
Supplements for “Tensor denoising and completion based on
ordinal observations”

A. Proofs
Here, we provide proofs of the theoretical results presented in Sections 4.

A.1. Estimation error for tensor denoising

Proof of Theorem 4.1. We suppress the subscript Ω in the proof, because the tensor denoising assumes complete observation
Ω = [d1]× · · · × [dK ]. It follows from the expression of LY(Θ) that

∂LY
∂θω

=
∑
`∈[L]

1{yω = `} ġ`(θω)

g`(θω)
,

∂2LY
∂θ2
ω

=
∑
`∈[L]

1{yω = `} g̈`(θω)g`(θω)− ġ2
` (θω)

g2
` (θω)

and
∂2LY
∂θωθ′ω

= 0 if ω 6= ω′, (1)

for all ω ∈ [d1]× · · · × [dK ]. Define dtotal =
∏
k dk. Let∇ΘLY ∈ Rd1×···×dK denote the tensor of gradient with respect to

Θ ∈ Rd1×···×dK , and∇2
ΘLY the corresponding Hession matrix of size dtotal-by-dtotal. Here, Vec(·) denotes the operation

that turns a tensor into a vector. By (1), ∇2
ΘLY is a diagonal matrix. Recall that

Uα = max
`∈[L],|θ|≤α

|ġ`(θ)|
g`(θ)

> 0 and Lα = min
`∈[L],|θ|≤α

ġ2
` (θ)− g̈`(θ)g`(θ)

g2
` (θ)

> 0.

Therefore, the entries in ∇ΘLY are upper bounded in magnitude by Uα > 0, and all diagonal entries in∇2
ΘLY are upper

bounded by −Lα < 0.

By the second-order Taylor’s expansion of LY(Θ) around Θtrue, we obtain

LY(Θ) = LY(Θtrue) + 〈Vec(∇ΘLY(Θtrue)), Vec(Θ−Θtrue)〉+ 1

2
Vec(Θ−Θtrue)T∇2

ΘLY(Θ̌) Vec(Θ−Θtrue), (2)

where Θ̌ = γΘtrue + (1− γ)Θ for some γ ∈ [0, 1], and ∇2
ΘLY(Θ̌) denotes the dtotal-by-dtotal Hession matrix evaluated at

Θ̌.

We first bound the linear term in (2). Note that, by Lemma 4,

|〈Vec(∇ΘLY(Θtrue),Vec(Θ−Θtrue)〉| ≤ ‖∇ΘLY(Θtrue)‖σ‖Θ−Θtrue‖∗, (3)

where ‖·‖σ denotes the tensor spectral norm and ‖·‖∗ denotes the tensor nuclear norm. Define

sω =
∂LY
∂θω

∣∣∣
Θ=Θtrue

for all ω ∈ [d1]× · · · × [dK ].

Based on (1) and the definition of Uα,∇ΘLY(Θtrue) = JsωK is a random tensor whose entries are independently distributed
satisfying

E(sω) = 0, |sω| ≤ Uα, for all ω ∈ [d1]× · · · × [dK ]. (4)

By lemma 6, with probability at least 1− exp(−C1

∑
k dk), we have

‖∇ΘLY(Θtrue)‖σ ≤ C2Uα

√∑
k

dk, (5)
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where C1, C2 are two positive constants that depend only on K. Furthermore, note that rank(Θ) ≤ r, rank(Θtrue) ≤ r, so
rank(Θ−Θtrue) ≤ 2r. By lemma 3, ‖Θ−Θtrue‖∗ ≤ (2rmax)

K−1
2 ‖Θ−Θtrue‖F . Combining (3), (4) and (5), we have

that, with probability at least 1− exp(−C1

∑
k dk),

|〈Vec(∇ΘLY(Θtrue)),Vec(Θ−Θtrue)〉| ≤ C2Uα

√
rK−1
max

∑
k

dk‖Θ−Θtrue‖F . (6)

We next bound the quadratic term in (2). Note that

Vec(Θ−Θtrue)T∇2
ΘLY(Θ̌) Vec(Θ−Θtrue) =

∑
ω

(
∂2LY
∂θ2
ω

∣∣∣
Θ=Θ̌

)
(θω − θtrue,ω)2

≤ −Lα
∑
ω

(Θω −Θtrue,ω)2

= −Lα‖Θ−Θtrue‖2F , (7)

where the second line comes from the fact that ‖Θ̌‖∞ ≤ α and the definition of Lα.

Combining (2), (6) and (7), we have that, for all Θ ∈ P , with probability at least 1− exp(−C1

∑
k dk),

LY(Θ) ≤ LY(Θtrue) + C2Uα

(
rK−1
max

∑
k

dk

)1/2

‖Θ−Θtrue‖F −
Lα
2
‖Θ−Θtrue‖2F .

In particular, the above inequality also holds for Θ̂ ∈ P . Therefore,

LY(Θ̂) ≤ LY(Θtrue) + C2Uα

(
rK−1
max

∑
k

dk

)1/2

‖Θ̂−Θtrue‖F −
Lα
2
‖Θ̂−Θtrue‖2F .

Since Θ̂ = arg maxΘ∈P LY(Θ), LY(Θ̂)− LY(Θtrue) ≥ 0, which gives

C2Uα

(
rK−1
max

∑
k

dk

)1/2

‖Θ̂−Θtrue‖F −
Lα
2
‖Θ̂−Θtrue‖2F ≥ 0.

Henceforth,

1√∏
k dk
‖Θ̂−Θtrue‖F ≤

2C2Uα

√
rK−1
max

∑
k dk

Lα
√∏

k dk
=

2C2Uαr
(K−1)/2
max

Lα

√∑
k dk∏
k dk

.

This completes the proof.

Proof of Corollary 1. The result follows immediately from Theorem 4.1 and Lemma 8.

Proof of Theorem 4.2. Let dtotal =
∏
k∈[K] dk, and γ ∈ [0, 1] be a constant to be specified later. Our strategy is to construct

a finite set of tensors X = {Θi : i = 1, . . .} ⊂ P satisfying the properties of (i)-(iv) in Lemma 9. By Lemma 9, such a
subset of tensors exist. For any tensor Θ ∈ X , let PΘ denote the distribution of Y|Θ, where Y is the ordinal tensor. In
particular, P0 is the distribution of Y induced by the zero parameter tensor 0, i.e., the distribution of Y conditional on the
parameter tensor Θ = 0. Based on the Remark for Lemma 8, we have

KL(PΘ||P0) ≤ C‖Θ‖2F , (8)

where C = (4L−6)ḟ2(0)
Aα

> 0 is a constant independent of the tensor dimension and rank. Combining the inequality (8) with
property (iii) of X , we have

KL(PΘ||P0) ≤ γ2rmaxdmax. (9)
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From (9) and the property (i), we deduce that the condition

1

Card(X )− 1

∑
Θ∈X

KL(PΘ,P0) ≤ ε log {Card(X )− 1} (10)

holds for any ε ≥ 0 when γ ∈ [0, 1] is chosen to be sufficiently small depending on ε, e.g., γ ≤
√

ε log 2
8 . By applying

Lemma 11 to (10), and in view of the property (iv), we obtain that

inf
Θ̂

sup
Θtrue∈X

P
(
‖Θ̂−Θtrue‖F ≥

γ

8
min

{
α
√
dtotal, C

−1/2
√
rmaxdmax

})
≥ 1

2

(
1− 2ε−

√
16ε

rmaxdmax log 2

)
. (11)

Note that Loss(Θ̂,Θtrue) = ‖Θ̂−Θtrue‖2F /dtotal and X ⊂ P . By taking ε = 1/10 and γ = 1/11, we conclude from (11)
that

inf
Θ̂

sup
Θtrue∈P

P
(

Loss(Θ̂,Θtrue) ≥ cmin

{
α2,

C−1rmaxdmax

dtotal

})
≥ 1

2

(
4

5
−
√

1.6

rmaxdmax log 2

)
≥ 1

8
,

where c = 1
882 and the last inequality comes from the condition for dmax. This completes the proof.

A.2. Sample complexity for tensor completion

Proof of Theorem 4.3. For notational convenience, we use ‖Θ‖F,Ω =
∑
ω∈Ω Θ2

ω to denote the sum of squared entries over
the observed set Ω, for a tensor Θ ∈ Rd1×···×dK .

Following a similar argument as in the proof of Theorem 4.1, we have

LY,Ω(Θ) = LY,Ω(Θtrue)+ 〈Vec(∇ΘLY,Ω), Vec(Θ−Θtrue)〉+ 1

2
Vec(Θ−Θtrue)T∇2

ΘLY,Ω(Θ̌) Vec(Θ−Θtrue), (12)

where

1. ∇ΘLY,Ω is a d1 × · · · × dK tensor with |Ω| nonzero entries, and each entry is upper bounded by Uα > 0.

2. ∇2
ΘLY,Ω is a diagonal matrix of size dtotal-by-dtotal with |Ω| nonzero entries, and each entry is upper bounded by
−Lα < 0.

Similar to (3) and (7), we have

|〈Vec(∇ΘLY,Ω), Vec(Θ−Θtrue)〉| ≤ C2Uα

√
rK−1
max

∑
k

dk‖Θ−Θtrue‖F,Ω

and
Vec(Θ−Θtrue)T∇2

ΘLY(Θ̌) Vec(Θ−Θtrue) ≤ −Lα‖Θ−Θtrue‖2F,Ω. (13)

Combining (12)-(13) with the fact that LY,Ω(Θ̂) ≥ LY,Ω(Θtrue), we have

‖Θ̂−Θtrue‖F,Ω ≤
2C2Uαr

(K−1)/2
max

Lα

√∑
k

dk, (14)

with probability at least 1 − exp(−C1

∑
k dk). Lastly, we invoke the result regarding the closeness of Θ to its sampled

version ΘΩ, under the entrywise bound condition. Note that ‖Θ̂−Θtrue‖∞ ≤ 2α and rank(Θ̂−Θtrue) ≤ 2r. By Lemma 2,

‖Θ̂−Θtrue‖M ≤ 2(3K−1)/2α
(∏

rk
rmax

)3/2

. Therefore, the condition in Lemma 12 holds with β = 2(3K−1)/2α
(∏

rk
rmax

)3/2

.
Applying Lemma 12 to (14) gives

‖Θ̂−Θtrue‖2F,Π ≤
1

m
‖Θ̂−Θtrue‖2F,Ω + cβ

√∑
k dk
|Ω|

≤ C2r
K−1
max

∑
k dk
|Ω|

+ C1αr
3(K−1)/2
max

√∑
k dk
|Ω|

,
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with probability at least 1− exp(−
∑
k dk∑

k log dk
) over the sampled set Ω. Here C1, C2 > 0 are two constants independent of

the tensor dimension and rank. Therefore,

‖Θ̂−Θtrue‖2F,Π → 0, as
|Ω|∑
k dk

→∞,

provided that rmax = O(1).

A.3. Convexity of the log-likelihood function

Theorem A.1. Define the function

LY,Ω(Θ, b) =
∑
ω∈Ω

∑
`∈[L]

(
1{yω = `} log [f(b` − θω)− f(b`−1 − θω)]

)
, (15)

where f(·) satisfies Assumption 1. Then, LY,Ω(Θ, b) is concave in (Θ, b).

Proof. Define dtotal =
∏
k dk. By abuse of notation, we use (Θ, b) to denote the length-(dtotal +L− 1)-vector collecting all

parameters together. Let us denote a bivariate function

λ : R2 7→ R
(u, v) 7→ λ(u, v) = log

[
f(u)− f(v)

]
.

It suffices to show that λ(u, v) is concave in (u, v) where u > v.

Suppose that the claim holds (which we will prove in the next paragraph). Based on (15), u, v are both linear functions of
(Θ, b):

u = aT1 (Θ, b), v = aT2 (Θ, b), for some a1,a2 ∈ Rdtotal+L−1.

Then, λ(u, v) = λ(aT1 (Θ, b), aT2 (Θ, b)) is concave in (Θ, b) by the definition of concavity. Therefore, we can conclude
that LY,Ω(Θ, b) is concave in (Θ, b) because LY,Ω(Θ, b) is the sum of λ(u, v).

Now, we prove the concavity of λ(u, v). Note that

λ(u, v) = log
[
f(u)− f(v)

]
= log

[ ∫
1[u,v](x)f ′(x)dx

]
,

where 1[u,v] is an indicator function that equals 1 in the interval [u, v], and 0 elsewhere. Furthermore, 1[u,v](x) is log-
concave in (u, v, x), and by Assumption 1, f ′(x) is log-concave in x. It follows that 1[u,v](x)f ′(x) is a log-concave in
(u, v, x). By Lemma 1, we conclude that λ(u, v) is concave in (u, v) where u > v.

Lemma 1 (Corollary 3.5 in Brascamp & Lieb (2002)). Let F (x, y) : Rm+n → R be an integrable function where
x ∈ Rm, y ∈ Rn. Let

G(x) =

∫
Rn
F (x, y)dy.

If F (x, y) is log concave in (x, y), then G(x) is log concave in x.

A.4. Auxiliary lemmas

This section collects lemmas that are useful for the proofs of the main theorems.

Definition 1 (Atomic M-norm (Ghadermarzy et al., 2019)). Define T± = {T ∈ {±1}d1×···×dK : rank(T ) = 1}. The
atomic M-norm of a tensor Θ ∈ Rd1×···×dK is defined as

‖Θ‖M = inf{t > 0: Θ ∈ tconv(T±)}

= inf

 ∑
X∈T±

cX : Θ =
∑
X∈T±

cXX , cX > 0

 .
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Definition 2 (Spectral norm (Lim, 2005)). The spectral norm of a tensor Θ ∈ Rd1×···×dK is defined as

‖Θ‖σ = sup
{
〈Θ,x1 ⊗ · · · ⊗ xK〉 : ‖xk‖2 = 1, xk ∈ Rdk , for all k ∈ [K]

}
.

Definition 3 (Nuclear norm (Friedland & Lim, 2018)). The nuclear norm of a tensor Θ ∈ Rd1×···×dK is defined as

‖Θ‖∗ = inf

∑
i∈[r]

|λi| : Θ =

r∑
i=1

λix
(i)
1 ⊗ · · · ⊗ x

(i)
K , ‖x(i)

k ‖2 = 1, x
(i)
k ∈ Rdk , for all k ∈ [K], i ∈ [r]

 ,

where the infimum is taken over all r ∈ N and ‖x(i)
k ‖2 = 1 for all i ∈ [r] and k ∈ [K].

Lemma 2 (M-norm and infinity norm (Ghadermarzy et al., 2019)). Let Θ ∈ Rd1×···×dK be an order-K, rank-(r1, . . . , rK)
tensor. Then

‖Θ‖∞ ≤ ‖Θ‖M ≤
(∏

k rk
rmax

) 3
2

‖Θ‖∞.

Lemma 3 (Nuclear norm and F-norm). Let A ∈ Rd1×···×dK be an order-K tensor with Tucker rank(A) = (r1, . . . , rK).
Then

‖A‖∗ ≤

√ ∏
k rk

maxk rk
‖A‖F ,

where ‖·‖∗ denotes the nuclear norm of the tensor.

Proof. Without loss of generality, suppose r1 = mink rk. Let A(k) denote the mode-k matricization of A for all k ∈ [K].
By Wang et al. (2017, Corollary 4.11), and the invariance relationship between a tensor and its Tucker core (Jiang et al.,
2017, Section 6), we have

‖A‖∗ ≤

√ ∏
k≥2 rk

maxk≥2 rk
‖A(1)‖∗, (16)

where A(1) is a d1-by-
∏
k≥2 dk matrix with matrix rank r1. Furthermore, the relationship between the matrix norms implies

that ‖A(1)‖∗ ≤
√
r1‖A(1)‖F =

√
r1‖A‖F . Combining this fact with the inequality (16) yields the final claim.

Lemma 4. Let A, B be two order-K tensors of the same dimension. Then

|〈A,B〉| ≤ ‖A‖σ‖B‖∗.

Proof. By Friedland & Lim (2018, Proposition 3.1), there exists a nuclear norm decomposition of B, such that

B =
∑
r

λra
(1)
r ⊗ · · · ⊗ a(K)

r , a(k)
r ∈ Sdk−1(R), for all k ∈ [K],

and ‖B‖∗ =
∑
r |λr|. Henceforth we have

|〈A,B〉| = |〈A,
∑
r

λra
(1)
r ⊗ · · · ⊗ a(K)

r 〉| ≤
∑
r

|λr||〈A,a(1)
r ⊗ · · · ⊗ a(K)

r 〉|

≤
∑
r

|λr|‖A‖σ = ‖A‖σ‖B‖∗,

which completes the proof.

The following lemma provides the bound on the spectral norm of random tensors. The result was firstly presented in Nguyen
et al. (2015), and we adopt the version from Tomioka & Suzuki (2014).
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Lemma 5 (Spectral norm of random tensors (Tomioka & Suzuki, 2014)). Suppose that S = JsωK ∈ Rd1×···×dK is an
order-K tensor whose entries are independent random variables that satisfy

E(sω) = 0, and E(etsω ) ≤ et
2L2/2.

Then the spectral norm ‖S‖σ satisfies that,

‖S‖σ ≤
√

8L2 log(12K)
∑
k

dk + log(2/δ),

with probability at least 1− δ.

Lemma 6. Suppose that S = JsωK ∈ Rd1×···×dK is an order-K tensor whose entries are independent random variables
that satisfy

E(sω) = 0, and |sω| ≤ U.

Then we have

P

‖S‖σ ≥ C2U

√∑
k

dk

 ≤ exp

(
−C1 logK

∑
k

dk

)
where C1 > 0 is an absolute constant, and C2 > 0 is a constant that depends only on K.

Proof. Note that the random variable U−1sω is zero-mean and supported on [−1, 1]. Therefore, U−1sω is sub-Gaussian
with parameter 1−(−1)

2 = 1, i.e.
E(U−1sω) = 0, and E(etU

−1sω ) ≤ et
2/2.

It follows from Lemma 5 that, with probability at least 1− δ,

‖U−1S‖σ ≤
√

(c0 logK + c1)
∑
k

dk + log(2/δ),

where c0, c1 > 0 are two absolute constants. Taking δ = exp(−C1 logK
∑
k dk) yields the final claim, where C2 =

c0 logK + c1 + 1 > 0 is another constant.

Lemma 7. Let X, Y be two discrete random variables taking values on L possible categories, with point mass probabilities
{p`}`∈[L] and {q`}`∈[L], respectively. Suppose p`, q` > 0 for all ` ∈ [L]. Then, the Kullback-Leibler (KL) divergence
satisfies that

KL(X||Y )
def
= −

∑
`∈[L]

PX(`) log

{
PY (`)

PX(`)

}
≤
∑
`∈[L]

(p` − q`)2

q`
.

Proof. Using the fact log x ≤ x− 1 for x > 0, we have that

KL(X||Y ) =
∑
`∈[L]

p` log
p`
q`

≤
∑
`∈[L]

p`
q`

(p` − q`)

=
∑
`∈[L]

(
p`
q`
− 1

)
(p` − q`) +

∑
`∈[L]

(p` − q`).

Note that
∑
`∈[L](p` − q`) = 0. Therefore,

KL(X||Y ) ≤
∑
`∈[L]

(
p`
q`
− 1

)
(p` − q`) =

∑
`∈[L]

(p` − q`)2

q`
.
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Lemma 8 (KL divergence and F-norm). Let Y ∈ [L]d1×···×dK be an ordinal tensor generated from the model (1) with the
link function f and parameter tensor Θ. Let PΘ denote the joint categorical distribution of Y|Θ induced by the parameter
tensor Θ, where ‖Θ‖∞ ≤ α. Define

Aα = min
`∈[L],|θ|≤α

[f(b` − θ)− f(b`−1 − θ)] . (17)

Then, for any two tensors Θ, Θ∗ in the parameter spaces, we have

KL(PΘ||PΘ∗) ≤
2(2L− 3)

Aα
ḟ2(0)‖Θ−Θ∗‖2F .

Proof. Suppose that the distribution over the ordinal tensor Y = JyωK is induced by Θ = JθωK. Then, based on the
generative model (1),

P(yω = `|θω) = f(b` − θω)− f(b`−1 − θω),

for all ` ∈ [L] and ω ∈ [d1]× · · · × [dK ]. For notational convenience, we suppress the subscribe in θω and simply write θ
(and respectively, θ∗). Based on Lemma 7 and Taylor expansion,

KL(θ||θ∗) ≤
∑
`∈[L]

[f(b` − θ)− f(b`−1 − θ)− f(b` − θ∗) + f(b`−1 − θ∗)]2

f(b` − θ∗)− f(b`−1 − θ∗)

≤
L−1∑
`=2

[
ḟ(b` − η`)− ḟ(b`−1 − η`−1)

]2
f(b` − θ∗)− f(b`−1 − θ∗)

(θ − θ∗)2
+
ḟ2(b1 − η1)

f(b1 − θ∗)
(θ − θ∗)2

+
ḟ2(bL−1 − ηL−1)

1− f(bL−1 − θ∗)
(θ − θ∗)2,

where η` and η`−1 fall between θ and θ∗. Therefore,

KL(θ||θ∗) ≤
(

4(L− 2)

Aα
+

2

Aα

)
ḟ2(0)(θ − θ∗)2 =

2(2L− 3)

Aα
ḟ2(0)(θ − θ∗)2, (18)

where we have used Taylor expansion, the bound (17), and the fact that ḟ(·) peaks at zero for an unimodal and symmetric
function. Now summing (18) over the index set ω ∈ [d1]× · · · × [dK ] gives

KL(PΘ||PΘ∗) =
∑

ω∈[d1]×···×[dK ]

KL(θω||θ∗ω) ≤ 2(2L− 3)

Aα
ḟ2(0)‖Θ−Θ∗‖2F .

Remark 1. In particular, let P0 denote the distribution of Y|0 induced by the zero parameter tensor. Then we have

KL(PΘ||P0) ≤ 2(2L− 3)

Aα
ḟ2(0)‖Θ‖2F .

Lemma 9. Assume the same setup as in Theorem 4.2. Without loss of generality, suppose d1 = maxk dk. Define R =
maxk rk and dtotal =

∏
k∈[K] dk. For any constant 0 ≤ γ ≤ 1, there exist a finite set of tensors X = {Θi : i = 1, . . .} ⊂ P

satisfying the following four properties:

1. Card(X ) ≥ 2Rd1/8 + 1, where Card denotes the cardinality;

2. X contains the zero tensor 0 ∈ Rd1×···×dK ;

3. ‖Θ‖∞ ≤ γmin
{
α, C−1/2

√
Rd1
dtotal

}
for any element Θ ∈ X ;

4. ‖Θi −Θj‖F ≥ γ
4 min

{
α
√
dtotal, C

−1/2
√
Rd1

}
for any two distinct elements Θi, Θj ∈ X ,
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Here C = C(α,L, f, b) = (4L−6)ḟ2(0)
Aα

> 0 is a constant independent of the tensor dimension and rank.

Proof. Given a constant 0 ≤ γ ≤ 1, we define a set of matrices:

C =

{
M = (mij) ∈ Rd1×R : aij ∈

{
0, γmin

{
α,C−1/2

√
Rd1

dtotal

}}
, ∀(i, j) ∈ [d1]× [R]

}
.

We then consider the associated set of block tensors:

B = B(C) = {Θ ∈ Rd1×···×dK : Θ = A⊗ 1d3 ⊗ · · · ⊗ 1dK , where A = (M | · · · |M |O) ∈ Rd1×d2 , M ∈ C},

where 1d denotes a length-d vector with all entries 1, O denotes the d1 × (d2 − Rbd2/Rc) zero matrix, and bd2/Rc
is the integer part of d2/R. In other words, the subtensor Θ(I, I, i3, . . . , iK) ∈ Rd1×d2 are the same for all fixed
(i3, . . . , iK) ∈ [d3]× · · · × [dK ], and furthermore, each subtensor Θ(I, I, i3, . . . , iK) itself is filled by copying the matrix
M ∈ Rd1×R as many times as would fit.

By construction, any element of B, as well as the difference of any two elements of B, has Tucker rank at most maxk rk ≤ R,
and the entries of any tensor in B take values in [0, α]. Thus, B ⊂ P . By Lemma 10, there exists a subset X ⊂ B with
cardinality Card(X ) ≥ 2Rd1/8 + 1 containing the zero d1 × · · · × dK tensor, such that, for any two distinct elements Θi

and Θj in X ,

‖Θi −Θj‖2F ≥
Rd1

8
γ2 min

{
α2,

C−1Rd1

dtotal

}⌊d2

R

⌋∏
k≥3

dk ≥
γ2 min

{
α2dtotal, C

−1Rd1

}
16

.

In addition, each entry of Θ ∈ X is bounded by γmin
{
α,C−1/2

√
Rd1
dtotal

}
. Therefore the Properties (i) to (iv) are

satisfied.

Lemma 10 (Varshamov-Gilbert bound). Let Ω = {(w1, . . . , wm) : wi ∈ {0, 1}}. Suppose m > 8. Then there exists a
subset {w(0), . . . , w(M)} of Ω such that w(0) = (0, . . . , 0) and

‖w(j) − w(k)‖0 ≥
m

8
, for 0 ≤ j < k ≤M,

where ‖·‖0 denotes the Hamming distance, and M ≥ 2m/8.
Lemma 11 (Theorem 2.5 in Tsybakov (2008)). Assume that a set X contains element Θ0,Θ1, . . . ,ΘM (M ≥ 2) such that

• d(Θj , Θk) ≥ 2s > 0, ∀0 ≤ j ≤ k ≤M ;

• P0 is absolutely continuous with respect to Pj , ∀j = 1, . . . ,M , and

1

M

M∑
j=1

KL(Pj ||P0) ≤ α logM

where d : X × X 7→ [0,+∞] is a semi-distance function, 0 < α < 1/8 and Pj = PΘj , j = 0, 1 . . . ,M .

Then

inf
Θ̂

sup
Θ∈X

PΘ(d(Θ̂,Θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.

Lemma 12 (Lemma 28 in Ghadermarzy et al. (2019)). Define BM (β) = {Θ ∈ Rd1×···×dK : ‖Θ‖M ≤ β}. Let Ω ⊂
[d1] × · · · × [dK ] be a random set with m = |Ω|, and assume that each entry in Ω is drawn with replacement from
[d1]× · · · × [dK ] using probability Π. Define

‖Θ‖2F,Π =
1

m
EΩ∈Π‖Θ‖2F,Ω.

Then, there exists a universal constant c > 0, such that, with probability at least 1− exp
(
−

∑
k dk∑

k log dk

)
over the sampled set

Ω,
1

m
‖Θ‖2F,Ω ≥ ‖Θ‖2F,Π − cβ

√∑
k dk
m

holds uniformly for all Θ ∈ BM (β).
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B. Extension of Theorem 4.1 to unknown cut-off points
We now extend Theorem 4.1 to the case of unknown cut-off points b. Assume that the true parameters (Θtrue, btrue) ∈ P×B,
where the feasible sets are defined as

P = {Θ ∈ Rd1×···×dK : rank(P) ≤ r, 〈Θ,J 〉 = 0, ‖Θ‖∞ ≤ α},
B = {b ∈ RL−1 : ‖b‖∞ ≤ β, min

`
(b` − b`−1) ≥ ∆},

with positive constants α, β,∆ > 0 and a given rank r ∈ NK+ . Here, J = J1K ∈ Rd1×···×dK denotes a tensor of all ones.
The constraint 〈Θ,J 〉 = 0 is imposed to ensure the identifiability of Θ and b. We propose the constrained M-estimator

(Θ̂, b̂) = arg max
(Θ,b)∈P×B

LY(Θ, b). (19)

The estimation accuracy is assessed using the mean squared error (MSE):

MSE
(

Θ̂,Θtrue
)

=
1∏
k dk
‖Θ̂−Θtrue‖2F , MSE

(
b̂, btrue

)
=

1

L− 1
‖b̂− btrue‖2F .

To facilitate the examination of MSE, we define an order-(K + 1) tensor, Z = Jzω,`K ∈ Rd1×···×dK×(L−1), by stacking the
parameters Θ = JθωK and b = Jb`K together. Specifically, let zω,` = −θω + b` for all ω ∈ [d1]× · · ·× [dK ] and ` ∈ [L− 1];
that is,

Z = −Θ⊗ 1 + J ⊗ b,

where 1 denotes a length-(L− 1) vector of all ones. Under the identifiability constraint 〈Θ,J 〉 = 0, there is an one-to-one
mapping between Z and (Θ, b), with rank(Z) ≤ (rank(Θ) + 1, 2)T . Furthermore,

‖Ẑ − Ztrue‖2F = ‖Θ̂−Θtrue‖2F (L− 1) + ‖b̂− btrue‖2F

(∏
k

dk

)
, (20)

where Ztrue = −Θtrue ⊗ 1 + J ⊗ btrue and Ẑ = −Θ̂⊗ 1 + J ⊗ b̂.

We make the following assumptions about the link function.

Assumption 1. The link function f : R 7→ [0, 1] satisfies the following properties:

1. f(z) is twice-differentiable and strictly increasing in z.

2. ḟ(z) is strictly log-concave and symmetric with respect to z = 0.

We define the following constants that will be used in the theory:

Cα,β,∆ = max
|z|≤α+β

max
z′≤z−∆
z′′≥z+∆

max

{
ḟ(z)

f(z)− f(z′)
,

ḟ(z)

f(z′′)− f(z)

}
, (21)

Dα,β,∆ = min
|z|≤α+β

min
z′≤z−∆
z′′≥z+∆

min

{
− ∂

∂z

(
ḟ(z)

f(z)− f(z′)

)
,
∂

∂z

(
ḟ(z)

f(z′′)− f(z)

)}
,

Aα,β,∆ = min
|z|≤α+β

min
z′≤z−∆

(f(z)− f(z′)) .

Remark 2. The condition ∆ = min`(b`− b`−1) > 0 on the feasible set B guarantees the strict positiveness of f(z)− f(z′)
and f(z′′) − f(z). Therefore, the denominators in the above quantities Cα,β,∆, Dα,β,∆ are well-defined. Furthermore,
by Theorem A.1, f(z) − f(z′) is strictly log-concave in (z, z′) for z ≤ z′ − ∆, z, z′ ∈ [−α − β, α + β]. Based on
Assumption 1 and closeness of the feasible set, we have Cα,β,∆ > 0, Dα,β,∆ > 0, Aα,β,∆ > 0.
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Remark 3. In particular, for logistic link f(x) = 1
1+e−x , we have

Cα,β,∆ = max
|z|≤α+β

max
z′≤z−∆
z′′≥z+∆

max

{
1

e∆ − 1

(
1 + e−z

′

1 + e−z

)
,

1

1− e−∆

(
1 + e−z

′′

1 + e−z

)}
> 0,

Dα,β,∆ = min
|z|≤α+β

e−z

(1 + e−z)2
> 0.

Theorem B.1 (Statistical convergence with unknown b). Consider an ordinal tensor Y ∈ [L]d1×···×dK generated from
model (1) with the link function f and parameters (Θtrue, btrue) ∈ P×B. Suppose the link function f satisfies Assumption 1.
Define rmax = maxk rk + 1, and assume rmax = O(1).

Then with very high probability, the estimator in (19) satisfies

‖Ẑ − Ztrue‖2F ≤
c1r

K
maxC

2
α,β,∆

A2
α,β,∆D

2
α,β,∆

(
L− 1 +

∑
k

dk

)
, (22)

In particular,

MSE
(

Θ̂,Θtrue
)
≤ min

{
4α2,

c1r
K
maxC

2
α,β,∆

A2
α,β,∆D

2
α,β,∆

(
L− 1 +

∑
k dk∏

k dk

)}
,

and

MSE
(
b̂, btrue

)
≤ min

{
4β2,

c1r
K
maxC

2
α,β,∆

A2
α,β,∆D

2
α,β,∆

(
L− 1 +

∑
k dk∏

k dK

)}
,

where c1, Cα,β,∆, Dα,β,∆ are positive constants independent of the tensor dimension, rank, and number of ordinal levels.

Proof. The log-likelihood associated with the observed entries in terms of Z is

LY(Z) =
∑
ω∈Ω

∑
`∈[L]

1{yω = `} log [f(zω,`)− f(zω,`−1)] .

Let ∇ZLY = J ∂LY∂zω,`
K ∈ Rd1×···×dK×[L−1] denote the score function, and H = ∇2

ZLY the Hession matrix. Based on the

definition of Ẑ , we have the following inequality:

LY(Ẑ) ≥ LY(Ztrue). (23)

Following the similar argument in Theorem 4.1 and the inequality (23), we obtain that

‖Ẑ − Ztrue‖2F ≤ c1rKmax

‖∇ZLY(Ztrue)‖2σ
λ2

1

(
H(Ž)

) , (24)

where ∇ZLY(Ztrue) is the score evaluated at Ztrue, H(Ž) is the Hession evaluated at Ž , for some Ž between Ẑ and
Ztrue, and λ1(·) is the largest matrix eigenvalue.

We bound the score and the Hessian to obtain (22).

1. (Score.) The (ω, `)-th entry in∇ZLY is

∂LY
∂zω,`

= 1{yω = `} ḟ(z)

f(z)− f(z′)

∣∣∣∣∣
(z, z′)=(zω,`, zω,`−1)

− 1{yω = `+ 1} ḟ(z)

f(z′′)− f(z)

∣∣∣∣∣
(z′′, z)=(zω,`+1, zω,`)

,

which is upper bounded in magnitude by Cα,β,∆ > 0 with zero mean. By Lemma 6, with probability at least
1− exp (−c′2 (

∑
k dk + L− 1)), we have

‖∇ZLY(Ztrue)‖σ ≤ c2Cα,β,∆
√
L− 1 +

∑
k

dk, (25)

where c2, c′2 are two positive constants that depend only on K.
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2. (Hession.) The entries in the Hession matrix are

Diagonal:
∂2LY
∂z2
ω,`

= 1{yω = `} f̈(z) (f(z)− f(z′))− ḟ2(z)

(f(z)− f(z′))
2

∣∣∣∣∣
(z, z′)=(zω,`, zω,`−1)

−

1{yω = `+ 1} f̈(z) (f(z′′)− f(z)) + ḟ2(z)

(f(z′′)− f(z))
2

∣∣∣∣∣
(z′′, z)=(zω,`+1, zω,`)

,

Off-diagonal:
∂2LY

∂zω,`zω,`+1
= 1{yω = `+ 1} ḟ(zω,`)ḟ(zω,`+1)

(f(zω,`+1)− f(zω,`))
2 and

∂2LY
∂zω,`zω′,`′

= 0 otherwise.

Based on Assumption 1, the Hession matrix H has the following three properties:

(a) The Hession matrix is a block matrix, H = diag{Hω : ω ∈ [d1] × · · · × [dK ]}, and each block Hω ∈
R(L−1)×(L−1) is a tridiagonal matrix.

(b) The off-diagonal entries are either zero or strictly positive.
(c) The diagonal entries are either zero or strictly negative. Furthermore,

Hω(`, `) + Hω(`, `− 1) + Hω(`, `+ 1)

=
∂2LY
∂z2
ω,`

+
∂2LY

∂zω,`zω,`+1
+

∂2LY
∂zω,`−1zω,`

=1{yω = `} ∂
∂z

(
ḟ(z)

f(z)− f(z′)

)∣∣∣∣∣
(z, z′)=(zω,`, zω,`−1)

− 1{yω = `+ 1} ∂
∂z

(
ḟ(z)

f(z)− f(z′)

)∣∣∣∣∣
(z′′, z)=(zω,`+1, zω,`)

≤−Dα,β,∆1{yω = ` or `+ 1}.

We will show that, with very high probability over Y , H is negative definite in that

λ1(H) = max
z 6=0

zTHz

‖z‖2F
≤ −cAα,β,∆Dα,β,∆, (26)

where Aα,β,∆, Dα,β,∆ > 0 are constants defined in (21), and c > 0 is a constant.

Let zω = (zω,1, . . . , zω,L−1)T ∈ RL−1 and z = (z1,...,1,1, . . . ,zd1,...,dK ,L−1)T ∈ R(L−1)
∏
k dk . It follows from

property (a) that
zTHz =

∑
ω

zTωHωzω.

Furthermore, from properties (b) and (c) we have

zTωHωzω =
∑

`∈[L−1]

Hω(`, `)z2
ω,` +

∑
`∈[L−1]/{1}

2Hω(`, `− 1)zω,`zω,`−1

≤
∑

`∈[L−1]

H(`, `)z2
ω,` +

∑
`∈[L−1]/{1}

H(`, `− 1)
[
z2
ω,` + z2

ω,`−1

]
= (H(1, 1) + H(1, 2)) z2

ω,1 + (H(L− 1, L− 1) + H(L− 1, L− 2)) z2
ω,L−1

+
∑

`∈[L−2]/{1}

(H(`, `) + H(`, `− 1) + H(`, `+ 1)) z2
ω,`

≤ −Dα,β,∆

∑
`

z2
ω,`1{yω = ` or `+ 1}.

Therefore,
zTHz =

∑
ω

zTωHωzω ≤ −Dα,β,∆

∑
ω

∑
`

z2
ω,`1{yω = ` or `+ 1}. (27)
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Define the subspace:
S = {Vec(Z) : Z = −Θ⊗ 1 + J ⊗ b, (Θ, b) ∈ (P,B)}.

It suffices to prove the negative definiteness of Hession when restricted in the subspace S . Specifically, for any vector
z = Jzω,`K ∈ S,∑
ω,`

z2
ω,`1{yω = ` or `+ 1} =

∑
ω,`

(−θω + b`)
21{yω = ` or `+ 1}

=
∑
ω,`

(θ2
ω − 2θωb` + b2`)1{yω = ` or `+ 1}

=
∑
ω,`

θ2
ω1{yω = ` or `+ 1} − 2

∑
ω,`

θωb`1{yω = ` or `+ 1}+
∑
ω,`

b2`1{yω = ` or `+ 1}

≥
∑
ω

θ2
ω − 2

∑
ω,`

θωb` +
∑
`

b2` (n` + n`+1)

≥
∑
ω

θ2
ω + min

`
(n` + n`+1)

∑
`

b2`

On the other hand,
‖z‖2F =

∑
ω,`

z2
ω,` =

∑
ω,`

(−θω + b`)
2 = Ltotal

∑
ω

θ2
ω + dtotal

∑
`

b2` ,

where Ltotal := (L− 1) and dtotal :=
∏
k dk.

Therefore, we have

max
z∈S,z 6=0

∑
ω,` z

2
ω,`1{{yω = ` or `+ 1}}

‖z‖2F
≥
∑
ω θ

2
ω + min` (n` + n`+1)

∑
` b

2
`

Ltotal
∑
ω θ

2
ω + dtotal

∑
` b

2
`

≥ min`(n` + n`+1)

(1 + α2

c∆2 )dtotal

≥ 2Aα,β,∆

1 + α2

c∆2

in high probability as dmin →∞. (28)

The second inequality in (28) is from the conditions that∑
ω

θ2
ω ∈ [0, α2dtotal] and

∑
`

b2` ∈ [cLtotal∆
2, Ltotalβ

2],

for some universal constant c > 0. The last inequality in (28) follows by applying the law of large numbers and the
uniform bound minzω,` P(yω = ` or `+ 1|zω,`) ≥ 2Aα,β,∆ to the empirical ratio:

min`(n` + n`+1)

dtotal

p→ min
`

P(yω = ` or `+ 1|zω,`) ≥ 2Aα,β,∆, in high probability as dmin →∞.

By (27) and (28), we have
zTHz ≤ −c′Aα,β,∆Dα,β,∆‖z‖2F ,

for some constant c′ > 0, therefore (26) is proved.

Plugging (25) and (26) into (24) yields

‖Ẑ − Ztrue‖2F ≤
c1r

K
maxC

2
α,β,∆

A2
α,β,∆D

2
α,β,∆

(
L− 1 +

∑
k

dk

)
.

The MSEs for Θ̂ and b̂ readily follow from (20).
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C. Additional explanations of HCP analysis
We perform clustering analyses based on the Tucker representation of the estimated signal tensor Θ̂. The procedure is
motivated from the higher-order extension of Principal Component Analysis (PCA) or Singular Value Decomposition (SVD).
Recall that, in the matrix case, we perform clustering on an m× n (normalized) matrix X based on the following procedure.
First, we factorize X into

X = UΣV T ,

where Σ is a diagonal matrix and U ,V are factor matrices with orthogonal columns. Second, we take each column of V
as a principal axis and each row in UΣ as principal component. A subsequent multivariate clustering method (such as
K-means) is then applied to the m rows of UΣ.

We apply a similar clustering procedure to the estimated signal tensor Θ̂. We factorize Θ̂ based on Tucker decomposition.

Θ̂ = Ĉ ×1 M̂1 ×2 · · · ×K M̂K , (29)

where Ĉ ∈ Rr1×···×rK is the estimated core tensor, M̂k ∈ Rdk×rk are estimated factor matrices with orthogonal columns,
and ×k denotes the tensor-by-matrix multiplication (Kolda & Bader, 2009). The mode-k matricization of (29) gives

Θ̂(k) = M̂kĈ(k)

(
M̂K ⊗ · · · ⊗ M̂1

)
,

where Θ̂(k), Ĉ(k) denote the mode-k unfolding of Θ̂ and Ĉ, respectively. We conduct clustering on this the mode-k unfolded

signal tensor. We take columns in
(
M̂K ⊗ · · · ⊗ M̂1

)
as principal axes and rows in M̂kĈ(k) as principal components.

Then, we apply K-means clustering method to the dk rows of the matrix M̂kĈ(k).

We perform a clustering analysis on the 68 brain nodes using the procedure described above. Our ordinal tensor method
outputs the estimated parameter tensor Θ̂ ∈ R68×68×136 with rank (23, 23, 8). We apply K-means to the mode-1 principal
component matrix of size 68 × 184 (184 = 23 × 8). The elbow method suggests 11 clusters among the 68 nodes (see
Figure 1). The clustering result is presented in Section 7.
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Figure 1. Elbow plot for determining the number of clusters in K-means.
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