the randomized algorithms,
we ran each one 10 times and took the averages and standard deviations. Since the graphs are small enough, we computed
the ground-truth optimal value of (P) using a standard LP solver in CVXPY.

In order to understand the effect of the graph size on the competitive ratio between the standard and accelerated algorithms,
we generated random graphs of sizes n = 9, 36, and 81 with the same randomly drawn edges and cost vectors. We ran
SMP and Accel-SMP for a fixed number of iterations over 10 random trials and computed the average log competitive ratio.
Again, we used ⌘ = 1000. Figure 2 shows that Accel-SMP runs faster in all regimes, especially at beginning, and then the
performance improvement eventually tapers after many iterations.

B. Omitted Proofs and Derivations of Section 2

B.1. Proof of Proposition 1

Recall that the primal objective is to solve the following:

minimize hC, µi � 1

⌘
H(µ) s.t. µ 2 L2, (obj)

where

H(µ) = �
X

i2V

X

xi2�

µi(xi)(logµi(xi)� 1)�
X

e2E

X

xe2�2

µe(xe)(logµe(xe)� 1).
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Though it is not strictly necessary, we will also include a normalization constraint on the pseudo-marginal edges, which
amounts to

P
xe

µe(xe) = 1 for all e 2 E. The Lagrangian is therefore

L(µ,�, ⇠) = hC, µi � 1

⌘
H(µ) +

X

e2E,i2e

�>
e,i
(Se,i � µi) +

X

i2V

⇠i(
X

xi

µi(xi)� 1) +
X

e2E

⇠e(
X

xe

µe(xe)� 1)

Taking the derivative w.r.t µ yields

@L(µ,�, ⇠)
@µi(xi)

= Ci(xi) +
1

⌘
logµi(xi) + ⇠i �

X

e2Ni

�e,i(xi) (6)

@L(µ,�, ⇠)
@µe(xe)

= Ce(xe) +
1

⌘
logµe(xe) + ⇠e +

X

i2e

�e,i((xe)i). (7)

Here we are using (xe)i to denote selecting the label associated with endpoint i 2 V from the pair of labels xe 2 �2. The
necessary conditions for optimality imply that

µ�,⇠

i
(xi) = exp

 
�⌘Ci(xi)� ⌘⇠i + ⌘

X

e2Ni

�e,i(xi)

!
(8)

µ�,⇠

e
(xe) = exp

 
�⌘Ce(xe)� ⌘⇠e � ⌘

X

i2e

�e,i((xe)i)

!
, (9)

where we use the superscripts to show that these optimal values are dependent on the dual variables, � and ⇠. The dual
problem then becomes

maximize
�,⇠

�1

⌘

X

i

X

xi

µ�,⇠

i
(xi)�

1

⌘

X

c

X

xc

µ�,⇠

c
(xc)�

X

i2V

⇠i �
X

e2E

⇠e

Note that we can solve exactly for ⇠ as well, which simply normalizes the individual pseudo-marginals for each edge and
vertex so that

⇠i =
1

⌘
log
X

xi

exp

 
�⌘Ci(xi)� ⌘⇠i + ⌘

X

e2Ni

�e,i(xi)

!

⇠e =
1

⌘
log
X

xe

exp

 
�⌘Ce(xe)� ⌘⇠e � ⌘

X

i2e

�e,i((xe)i)

!

Plugging this into µ�,⇠ ensures that each local vertex and edge distribution is normalized to 1. Therefore the final objective
becomes

minimize
�

m+ n

⌘
+

1

⌘

X

i2V

log
X

xi

exp

 
�⌘Ci(xi)� ⌘⇠i + ⌘

X

e2Ni

�e,i(xi)

!

+
1

⌘

X

e2E

log
X

xe

exp

 
�⌘Ce(xe)� ⌘⇠e � ⌘

X

i2e

�e,i((xe)i)

!
,

and we can ignore the constant.

B.2. Entropy-Regularized Message Passing Derivations

In this section, we derive the standard message passing algorithms that will be the main focus of the paper. Both come from
simply computing the gradient and choosing additive updates to satisfy the optimality conditions directly.

Proposition 2. The operator EMP⌘

e,i
: � 7! �0

e,i
(·) 2 Rd

is satisfied by �0
e,i
(xi) = �e,i(xi) +

1
2⌘ log

S
�
e,i

(xi)

µ
�
i
(xi)

.
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Proof. From (1), the partial gradient of L with respect to coordinate (e, i, xi) yields the following necessary and sufficient
optimality condition:

S�
e,i
(xi) = µ�

i
(xi).

Suppose that �0 satisfies this condition, and thus minimizes Le,i(·;�). We can decompose �0 at coordinate (e, i, xi)
additively as �0

e,i
(xi) = �e,i(xi) + �e,i(xi). From the definition of µ�, the optimality condition becomes

exp(2⌘�c,i(xi)) =

P
xj2�

µ�
e
(xi, xj)

µ�
i
(xi)

Rearranging to find �e,i(xi) and then substituting into �0
e,i
(xi) yields the desired result.

Now, we can derive a lower bound on the improvement on the dual objective L from applying an update of EMP.

Lemma 1. Let �0
be the result of applying EMP⌘

e,i
(�) to �, keeping all other coordinates fixed. Then, L(�)� L(�0) �

1
4⌘k⌫

�
e,i
k21.

Proof. Let eµ denote the unnormalized marginals. From the definition of L,

L(�)� L(�0) =
1

⌘
log
X

xi

exp

 
�⌘Ci(xi) + ⌘

X

e2Ni

�e,i(xi)

!
+

1

⌘
log
X

xe

exp

 
�⌘Ce(xe)� ⌘

X

i2e

�e,i(xi)

!

� 1

⌘
log
X

xi

exp

 
�⌘Ci(xi) + ⌘�e,i(xi) + ⌘

X

e2Ni

�e,i(xi)

!

� 1

⌘
log
X

xe

exp

 
�⌘Ce(xe)� ⌘�e,i(xi)� ⌘

X

i2e

�e,i(xi)

!

Define eµ�
i
(xi) = exp

�
�⌘Ci(xi) +

P
e2E

�e,i(xi)
�

and eµe(xe) = exp
�
�⌘Ce(xe)�

P
i2e

�e,i(xi)
�
. The cost difference

can then be written as

L(�)� L(�0) = �1

⌘
log

 
X

xi

eµ�
i
(xi)e⌘�e,i(xi)

P
x
0
i

eµ�
i
(x0

i
)

!
� 1

⌘
log

 
X

xe

eµ�
e
(xe)e�⌘�e,i(xc)

P
x0
e

eµ�
e
(x0

e
)

!

= �1

⌘
log

 
X

xi

µ�
i
(xi)

s
Se,i(xi)

µ�
i
(xi)

!
� 1

⌘
log

 
X

xe

µ�
e
(xe)

s
µ�
i
(xi)

S�
e,i
(xi)

!

= �2

⌘
log

 
X

xi

q
S�
e,i
(xi)µ�

i
(xi)

!

Note that the right-hand contains the Bhattacharyya coefficient BC(p, q) :=
P

i

p
piqi which has the following relationship

with the Hellinger distance: BC(p, q) = 1� h2(p, q).

The inequality then follows from exponential inequalities:

L(�)� L(�0) = �2

⌘
log(1� h2(S�

e,i
, µ�

i
)) � �2

⌘
log exp(�h2(S�

e,i
, µ�

i
)) =

2

⌘
h2(S�

e,i
, µ�

i
)

Furthermore, the Hellinger inequality gives us

1

4
kp� qk21  2h2(p, q).

We conclude the result by applying this inequality with p = S�
e,i

and q = µ�
i

.
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Proposition 3. The operator SMP⌘

i
: � 7! �0

·,i(·) 2 Rd|Ni| is, for all e 2 Ni and xi 2 �, satisfied by

�0
e,i
(xi) = �e,i +

1

⌘
logS�

e,i
(xi)

� 1

⌘(|Ni|+ 1)
log
�
µ�
i
(xi)

Q
e02Ni

S�
e0,i(xi)

�
,

Proof. The optimality conditions require, for all e 2 Ni,

S�0

e,i
(xi) = µ�0

i
(xi),

which implies that

S�
e,i
(xi) = µ�

i
(xi) exp

 
⌘�e,i(xi) + ⌘

X

e02Ni

�e0,i(xi)

!
,

where �e,i(xi) = �0
e,i
(xi)� �e,i(xi). Then, let e1, e2 2 Ni. At optimality, it holds that

S�
e1,i

(xi)

S�
e2,i

(xi)
=

exp(⌘�e1,i(xi))

exp(⌘�e2,i(xi))

Substituting each �e2,i(xi) in terms of �e1,i(xi), we then have

S�
e,i
(xi) = µ�

i
(xi) exp(⌘�e,i(xi))

Y

e02Ni

S�
e0,i(xi)

S�
e,i
(xi)

exp(⌘�e,i(xi)).

Collecting and then rearranging the above results in

exp((|Ni|+ 1)⌘�e,i(xi)) = (S�
e,i
(xi))

|Ni|+1

 
µ�
i
(xi)

Y

e02Ni

S�
e0,i(xi)

!�1

.

In additive form, the update equation is

�e,i(xi) =
1

⌘
logS�

e,i
(xi)�

1

⌘(|Ni|+ 1)
log

 
µ�
i
(xi)

Y

e02Ni

S�
e0,i(xi)

!
.

C. Omitted Proofs of Technical Lemmas of Section 4

C.1. Proof of Random Estimate Sequences Lemma 3

Lemma 3. The sequence {�k, �k}Kk=0 defined in (5) is a random estimate sequence. Furthermore, it maintains the form

�k(�) = !k + �k

2 k�� v(k)k for all k where

�k+1 = (1� ✓k)�k

v(k+1)
e,i

=

(
v(k)
e,i

+ q✓k

�k+1
⌫y

(k)

e,i
if (e, i) = (ek, ik)

v(k)
e,i

otherwise

!k+1 = (1� ✓k)!k + ✓kL(y
(k))� (✓kq)2

2�k+1
k⌫y

(k)

ek,ik
k22

� ✓kqh⌫y
(k)

ek,ik
,v(k)

ek,ik
� y(k)

ek,ik
i
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Proof. First we show that it is an estimate sequence by induction. Clearly this holds for the base case �0 when �0 = 1.
Then, we assume the inductive hypothesis that E[�k(�)]  (1� �k)L(�) + �k�0(�). From, here we can show

E[�k+1(�)] = (1� ✓k)E[�k(�)] + ✓kE
h
L(y(k))� hq⌫y

(k)

ek,ik
,�ek,ik

� y(k)
ek,ik

i
i

= (1� ✓k)E[�k(�)] + ✓kE
h
L(y(k)) + hrL(y(k)),�� y(k)i

i

 (1� ✓k)((1� �k)L(�) + �k�0(�)) + ✓kL(�)

= (1� �k+1)L(�) + �k+1�0(�)

The first line uses the definition of �k+1 and the second line uses the law of total expectation and the fact that (ek, ik) is
sampled uniformly. The inequality leverages the inductive hypothesis and convexity of L. From Nesterov (2018, §2), we
know that the definition of �k from ✓k ensures that �k

k! 0. Therefore, {�k, �k}Kk=0 is a random estimate sequence.

As noted, the identities are fairly standard (Nesterov, 2018; Lee & Sidford, 2013). We prove each claim in order.

• From definition of �k+1, computing the second derivative of the combination shows that it is constant at (1� ✓k)�k.

• Computing the gradient with respect to block-coordinate �ek,ik
of the combination shows, at optimality, we have

(1� ✓k)�k(�ek,ik
� v(k)

ek,ik
)� q✓k⌫

y(k)

ek,ik
= 0

which implies

�ek,ik
= v(k)

ek,ik
+

q✓k
�k+1

⌫y
(k)

ek,ik

For any other block-coordinate (e, i), the optimality condition simply implies �e,i = v(k)
e,i

.

• The last claim can be show by inserting the minimizer, v(k)
ek,ik

, into �k+1. Therefore, we have

!k+1 := min
�

�k+1

= �k+1(v
(k+1))

= (1� ✓k)!k +
�k+1

2
kv(k) � v(k+1)k22 + ✓kL(y

(k))� ✓kqh⌫y
(k)

ek,ik
,v(k+1)

ek,ik
� y(k)

ek,ik
i

= (1� ✓k)!k +
(q✓k)2

2�k+1
k⌫y

(k)

ek,ik
k22 + ✓kL(y

(k))� ✓kqh⌫y
(k)

ek,ik
,v(k)

ek,ik
+

q✓k
�k+1

⌫y
(k)

ek,ik
� y(k)

ek,ik
i

= (1� ✓k)!k + ✓kL(y
(k))� (q✓k)2

2�k+1
k⌫y

(k)

ek,ik
k22 � q✓kh⌫y

(k)

ek,ik
,v(k)

ek,ik
� y(k)

ek,ik
i

C.2. Proof of L2 Projection Lemma 5 and L�
2 Projection Lemma 6

Lemma 5. For � 2 RrD and µ� 2 L⌫
�

2 , Algorithm 4 returns a point bµ = Proj(µ�, 0) such that bµi = µ�
i

for all i 2 V and

X

e2E

kµ�
e
� bµek1  2

X

e2E,i2e

k⌫�
e,i
k1.

Proof. Since ⌫ = 0, we know that µ�
i
+ ⌫e,i = µ�

i
2 �n for all i 2 V and e 2 Ni. For any (i, j) = e 2 E, Proj applies

Algorithm 2 of Altschuler et al. (2017) to generate bµe from µ�
e

with the following guarantee due to Altschuler et al. (2017,
Lemma 7):

kbµe � µ�
e
k1  2kS�

e,i
� µ�

i
k1 + 2kS�

e,j
� µ�

j
k1

and bµe 2 Ud(µ�
i
, µ�

j
). Applying this guarantee for all edges in E gives the result.
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Lemma 6. Let µ 2 L2 and � 2 RrD . Define � = maxe2E,i2e k⌫�e,ik1 There exists bµ in the slack polytope L⌫
�

2 such that

kµ� bµk1  16(m+ n)d� + 2
X

e2E,i2e

k⌫�
e,i
k1

Proof. For convenience, we just write ⌫ for the slack, dropping the notational dependence on �. We will proceed with this
proof by constructing such a bµ in two cases. We would like to show that the edge marginals µe can be modified to give
bµ 2 L⌫

2 . To do this, we aim to use Algorithm 4 to match bµe to the modified marginals µi + ⌫e,i for every e 2 E and i 2 e.
As long as µi + ⌫e,i 2 �d, setting µ0

i
= µi and µ0

e
= µe and computing bµ = Proj(eµ, ⌫) would return bµ 2 L⌫

2 that satisfies
the condition by Lemma 5.

However, if µi + ⌫e,i 62 �d, then 9 x 2 � such that µi(x) + ⌫e,i(x) 62 [0, 1]. Consider the case where �  1
2d . We aim to

create a temporary marginal vector µ0 which is made by modifying µi appropriately until the slack can be added to µ0
i

while
maintaining a valid distribution. To do this, we set µ0

i
as the convex combination with the uniform distribution

µ0
i
= (1� ✓)µi + ✓Unif(�)

for some ✓ 2 [0, 1]. Choosing ✓ = d� ensures that

�  µ0(x)  1� � 8 x 2 �,

Furthermore, µ0
i
2 �d because �d is convex and we have

kµ0
i
� µik1 =

X

x2�

�|1� dµi(x)|


X

x

� + �dµi(x)

= 2d�

Then we set µ0
e
= µe for all e 2 E. Using Algorithm 4, we compute bµ = Proj(µ0, ⌫) 2 L⌫

2 . Together with Lemma 5, we
have that

kbµ� µk1 =
X

i2V

kbµi � µik1 +
X

e2E

kbµe � µek1

 2nd� + 2
X

e2E,i2e

k⌫e,ik1 + kµ0
i
� µik1

 (n+ 8m)d� + 2
X

e2E,i2e

k⌫e,ik1

On the other hand, consider the case where � > 1
2d . Then instead we choose the temporary marginal vector as µ0

i
= µ�

i
for

all i 2 V and µ0
e
= µe for all e 2 E, which ensures that µ0

i
+⌫e,i 2 �d by definition of ⌫. We then compute bµ = Proj(µ0, ⌫),

which ensures

kbµ� µk1 
X

i2V

kµi � µ�
i
k1 + 2

X

e2E,i2e

kµi � µ�
i
k1 + k⌫e,ik1

 2n+ 8m+ 2
X

e2E,i2e

k⌫e,ik1

 4nd� + 16md� + 2
X

e2E,i2e

k⌫e,ik1

where the second inequality uses the fact that the l1 distance is bounded by 2 and the last inequality uses the assumption that
� > 1

2d . We take the worst of these two cases for the final result.
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C.3. Proof of Proposition 4

Proposition 4. Let µ⇤ 2 L2 be optimal, � 2 RrD , bµ = Proj(µ�, 0) 2 L2, and � = maxe2E,i2e k⌫�e,ik1. The following

inequality holds:

hC, bµ� µ⇤i  16(m+ n)dkCk1�

+ 4kCk1
X

e2E,i2e

k⌫�
e,i
k1 +

n log d+ 2m log d

⌘
.

Proof. Consider µ�, which may not lie in L2. It does, however, lie within its own slack polytope L⌫
�

2 from Definition 1.
Therefore, it can be seen that µ� is a solution to

minimize hC, µi � 1

⌘
H(µ) s.t. µ 2 L�

2 (10)

Then, consider the point bµ = Proj(µ�, 0) 2 L2. Let µ⇤ 2 argmin
µ2L2

hC, µi. We have

hC, bµ� µ⇤i = hC, bµ� µ� + µ� � µ⇤i
 kCk1kbµ� µ�k1 + hC, µ� � µ⇤i.

(11)

Note that the last term in the right-hand side can be written as

hC, µ� � µ⇤i = hC, µ� � bµ⇤ + bµ⇤ � µ⇤i
 kCk1kbµ⇤ � µ⇤k1 + hC, µ� � bµ⇤i,

(12)

where bµ⇤ 2 L⌫
�

2 is the existing vector from Lemma 6 using µ⇤ 2 L2 and slack from �. Because µ� is the solution to (10),
we further have

hC, µ� � bµ⇤i  1

⌘
(H(µ�)�H(bµ⇤))

 n log d+ 2m log d

⌘

(13)

Combining inequalities (11), (12), and (13) shows that

hC, bµ� µ⇤i  kCk1(kbµ� µ�k1 + kbµ⇤ � µ⇤k1) +
n log d+ 2m log d

⌘

Using Lemma 5 and 6, we can further bound this as

hC, bµ� µ⇤i  kCk1

0

@16(m+ n)d� +
X

e,i

4k⌫�
e,i
k1

1

A+
n log d+ 2m log d

⌘
.

C.4. Proof of G(⌘) Upper Bound

In the proof of Lemma 4, we used the fact that the numerator of the final convergence rate can be bounded by G(⌘)2. Here,
we formally state this result and prove it.

Lemma 7. It holds that

4L(0)� 4L(�⇤) + 16m2⌘k�⇤k22  G(⌘)2,

where G(⌘) := 24md(m+ n)(
p
⌘kCk1 + log dp

⌘
).
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The proof requires bounding both L(0)� L(�⇤), which we have already done in Lemma 10, and bounding the norm k�⇤k22.
We rely on the following result from Meshi et al. (2012).

Lemma 8. There exists �⇤ 2 ⇤⇤
such that

k�⇤k1  2d(n+m)kCk1 +
4d(m+ n)

⌘
log d

 4d(m+ n)

⌘
(⌘kCk1 + log d)

Proof. Modifying Meshi et al. (2012, Supplement Lemma 1.2) for our definition of H gives us

k�⇤k1  2d(L(0)� n�m� hC, µ�⇤
i+ 1

⌘
H(µ�⇤

)).

Using Cauchy-Schwarz and maximizing over the entropy yields the result.

Proof of Lemma 7. Using these results, we can prove the claim. We bound the square root of the numerator, multiplied byp
⌘:

q
⌘ (4L(0)� 4L(�⇤) + 16m2⌘k�⇤k22) 

q
8(m+ n)(⌘kCk1 + log d) + 16m2 (4d(m+ n) (⌘kCk1 + log d))2


p
8(m+ n)(⌘kCk1 + log d) + 16md(m+ n)(⌘kCk1 + log d)

 24md(m+ n)(⌘kCk1 + log d)

The first inequality used Lemma 10 and Lemma 8. The second inequality uses the fact that
p
a+ b 

p
a+

p
b for a, b � 0.

The last inequality uses the fact that the first term is greater than 1 under the assumption d � 2. Dividing through by p
⌘

gives the result.

D. Proof of Theorem 1

We begin with a complete proof of Theorem 1 for EMP and then show how to modify it slightly for SMP. The result also
builds on some of the same technical lemmas used in the proof of Theorem 2.

D.1. Edge Message Passing

The cornerstone of the proof is showing that the expected slack norms can be bounded over iterations.

Lemma 9. Let L⇤ = min� L(�) and let b� be the output of Algorithm 1 after K iterations with EMP and a uniform

distribution. For any e 2 E and i 2 e, the expected norm of the constraint violation in L2 is bounded as

E
X

e2E,i2e

kSb�
e,i

� µ
b�
i
k21  8m⌘(L(0)� L⇤)

K

Proof. From Lemma 1, we have that the expected improvement is lower bounded at each iteration

E
h
L(�(k))� L(�(k+1))

i
� 1

4⌘
E
h
krek,ik

L(�(k))k21
i
,
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Then, using that re,iL(�) = µ�
i
� S�

e,i
, we apply the bound k = 1, 2, . . . ,K:

L(0)� L⇤ � 1

4⌘

K�1X

k=0

E
h
kS�(k)

ek,ik
� µ�(k)

ik
k21
i

=
1

8m⌘

K�1X

k=0

X

e2E,i2e

E
h
kS�(k)

e,i
� µ�(k)

i
k21
i

� K

8m⌘

X

e2E,i2e

E
h
kSb�

e,i
� µ

b�
i
k21
i

The equality uses the law of total expectation, conditioning on �(k). The second inequality uses the fact that b� is chosen to
minimize the sum of squared constraint violations.

Next, we provide a bound on the initial function value gap.

Lemma 10. For �⇤ 2 ⇤⇤
it holds that L(0)� L(�⇤)  2(m+ n)kCk1 + 2

⌘
(m+ n) log d.

Proof. We will bound both L(0) and L(�⇤) individually. First, from the definition

L(0) =
1

⌘

X

i

log
X

xi

exp(�⌘Ci(xi)) +
1

⌘

X

e

log
X

xe

exp(�⌘Ce(xe))

 1

⌘

X

i

log
X

xi

exp(⌘kCk1) +
1

⌘

X

e

log
X

xe

exp(⌘kCk1)

= (n+m)kCk1 +
n

⌘
log d+

2m

⌘
log d.

For L(�⇤), we recognize that L is simply the negative of the primal problem (Reg-P), shifted by a constant amount. In
particular, we have

�L(�⇤)� 1

⌘
(n+m) = hC, µ⇤i � 1

⌘
H(µ⇤)

For some µ⇤ that solves (Reg-P). Note that H is offset with a linear term (different from the usual definition of the entropy)
that exactly cancels the � 1

⌘
(n+m) on the left-hand side. We then conclude �L(�⇤)  (m+n)kCk1 by Cauchy-Schwarz.

Summing these two gives the desired result.

Proof of Theorem 1 for EMP. Fix ✏0 > 0. Lemma 9 and Lemma 10 ensure that

E
X

e2E,i2e

k⌫b�
e,i
k21  (✏0)2

after

K =
16m(m+ n)(⌘kCk1 + log d)

(✏0)2
(14)

iterations. By Jensen’s inequality and recognizing that the norms are non-negative, this also implies that

E[k⌫b�
e,i
k1]  ✏0 8e 2 E, i 2 e

after the same number of iterations.
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Now, we use the upper bound due to the approximation from Proposition 4 and take the expectation, giving

E [hC, bµ� µ⇤i]  kCk1 (8m✏0 + 16(m+ n)dE[�])

+
n log d+ 2m log d

⌘
,

where

E [�]2  E[�2]  E
X

e2E,i2e

k⌫b�
e,i
k21  (✏0)2.

Therefore, the bound becomes

E [hC, bµ� µ⇤i]  24(m+ n)dkCk1✏0

+
n log d+ 2m log d

⌘

We conclude the result from substituting into (14), using the definition of ⌘ and choosing ✏0 = ✏

48(m+n)dkCk1

D.2. Star Message Passing

The significant difference between the SMP proof and the EMP proof is that there is variable improvement at each update,
dependent on the degree of the node being updated. Using the distribution from (3), we ensure that the improvement
becomes uniform in expectation. This analysis is similar to weighting coordinates by their coordinate-wise smoothness
coefficients in coordinate gradient algorithms (Nesterov, 2012).

A slight modification of the proof of (Meshi et al., 2012) is required the get the tighter l1-norm lower bound.

Lemma 2. Let �0
be the result of applying SMP⌘

i
to �, keeping all other coordinates fixed. Then, L(�) � L(�0) �

1
8|Ni|⌘

P
e2Ni

k⌫�
e,i
k21.

Proof. Meshi et al. (2012) show that

L(�)� L(�0) = �1

⌘
log

0

@
X

xi

 
µ�
i

Y

e2Ni

S�
e,i
(xi)

! 1
|Ni|+1

1

A
|Ni|+1

,

and further

|Ni|� |Ni|

0

@
X

xi

 
µ�
i

Y

e2Ni

S�
e,i
(xi)

! 1
|Ni|+1

1

A
|Ni|+1

�
X

e2Ni

0

@1�
 
X

xi

q
µ�
i
(xi)S�

e,i
(xi)

!2
1

A

We recognize the inner term of the square as the Bhattacharyya coefficient which satisfies BC 2 [0, 1]. Therefore,

X

e2Ni

0

@1�
 
X

xi

q
µ�
i
(xi)S�

e,i
(xi)

!2
1

A �
X

e2Ni

 
1�

 
X

xi

q
µ�
i
(xi)S�

e,i
(xi)

!!

=
X

e2Ni

h2(µ�
i
, S�

e,i
)

Then,

0

@
X

xi

 
µ�
i

Y

e2Ni

S�
e,i
(xi)

! 1
|Ni|+1

1

A
|Ni|+1

 1� 1

Ni

X

e2Ni

h2(µ�
i
, S�

e,i
)
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Finally, we lower bound the original difference of values

L(�)� L(�0) � �1

⌘
log

 
1� 1

Ni

X

e2Ni

h2(µ�
i
, S�

e,i
)

!

� 1

Ni⌘

X

e2Ni

h2(µ�
i
, S�

e,i
)

� 1

8Ni⌘

X

e2Ni

kS�
e,i

� µ�
i
k21

Lemma 11. Let L⇤ = min� L(�) and let b� be the output of Algorithm 1 after K iterations with SMP and distribution (3).

Define N =
P

j2V
|Nj |. For any e 2 E and i 2 e, the expected norm of the constraint violation in L2 is bounded as

E
X

e2E,i2e

kSb�
e,i

� µ
b�
i
k21  8N⌘(L(0)� L⇤)

K

Proof. Lemma 2 gave us the following lower bound on the improvement:

E
h
L(�(k))� L(�(k+1))

i
� E

2

4 1

8|Nik
|⌘
X

e2Ni
k

k⌫�
(k)

e,ik
k21

3

5

Then, since ik is chosen with probability pi =
|Ni|
N

, we can apply the bound for k = 1, 2, . . . ,K and expand the expectations:

L(0)� L⇤ �
K�1X

k=0

E

2

4 1

8|Nik
|⌘
X

e2Ni
k

k⌫�
(k)

e,ik
k21

3

5

=
1

8N⌘

K�1X

k=0

E
X

e2E,i2e

k⌫�
(k)

e,i
k21

� 1

8N⌘

K�1X

k=0

X

e2E,i2e

E
h
k⌫b�

e,i
k21
i

The equality uses the law of total expectation, conditioning on �(k). The second inequality uses the fact that b� is chosen to
minimize the sum of squared constraint violations.

The rest of the proof for SMP proceeds in an identical manner to the case for EMP; however, we simply replace the 8m⌘
with 8N⌘ everywhere. This stems from the fact that we can now guarantee

E
X

e2E,i2e

kSb�
e,i

� µ
b�
i
k21  (✏0)2

in 8N⌘(L(0)�L
⇤)

(✏0)2 iterations instead. We can then use the same upper bound from Lemma 10 and substitute in the same
choices of ✏0 and ⌘ as in EMP to get the result.

E. Proof of Theorem 2 for SMP
The proof for SMP essentially follows the same structure, but it requires defining the estimate sequence in slightly different
way. Define the probability distribution {pi}i2V over V with pi =

|Ni|P
j2V

|Nj | . We propose the candidate:

ik ⇠ Cat(V, {pi}i2V )

�k+1 = (1� ✓k)�k

�k+1(�) = (1� ✓k)�k(�) + ✓kL(y
(k))� ✓k

pik
h⌫y

(k)

·,ik ,�·,ik � y(k)
·,iki

(15)
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Then, we show that this is indeed an estimate sequence with a conducive structure.
Lemma 12. The sequence {�k, �k}Kk=0 defined in (15) is a random estimate sequence. Furthermore, it maintains the form

�k(�) = !k + �k

2 k�� v(k)k for all k where

�k+1 = (1� ✓k)�k

v(k+1)
·,i =

(
v(k)
·,i + ✓k

pi�k+1
⌫y

(k)

·,i if i = ik

v(k)
·,i otherwise

!k+1 = (1� ✓k)!k + ✓kL(y
(k))� ✓2

k

2�k+1p2ik
k⌫y

(k)

·,ik k22 �
✓k
pik

h⌫y
(k)

·,ik ,v(k)
·,ik � y(k)

·,iki

Proof. To show that this is an estimate sequence, the proof is essentially identical to the EMP case. The only exception is
that we take expectation over V with distribution {pi}i2V . However, this ensures that

E[ ✓k
pik

h⌫y
(k)

·,ik ,�·,ik � y(k)
·,iki] = ✓kE[hrL(y(k)),�� y(k)i]

by the law of total expectation. So the the proof that this is an estimate sequence remains the same.

To show that it retains the desired quadratic structure, we again analyze all terms of interest

• �k+1 is identical to the EMP case so the result holds.

• Taking the gradient with respect to �·,i, we have that the optimality conditions, for i = ik, are

�k+1(�·,ik � v(k)
·,ik)�

✓k
pik

⌫y
(k)

·,ik = 0

and, for all other i, they are

�k+1(�·,ik � v(k)
·,ik) = 0.

These conditions imply the given construction for v(k+1).

• We can then compute !k+1 by plugging in the choice for v(k+1) again:

!k+1 := min
�

�k+1

= �k+1(v
(k+1))

= (1� ✓k)!k +
�k+1

2
kv(k) � v(k+1)k22 + ✓kL(y

(k))� ✓k
pik

h⌫y
(k)

·,ik ,v(k+1)
·,ik � y(k)

·,iki

= (1� ✓k)!k +
✓2
k

2�k+1p2ik
k⌫y

(k)

·,ik k22 + ✓kL(y
(k))� ✓k

pik
h⌫y

(k)

·,ik ,v(k)
·,ik +

✓k
�k+1pik

⌫y
(k)

·,ik � y(k)
·,iki

= (1� ✓k)!k + ✓kL(y
(k))� ✓2

k

2�k+1p2ik
k⌫y

(k)

·,ik k22 �
✓k
pik

h⌫y
(k)

·,ik ,v(k)
·,ik � y(k)

·,iki

We now provide a faster convergence guarantee on the dual objective function for SMP which depends on N =
P

j2V
|Nj |.

Lemma 13. For the random estimate sequence in (15), let {�(k)}K
k=0 and {y(k)}K

k=0 be defined as in Algorithm 3 with

�(0) = 0. Then, the dual objective error in expectation can be bounded as

E[L(�(k))� L(�⇤)]  GSMP(⌘)
2

(k + 2)2
,

where GSMP(⌘) := 24Nd(m+ n)(
p
⌘kCk1 + log dp

⌘
) and N =

P
j2V

|Nj |.



Accelerated Message Passing for Entropy-Regularized MAP Inference

Proof. As in the EMP proof, it suffices to show that E[!k+1] � E[L(�(k+1))] by induction. As before we have

E[!k+1] � (1� ✓k)E[L(�(k))] + ✓kE[L(y(k))]� E


✓2
k

2�k+1p2ik
k⌫y

(k)

·,ik k22 �
✓k
pik

h⌫y
(k)

·,ik ,v(k) � y(k)i
�

� E

L(y(k))� ✓2

k

2�k+1p2ik
k⌫y

(k)

·,ik k22
�
+ (1� ✓k)E

h
hrL(y(k)),�(k) � y(k)i

i
+ ✓kE

h
hrL(y(k)),v(k) � y(k)i

i

= E
"
L(y(k))�

X

i2V

✓2
k

2�k+1pi
k⌫y

(k)

·,i k22

#
,

where the last line comes from the definition of y(k). Choosing ✓k such that ✓2
k
= �k+1 minj |Nj |

4⌘N2 results in

E[!k+1] � E
"
L(y(k))�

X

i2V

1

8N⌘
k⌫y

(k)

·,i k22

#

= E

L(y(k))� 1

8N⌘
krL(y(k)k22

�

Recall, from the improvement in Lemma 2, we have

E[L(�(k+1))]  E[L(y(k))]� E


1

8|Nik
|⌘ k⌫

y(k)

·,ik k22
�

= E[L(y(k))]� E


1

8N⌘
krL(y(k))k22

�

Therefore, by this induction, the inequality E[L(�(k+1))]  E[!k+1] holds for all k. Furthermore, by choosing �0 =
4N2

⌘

minj |Nj | , we ensure that ✓k can be updated recursively as in Algorithm 3 and the update equation for v is simplified to

v(k+1)
·,i =

(
v(k)
·,i + minj |Nj |

4pi
k
✓k⌘N

⌫y
(k)

·,i if i = ik

v(k)
·,i otherwise

.

Using the property of randomized estimate sequences derived in Section 4, we can bound the expected error in the dual
norm as

E(L(�(k))]� L⇤  4

(k + 2)2

⇣
L(0)� L⇤ +

�0
2
k�k22

⌘

=
4

(k + 2)2

✓
L(0)� L⇤ +

2N2⌘

minj |Nj |
k�⇤k22

◆

 4

(k + 2)2
�
L(0)� L⇤ + 2N2⌘k�⇤k22

�

The numerator can then be bounded in an identical manner to the EMP proof by replacing 4m2 with 2N2 in Lemma 7,
instead yielding GSMP(⌘) = 40md(m+ n)(

p
⌘kCk1 + log dp

⌘
), which is only different by a constant. We then have

E(L(�(k))]� L⇤  GSMP(⌘)

(k + 2)2

With these tools, we are ready to present the proof of Theorem 2 for SMP.
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Proof of Theorem 2 for SMP. . Let b� be the output from Algorithm 3 after K iterations. From Lemma 2, we can lower
bound the result in Lemma 13 with

1

8⌘|Ni|
E
"
X

e2Ni

k⌫b�
e,i
k21

#
 E[L(b�)]� L⇤

 GSMP(⌘)

(K + 2)2

for all i 2 V . This further implies that

1

8⌘|Ni|
E
h
k⌫b�

e,i
k21
i
 GSMP(⌘)

(K + 2)2

for all e 2 E and i 2 e. Then, for ✏0 > 0, we can ensure that

E[k⌫b�
e,i
k1]  |Ni|✏0

E
X

i2V,e2Ni

k⌫b�
·,ik21  N(✏0)2

in K =
p
8⌘G(⌘)
✏0 iterations. Letting bµ 2 L2 be the projected version of µb�,

hC, bµ� µ⇤i  kCk1

0

@16(m+ n)d� +
X

e,i

4k⌫b�
e,i
k1

1

A+
n log d+ 2m log d

⌘
.

Taking the expectation of both sides gives us

E[hC, bµ� µ⇤i]  kCk1 (16(m+ n)dE[�] + 4N✏0) +
n log d+ 2m log d

⌘
,

where

E [�]2  E[�2]  E
X

e2E,i2e

k⌫b�
e,i
k21  N(✏0)2.

Then we can conclude

E[hC, bµ� µ⇤i]  16
p
N(m+ n)dkCk1✏0 + 4NkCk1✏0 +

n log d+ 2m log d

⌘

 24
p
N(m+ n)dkCk1✏0 +

n log d+ 2m log d

⌘
.

The last inequality uses the fact that N = 2m. Therefore, bµ is expected ✏-optimal with ⌘ as defined in the statement and
✏0 = ✏

48
p
N(m+n)dkCk1

. Substituting these values into K and G(⌘) yields the result.

F. Rounding to Integral Solutions Proofs

In this section, we prove the bound on the number of iterations sufficient to recover the MAP solution using Accel-EMP
and rounding the output of the algorithm. We then compare with standard EMP.

F.1. Approximation Error

Let V2 be the set of vertices of L2 and V⇤
2 be the set of optimal vertices with respect to C. Denote by � =

minV12V2\V⇤
2 ,V22V⇤

2
hC, V1 � V2i the suboptimality gap. Let R1 = maxµ2L2 kµk1, and RH = maxµ,µ02L2 H(µ)�H(µ0).

Define deg to be the maximum degree of the graph. The following holds:

Theorem 4 (Theorem 1 of (Lee et al., 2020)). If L2 is tight, |V⇤
2 | = 1 and ⌘ � 2R1 log(64R1)+2R1+2RH

� , then kµ⇤
⌘
�µ⇤k1 

1
8 and therefore the rounded solution round(µ⇤

⌘
) is a MAP assignment.
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F.2. Estimation Error for Accelerated Message Passing

To bound the estimation error, we invoke the accelerated convergence guarantees presented in the previous section. In
particular, we showed that

E
h
k⌫b�

e,i
k1
i
 ✏0 8e 2 E, i 2 e

after K =
p
4⌘G(⌘)
✏0 iterations for Accel-EMP. Markov’s inequality implies that with probability 1� �, k⌫b�

e,i
k1  2m✏

0

�
:= ✏

for all e 2 E and i 2 e. From Theorem 3 of Lee et al. (2020), we require

✏ < O
�
d�2m�2 deg�2 max(1, ⌘kCk1)�1

�

Furthermore, the theorem of the previous subsection implies we can set

⌘ =
16(m+ n)(log(m+ n) + log(d))

�

Then, by setting

✏0  O
�
d�2m�4� deg�2 max(1, kCk1/�)�1(log dm)�1

�

the condition is satisfied. Therefore, plugging into
p
4⌘G(⌘) yields

p
4⌘G(⌘) = O

✓
dm3kCk1 log dm

�

◆

which implies, with probability 1� �,

K = O

✓
d3m7 deg2 kCk21 log2 dm

��

◆

These conditions of ✏0 and ⌘ guarantee that the round(µ
b�) is the MAP solution by invoking Theorem 3 of Lee et al. (2020).

F.3. Comparison to Standard Methods

Using standard EMP, we require the same conditions be satisfied on ✏0 and ⌘ to guarantee recover of the MAP solution.
However, the rate of convergence differs, requiring K = L(0)�L(�⇤)

(✏0)2 iterations, as seen previously. Note that

L(0)� L(�⇤) = O

✓
m3kCk1 log dm

�

◆

. Note that there is no additional d dependence. It holds that with probability 1� �, the MAP solution is recovered by EMP
in at most

K = O

✓
d4m11 deg4 kCk31 log3 dm

�2�

◆

iterations. We emphasize that this iteration bound is only a sufficient condition by directly applying the technique developed
in this section. We suspect it can be greatly improved.


