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Abstract
Recently there are a considerable amount of work
devoted to the study of the algorithmic stability
and generalization for stochastic gradient descent
(SGD). However, the existing stability analysis
requires to impose restrictive assumptions on the
boundedness of gradients, smoothness and con-
vexity of loss functions. In this paper, we provide
a fine-grained analysis of stability and general-
ization for SGD by substantially relaxing these
assumptions. Firstly, we establish stability and
generalization for SGD by removing the existing
bounded gradient assumptions. The key idea is
the introduction of a new stability measure called
on-average model stability, for which we develop
novel bounds controlled by the risks of SGD iter-
ates. This yields generalization bounds depend-
ing on the behavior of the best model, and leads
to the first-ever-known fast bounds in the low-
noise setting using stability approach. Secondly,
the smoothness assumption is relaxed by con-
sidering loss functions with Hölder continuous
(sub)gradients for which we show that optimal
bounds are still achieved by balancing computa-
tion and stability. To our best knowledge, this
gives the first-ever-known stability and generaliza-
tion bounds for SGD with non-smooth loss func-
tions (e.g., hinge loss). Finally, we study learning
problems with (strongly) convex objectives but
non-convex loss functions.

1. Introduction
Stochastic gradient descent (SGD) has become the
workhorse behind many machine learning problems. As
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an iterative algorithm, SGD updates the model sequentially
upon receiving a new datum with a cheap per-iteration cost,
making it amenable for big data analysis. There is a plethora
of theoretical work on its convergence analysis as an opti-
mization algorithm (e.g. Duchi et al., 2011; Lacoste-Julien
et al., 2012; Nemirovski et al., 2009; Rakhlin et al., 2012;
Shamir & Zhang, 2013; Zhang, 2004).

Concurrently, there are a considerable amount of work with
focus on its generalization analysis (Dieuleveut & Bach,
2016; Hardt et al., 2016; Lin et al., 2016; Rosasco & Villa,
2015; Ying & Zhou, 2016). For instance, using the tool of
integral operator the work (Dieuleveut & Bach, 2016; Lin &
Rosasco, 2017; Rosasco & Villa, 2015; Ying & Pontil, 2008)
studied the excess generalization error of SGD with the least
squares loss, i.e. the difference between the true risk of SGD
iterates and the best possible risk. An advantage of this
approach is its ability to capture the regularity of regression
functions and the capacity of hypothesis spaces. The results
were further extended in Lei & Tang (2018); Lin et al. (2016)
based on tools of empirical processes which are able to deal
with general convex functions even without a smoothness
assumption. The idea is to bound the complexity of SGD
iterates in a controllable manner, and apply concentration
inequalities in empirical processes to control the uniform
deviation between population risks and empirical risks over
a ball to which the SGD iterates belong.

Recently, in the seminal work (Hardt et al., 2016) the authors
studied the generalization bounds of SGD via algorithmic
stability (Bousquet & Elisseeff, 2002; Elisseeff et al., 2005)
for convex, strongly convex and non-convex problems. This
motivates several appealing work on some weaker stability
measures of SGD that still suffice for guaranteeing gener-
alization (Charles & Papailiopoulos, 2018; Kuzborskij &
Lampert, 2018; Zhou et al., 2018). An advantage of this sta-
bility approach is that it considers only the particular model
produced by the algorithm, and can imply generalization
bounds independent of the dimensionality.

However, the existing stability analysis of SGD is estab-
lished under the strong assumptions on the loss function
such as the boundedness of the gradient and strong smooth-
ness. Such assumptions are very restrictive which are not sat-
isfied in many standard contexts. For example, the bounded
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gradient assumption does not hold for the simple least-
squares regression, where the model parameter belongs to
an unbounded domain. The strong smoothness assumption
does not hold for the popular support vector machine. Fur-
thermore, the analysis in the strongly convex case requires
strong convexity of each loss function which is not true
for many problems such as the important problem of least
squares regression.

In this paper, we provide a fine-grained analysis of stability
and generalization for SGD. Our new results remove the
bounded gradient assumption for differentiable loss func-
tions and remove the smoothness assumption for Lipschitz
continuous loss functions, and therefore broaden the impact
of the algorithmic stability approach for generalization anal-
ysis of SGD. In summary, our main contributions are listed
as follows.

• Firstly, we study stability and generalization for SGD by
removing the existing bounded gradient assumptions. The
key is an introduction of a novel stability measure called on-
average model stability, whose connection to generalization
is established by using the smoothness of loss functions
able to capture the low risks of output models for better
generalization. An advantage of on-average model stability
is that the corresponding bounds involve a weighted sum
of empirical risks instead of the uniform Lipschitz constant.
The weighted sum of empirical risks can be bounded via
tools in analyzing optimization errors, which implies a key
message that optimization is beneficial to generalization.
Furthermore, our stability analysis allows us to develop
generalization bounds depending on the risk of the best
model. In particular, we have established fast generalization
bounds O(1/n) for the setting of low noises, where n is
the sample size. To our best knowledge, this is the first fast
generalization bound of SGD based on stability approach in
a low-noise setting.

• Secondly, we consider loss functions with their
(sub)gradients satisfying the Hölder continuity which is
a much weaker condition than the strong smoothness in the
literature. Although stability decreases by weakening the
smoothness assumption, optimal generalization bounds can
be surprisingly achieved by balancing computation and sta-
bility. In particular, we show that an optimal generalization
bound can be achieved for the hinge loss by running SGD
with O(n2) iterations. To our best knowledge, this is the
first generalization analysis of SGD for non-smooth loss
functions based on algorithmic stability. Fast learning rates
are further derived in the low-noise case.

• Thirdly, we study learning problems with (strongly) con-
vex objectives but non-convex individual loss functions.
The nonconvexity of loss functions makes the correspond-
ing gradient update no longer non-expansive, and therefore
the arguments in Hardt et al. (2016) do not apply. We bypass

this obstacle by developing a novel quadratic inequality of
the stability using only the convexity of the objective, which
shows that this relaxation affects neither generalization nor
computation.

The paper is structured as follows. We discuss the related
work in Section 2 and formulate the problem in Section 3.
The stability and generalization for learning with convex
loss functions is presented in Section 4. In Sections 5 and 6,
we consider problems with relaxed convexity and relaxed
strong convexity, respectively. We conclude the paper in
Section 7.

2. Related Work
In this section, we discuss related work on algorithmic sta-
bility, stability of stochastic optimization algorithms and
generalization error of SGD.

Algorithmic Stability. The study of stability can be dated
back to Rogers & Wagner (1978). A modern framework of
quantifying generalization via stability was established in
the paper (Bousquet & Elisseeff, 2002), where a concept
of uniform stability was introduced and studied for empiri-
cal risk minimization (ERM) in the strongly convex setting.
This framework was then extended to study randomized
learning algorithms (Elisseeff et al., 2005), transfer learn-
ing (Kuzborskij & Lampert, 2018) and privacy-preserving
learning (Bassily et al., 2019; Dwork & Feldman, 2018), etc.
The interplay between various notions of stability, learn-
ability and consistency was further studied (Rakhlin et al.,
2005; Shalev-Shwartz et al., 2010). The power of stability
analysis is especially reflected by its ability in deriving opti-
mal generalization bounds in expectation (Shalev-Shwartz
et al., 2010). Very recently, almost optimal high-probability
generalization bounds were established via the stability ap-
proach (Bousquet et al., 2019; Feldman & Vondrak, 2018;
2019). In addition to the notion of uniform stability men-
tioned above, various other notions of stability were recently
introduced, including uniform argument stability (Liu et al.,
2017) and hypothesis set stability (Foster et al., 2019).

Stability of Stochastic Optimization Algorithms. In the
seminal paper (Hardt et al., 2016), the co-coercivity of gra-
dients was used to study the uniform stability of SGD in
convex, strongly convex and non-convex problems. The uni-
form stability was relaxed to a weaker notion of on-average
stability (Shalev-Shwartz et al., 2010), for which the corre-
sponding bounds of SGD can capture the impact of the risk
at the initial point (Kuzborskij & Lampert, 2018) and the
variance of stochastic gradients (Zhou et al., 2018). For non-
convex learning problems satisfying either a gradient domi-
nance or a quadratic growth condition, pointwise-hypothesis
stabilities were studied for a class of learning algorithms that
converge to global optima (Charles & Papailiopoulos, 2018),
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which relaxes and extends the uniform stability of ERM un-
der strongly convex objectives (Bousquet & Elisseeff, 2002).
A fundamental stability and convergence trade-off of itera-
tive optimization algorithms was recently established, where
it was shown that a faster converging algorithm can not be
too stable, and vice versa (Chen et al., 2018). This together
with some uniform stability bounds for several first-order
algorithms established there, immediately implies new con-
vergence lower bounds for the corresponding algorithms.
Algorithmic stability was also established for stochastic gra-
dient Langevin dynamics with non-convex objectives (Li
et al., 2020; Mou et al., 2018) and SGD implemented in a
stagewise manner (Yuan et al., 2019).

Generalization Analysis of SGD. A framework to study
the generalization performance of large-scale stochastic op-
timization algorithms was established in Bousquet & Bottou
(2008), where three factors influencing generalization be-
havior were identified as optimization errors, estimation
errors and approximation errors. Uniform stability was used
to establish generalization bounds O(1/

√
n) in expectation

for SGD for convex and strongly smooth cases (Hardt et al.,
2016). For convex and nonsmooth learning problems, gen-
eralization bounds O(n−

1
3 ) were established based on the

uniform convergence principle (Lin et al., 2016). An inter-
esting observation is that an implicit regularization can be
achieved without an explicit regularizer by tuning either the
number of passes or the step sizes (Lin et al., 2016; Rosasco
& Villa, 2015). For the specific least squares loss, optimal
excess generalization error bounds (up to a logarithmic fac-
tor) were established for SGD based on the integral operator
approach (Lin & Rosasco, 2017; Pillaud-Vivien et al., 2018).
The above mentioned generalization results are in the form
of expectation. High-probability bounds were established
based on either an uniform-convergence approach (Lei &
Tang, 2018) or an algorithmic stability approach (Feldman
& Vondrak, 2019). A novel combination of PAC-Bayes and
algorithmic stability was used to study the generalization
behavior of SGD, a promising property of which is its appli-
cations to all posterior distributions of algorithms’ random
hyperparameters (London, 2017).

3. Problem Formulation
Let S = {z1, . . . , zn} be a set of training examples inde-
pendently drawn from a probability measure ρ defined over
a sample space Z = X × Y , where X ⊆ Rd is an input
space and Y ⊆ R is an output space. Our aim is to learn
a prediction function parameterized by w ∈ Ω ⊆ Rd to
approximate the relationship between an input variable x
and an output variable y. We quantify the loss of a model w
on an example z = (x, y) by f(w; z). The corresponding

empirical and population risks are respectively given by

FS(w) =
1

n

n∑
i=1

f(w; zi) and F (w) = Ez[f(w; z)].

Here we use Ez[·] to denote the expectation with respect
to (w.r.t.) z. In this paper, we consider stochastic learning
algorithms A, and denote by A(S) the model produced by
running A over the training examples S.

We are interested in studying the excess generalization error
F (A(S))− F (w∗), where w∗ ∈ arg minw∈Ω F (w) is the
one with the best prediction performance over Ω. It can be
decomposed as

ES,A
[
F (A(S))−F (w∗)

]
=ES,A

[
F (A(S))−FS(A(S))

]
+ ES,A

[
FS(A(S))− FS(w∗)

]
. (3.1)

The first term is called the estimation error due to the ap-
proximation of the unknown probability measure ρ based
on sampling. The second term is called the optimization
error induced by running an optimization algorithm to min-
imize the empirical objective, which can be addressed by
tools in optimization theory. A popular approach to control
estimation errors is to consider the stability of the algorithm,
for which a widely used stability measure is the uniform
stability (Elisseeff et al., 2005; Hardt et al., 2016).

Definition 1 (Uniform Stability). A stochastic algorithm A
is ε-uniformly stable if for all training datasets S, S̃ ∈ Zn
that differ by at most one example, we have

sup
z

EA
[
f(A(S); z)− f(A(S̃); z)

]
≤ ε. (3.2)

The celebrated relationship between generalization and uni-
form stability is established in the following lemma (Hardt
et al., 2016; Shalev-Shwartz et al., 2010).

Lemma 1 (Generalization via uniform stability). Let A be
ε-uniformly stable. Then∣∣ES,A[FS(A(S))− F (A(S))

]∣∣ ≤ ε.
Throughout the paper, we restrict our interest to a specific
algorithm called projected stochastic gradient descent. It
is worth mentioning that our main results in Section 4 hold
also when Ω = Rd, i.e., no projections.

Definition 2 (Projected Stochastic Gradient Descent). Let
Ω ⊆ Rd and ΠΩ denote the projection on Ω. Let w1 = 0 ∈
Rd be an initial point and {ηt}t be a sequence of positive
step sizes. Projected SGD updates models by

wt+1 = ΠΩ

(
wt − ηt∂f(wt; zit)

)
, (3.3)

where ∂f(wt, zit) denotes a subgradient of f w.r.t. the first
argument and it is independently drawn from the uniform
distribution over {1, . . . , n}.
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Note if f is differentiable, then ∂f denotes the gradient of
f w.r.t. the first argument. We say a function g : Rd 7→ R is
σ-strongly convex if

g(w) ≥ g(w̃) + 〈w − w̃, ∂g(w̃)〉+
σ

2
‖w − w̃‖22 (3.4)

for all w, w̃ ∈ Rd, where 〈·, ·〉 denotes the inner product
and ‖w‖2 denotes the `2 norm of w = (w1, . . . , wd), i.e.,

‖w‖2 =
(∑d

j=1 w
2
j

) 1
2 . If (3.4) holds with σ = 0, then we

say g is convex. We denote B � B̃ if there are absolute
constants c1 and c2 such that c1B ≤ B̃ ≤ c2B.

4. Stability with Convexity
An essential assumption to establish the uniform stability of
SGD is the uniform Lipschitz continuity (boundedness of
gradients) of loss functions as follows (Bousquet & Elisseeff,
2002; Charles & Papailiopoulos, 2018; Hardt et al., 2016;
Kuzborskij & Lampert, 2018; Zhou et al., 2018).

Assumption 1. We assume ‖∂f(w; z)‖2 ≤ G for all w ∈
Ω and z ∈ Z .

Unfortunately, the Lipschitz constant G can be very large
or even infinite for some learning problems. Consider
the simple least squares loss f(w; z) = 1

2 (〈w, x〉 −
y)2 with the gradient ∂f(w; z) = (〈w, x〉 − y)x. In
this case the G-Lipschitzness of f requires to set G =
supw∈Ω supz∈Z ‖(〈w, x〉 − y)x‖2, which is infinite if Ω is
unbounded. As another example, the Lipschitz constant of
deep neural networks can be prohibitively large. In this case,
existing stability bounds fail to yield meaningful general-
ization bounds. Furthermore, another critical assumption in
the literature is the L-smoothness on f , i.e. for any z and
w, w̃ ∈ Rd∥∥∂f(w, z)− ∂f(w̃, z)

∥∥
2
≤ L‖w − w̃‖2. (4.1)

In this section, we will remove the boundedness assumption
on the gradients for differentiable loss functions, and estab-
lish stability and generalization only under the assumption
where loss functions have Hölder continuous (sub)gradients–
a condition much weaker than the strong smoothness (Lei
et al., 2018; Nesterov, 2015; Ying & Zhou, 2017). Note that
the loss functions can be non-differentiable if α = 0.

Definition 3. Let L > 0, α ∈ [0, 1]. We say ∂f is (α,L)-
Hölder continuous if for all w, w̃ ∈ Rd and z ∈ Z ,∥∥∂f(w, z)− ∂f(w̃, z)

∥∥
2
≤ L‖w − w̃‖α2 . (4.2)

If (4.2) holds with α = 1, then f is smooth as defined by
(4.1). If (4.2) holds with α = 0, then this amounts to saying
that f is Lipschitz continuous as considered in Assumption
1. Examples of loss functions satisfying Definition 3 include

the q-norm hinge loss f(w; z) =
(

max(0, 1−y〈w, x〉)
)q

for classification and the q-th power absolute distance loss
f(w; z) = |y−〈w, x〉|q for regression (Steinwart & Christ-
mann, 2008), whose (sub)gradients are (q−1, C)-Hölder
continuous for some C > 0 if q ∈ [1, 2]. If q = 1, we get
the hinge loss and absolute distance loss with wide applica-
tions in machine learning and statistics.

4.1. On-average model stability

The key to remove the bounded gradient assumption and the
strong smoothness assumption is the introduction of a novel
stability measure which we refer to as the on-average model
stability. We use the term “on-average model stability” to
differentiate it from on-average stability in Kearns & Ron
(1999); Shalev-Shwartz et al. (2010) as we measure stability
on model parameters w instead of function values. Intu-
itively, on-average model stability measures the on-average
sensitivity of models by traversing the perturbation of each
single coordinate.

Definition 4 (On-average Model Stability). Let S =
{z1, . . . , zn} and S̃ = {z̃1, . . . , z̃n} be drawn indepen-
dently from ρ. For any i = 1, . . . , n, define S(i) =
{z1, . . . , zi−1, z̃i, zi+1, . . . , zn} as the set formed from S
by replacing the i-th element with z̃i. We say a randomized
algorithm A is `1 on-average model ε-stable if

ES,S̃,A
[ 1

n

n∑
i=1

‖A(S)−A(S(i))‖2
]
≤ ε,

and `2 on-average model ε-stable if

ES,S̃,A
[ 1

n

n∑
i=1

‖A(S)−A(S(i))‖22
]
≤ ε2.

In the following theorem, we build the connection between
generalization in expectation and the on-average model sta-
bilities to be proved in Appendix B. Although the gen-
eralization by `1 on-average model stability requires As-
sumption 1, it is removed for `2 on-average model stabil-
ity. We introduce a free parameter γ to tune according
to the property of problems. Note we require a convex-
ity assumption in Part (c) by considering non-smooth loss
functions. Let cα,1 = (1 + 1/α)

α
1+αL

1
1+α if α > 0 and

cα,1 = supz ‖∂f(0; z)‖2 + L if α = 0.

Theorem 2 (Generalization via Model Stability). Let S, S̃
and S(i) be constructed as Definition 4. Let γ > 0.

(a) Let A be `1 on-average model ε-stable and Assumption
1 hold. Then∣∣ES,A[FS(A(S))− F (A(S))

]∣∣ ≤ Gε.
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(b) If for any z, the function w 7→ f(w; z) is nonnegative
and L-smooth, then

ES,A
[
F (A(S))−FS(A(S))

]
≤ L

γ
ES,A

[
FS(A(S))

]
+
L+ γ

2n

n∑
i=1

ES,S̃,A
[
‖A(S(i))−A(S)‖22

]
.

(c) If for any z, the function w 7→ f(w; z) is nonnegative,
convex and w 7→ ∂f(w; z) is (α,L)-Hölder continu-
ous with α ∈ [0, 1], then

ES,A
[
F (A(S))−FS(A(S))

]
≤
c2α,1
2γ

ES,A
[
F

2α
1+α (A(S))

]
+

γ

2n

n∑
i=1

ES,S̃,A
[
‖A(S(i))−A(S)‖22

]
.

Remark 1. We explain here the benefit of `2 on-average
model stability. If A is `2 on-average model ε-stable, then

we take γ =
√

2LE
[
FS(A(S))

]
/ε in Part (b) and derive

E
[
F (A(S))−FS(A(S))

]
≤ Lε2/2+

√
2LE

[
FS(A(S))

]
ε.

In particular, if the output model has a small empirical
risk in the sense of E

[
FS(A(S))

]
= O(1/n), we derive

E
[
F (A(S)) − FS(A(S))

]
= O(ε2 + ε/

√
n). That is, our

relationship between the generalization and `2 on-average
stability allows us to exploit small risk of output model to get
a generalization bound with an improved dependency on the
stability measure ε. As a comparison, the discussions based
on uniform stability (Lemma 1) and the `1 on-average model
stability (Part (a)) only show E

[
F (A(S))− FS(A(S))

]
=

O(ε), which fail to exploit the low-noise condition. We can
also take γ = cα,1

(
E[F (A(S))]

) α
1+α /ε in part (c) to derive

E
[
F (A(S))− FS(A(S))

]
= O

(
ε
(
E[F (A(S))]

) α
1+α

)
.

The above equation can be written as an inequality of
E[F (A(S))− FS(A(S))] (using the sub-additivity of t 7→
t
α

1+α ), from which we derive

E
[
F (A(S))−FS(A(S))

]
=O

(
ε1+α+ε

(
E[FS(A(S))]

) α
1+α

)
.

If E[FS(A(S))] is small, this also implies an improved de-
pendency of the generalization bound on ε.

4.2. Strongly smooth case

To justify the effectiveness of the on-average model stability,
we first consider its application to learning with smooth loss
functions. We first study stability and then generalization.

Stability bounds. The following theorem to be proved in
Appendix C.1 establishes on-average model stability bounds

in the smooth setting. A key difference from the existing
stability bounds is that the uniform Lipschitz constant G is
replaced by empirical risks. Since we are minimizing empir-
ical risks by SGD, it is expected that these risks would be sig-
nificantly smaller than the uniform Lipschitz constant. Actu-
ally we will control the weighted sum of empirical risks by
tools in analyzing optimization errors. In the optimistic case
with F (w∗) = 0, we expect ES,A[FS(wt)] = O(1/t), and
in this case the discussion based on on-average model stabil-
ity would imply significantly better generalization bounds.
The idea of introducing a parameter p in (4.4) is to make
(1 + p/n)t ≤ e by setting p = n/t, where e is the base of
the nature logarithm.

Theorem 3 (Stability bounds). Assume for all z ∈ Z , the
map w 7→ f(w; z) is nonnegative, convex and L-smooth.
Let S, S̃ and S(i) be constructed as Definition 4. Let {wt}
and {w(i)

t } be produced by (3.3) with ηt ≤ 2/L based on
S and S(i), respectively. Then for any p > 0 we have

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖2

]
≤

2
√

2L

n

t∑
j=1

ηjES,A
[√

FS(wj)
]
. (4.3)

and

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖22

]
≤ (4.4)

8(1 + p−1)L

n

t∑
j=1

(1 + p/n)t−jη2
jES,A

[
FS(wj)

]
.

Remark 2. Kuzborskij & Lampert (2018) developed an
interesting on-average stability bound O( σ̃n

∑t
j=1 ηj) un-

der the bounded variance assumption ES,z
[
‖∂f(wt; z) −

∂F (wt; z)‖22
]
≤ σ̃2 for all t. Although this bound success-

fully replaces the uniform Lipschitz constant by the milder
uniform variance constant σ̃, the corresponding generaliza-
tion analysis still requires a bounded gradient assumption. A
nice property of the stability bound in Kuzborskij & Lampert
(2018) is that it depends on the quality of the initialization,
i.e., the stability improves if we start with a good model.
Our stability bound also enjoys this property. As we can
see from Theorem 3, the stability increases if we find good
models with small optimization errors in the optimization
process. This illustrates a key message that optimization is
beneficial to improve the generalization.

Remark 3. The stability bounds in Theorem 3 can be ex-
tended to the non-convex case. Specifically, let assumptions
of Theorem 3, except the convexity of w 7→ f(w; z), hold.
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Then for any p > 0 one gets (see Proposition C.3)

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖22

]
≤

(1 + p/n)(1 + ηtL)2ES,S̃,A
[ 1

n

n∑
i=1

‖wt −w
(i)
t ‖22

]
+

8(1 + p−1)Lη2
t

n
ES,A

[
FS(wt)

]
.

This result improves the recurrence relationship in Hardt
et al. (2016) for uniform stability by replacing the uniform
Lipschitz constant with empirical risks.

Generalization bounds. We now establish generalization
bounds based on `2 on-average model stability. This ap-
proach not only removes a bounded gradient assumption,
but also allows us to fully exploit the smoothness of loss
functions to derive bounds depending on the behavior of the
best model w∗. As we will see in Corollary 5, Theorem 4
interpolates between O(1/

√
n) bound in the “pessimistic”

case (F (w∗) > 0) and theO(1/n) bound in the “low-noise”
case (F (w∗) = 0) (Reeve & Kabán, 2020; Srebro et al.,
2010), which is becoming more and more interesting in
the deep learning era with possibly more parameters than
training examples. To our best knowledge, this is the first
optimistic bound for SGD based on a stability approach. Eq.
(4.6) still holds if F (w∗) = O(1/n). The proofs are given
in Appendix C.2.

Theorem 4 (Generalization bounds). Assume for all z ∈ Z ,
the function w 7→ f(w; z) is nonnegative, convex and L-
smooth. Let {wt} be produced by (3.3) with nonincreasing
step sizes satisfying ηt ≤ 1/(2L). If γ ≥ 1, then

ES,A[F (w
(1)
T )]−F (w∗) = O

(( 1

γ
+

∑T
t=1 η

2
t∑T

t=1 ηt

)
F (w∗)

+
1∑T
t=1 ηt

+
γ(1 + T/n)

n

(
1 +

T∑
t=1

η2
tF (w∗)

))
,

where w
(1)
T =

(∑T
t=1 ηtwt

)
/
∑T
t=1 ηt.

Corollary 5. Assume for all z ∈ Z , the function w 7→
f(w; z) is nonnegative, convex and L-smooth.

(a) Let {wt} be produced by (3.3) with ηt = c/
√
T ≤

1/(2L) for a constant c > 0. If T � n, then

ES,A[F (w
(1)
T )]− F (w∗) = O

(F (w∗) + 1√
n

)
. (4.5)

(b) Let {wt} be produced by (3.3) with ηt = η1 ≤ 1/(2L).
If F (w∗) = 0 and T � n, then

ES,A[F (w
(1)
T )]− F (w∗) = O(1/n). (4.6)

Remark 4. Based on the stability bound in Hardt et al.
(2016), we can show ES,A

[
F (w

(1)
T )
]
− F (w∗) decays as

2G2
∑T
t=1 ηt
n

+O
(∑T

t=1 η
2
tF (w∗) + 1∑T
t=1 ηt

)
, (4.7)

from which one can derive the O(1/
√
n) bound at best even

if F (w∗) = 0. The improvement of our bounds over (4.7)
is due to the consideration of on-average model stability
bounds involving empirical risks (we use the same optimiza-
tion error bounds in these two approaches). Based on the
on-average stability bound in Kuzborskij & Lampert (2018),
one can derive a generalization bound similar to (4.7) with
G2 replaced by Gσ̃ (σ̃ is the uniform variance constant in
Remark 2), which also could not yield a fast bound O(1/n)
if F (w∗) = 0.

Remark 5. We compare here our results with some fast
bounds for SGD. Some fast convergence rates of SGD were
recently derived for SGD under low noise conditions (Bass-
ily et al., 2018; Ma et al., 2018; Srebro et al., 2010) or
growth conditions relating stochastic gradients to full gra-
dients (Vaswani et al., 2019). The discussions there mainly
focused on optimization errors, which are measured w.r.t.
the iteration number t. As a comparison, our fast rates mea-
sured by n are developed for generalization errors of SGD
(Part (b) of Corollary 5), for which we need to trade-off
optimization errors and estimation errors by stopping at an
appropriate iteration number. Fast generalization bounds
are also established for the specific least squares based on
an integral operator approach (Dieuleveut et al., 2017; Lin
& Rosasco, 2017; Mücke et al., 2019; Pillaud-Vivien et al.,
2018). However, these discussions heavily depend on the
structure of the square loss and require capacity assumptions
in terms of the decay rate of eigenvalues for the associated
integral operator. As a comparison, we consider general loss
functions and do not impose a capacity assumption.

4.3. Non-smooth case

As a further application, we apply our on-average model
stability to learning with non-smooth loss functions (e.g.,
the hinge loss), which have not been studied in the literature.

Stability bounds. We first present stability bounds in The-
orem 7. As compared to (4.4), the stability bound below in-

volves an additional term O(
∑t
j=1 η

2
1−α
j ), which is the cost

we pay by relaxing the smoothness condition to a Hölder
continuity of (sub)gradients. Indeed, in this case we show
that the gradient update operator w 7→ w − η∂f(w; z) is
approximately contractive in the sense of Lemma 6, which
plays a key role in establishing the stability bounds in the
non-smooth case. The constant hidden in the big O notation
is stated explicitly in (D.4) in the appendix. The proofs of
Lemma 6 and Theorem 7 are given in Appendix D.1.
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Lemma 6. Assume for all z ∈ Z , the map w 7→ f(w; z)
is convex, and w 7→ ∂f(w; z) is (α,L)-Hölder continuous
with α ∈ [0, 1). Then for all w ∈ Rd and η > 0 there holds

‖w−η∂f(w; z)−w̃+η∂f(w̃; z)‖22 = ‖w−w̃‖22+O(η
2

1−α ).

Theorem 7 (Stability bounds). Assume for all z ∈ Z , the
map w 7→ f(w; z) is nonnegative, convex and ∂f(w; z)

is (α,L)-Hölder continuous with α ∈ [0, 1). Let S, S̃ and
S(i) be constructed in Definition 4. Let {wt} and {w(i)

t } be
produced by (3.3) based on S and S(i), respectively. Then

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖22

]
= O

( t∑
j=1

η
2

1−α
j

)
+

O
(
n−1(1 + t/n)

t∑
j=1

η2
jES,A

[
F

2α
1+α

S (wj)
])
.

Note if α = 0, the above stability bounds is simplified as

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1−w(i)
t+1‖22

]
= O

((
1+t/n2

) t∑
j=1

η2
j

)
.

Generalization bounds. We now present generalization
bounds for learning by loss functions with Hölder contin-
uous (sub)gradients, which are specific instantiations of a
general result (Proposition D.3) stated and proved in Ap-
pendix D.2.

Theorem 8 (Generalization bounds). Assume for all z ∈ Z ,
the function w 7→ f(w; z) is nonnegative, convex, and
∂f(w; z) is (α,L)-Hölder continuous with α ∈ [0, 1). Let
{wt}t be given by (3.3) with ηt = cT−θ, θ ∈ [0, 1], c > 0.

(a) If α ≥ 1/2, we can take θ = 1/2 and T � n to derive
ES,A[F (w

(1)
T )]− F (w∗) = O(n−

1
2 ).

(b) If α < 1/2, we can take T � n
2−α
1+α and θ = 3−3α

2(2−α) to

derive ES,A[F (w
(1)
T )]− F (w∗) = O(n−

1
2 ).

(c) If F (w∗) = 0, we take T � n
2

1+α and θ = 3−α2−2α
4

to derive ES,A[F (w
(1)
T )]− F (w∗) = O(n−

1+α
2 ).

Remark 6. Although relaxing smoothness affects stability

by introducing O(
∑t
j=1 η

2
1−α
j ) in the stability bound, we

achieve a generalization bound similar to the smooth case
with a similar computation cost if α ≥ 1/2. For α < 1/2, a
minimax optimal generalization bound O(n−

1
2 ) (Agarwal

et al., 2012) can be also achieved with more computation
cost as T � n

2−α
1+α . In particular, if α = 0 we develop the op-

timal generalization bounds O(n−
1
2 ) for SGD with T � n2

iterations. To our best knowledge, this gives the first gener-
alization bounds for SGD with non-smooth loss functions

(e.g., hinge loss) based on stability analysis. Analogous
to the smooth case, we can derive generalization bounds
better than O(n−

1
2 ) in the case with low noises. To our best

knowledge, this is the first optimistic generalization bound
for SGD with non-smooth loss functions.
Remark 7. We can extend our discussion to ERM. If FS is
σ-strongly convex and ∂f(w; z) is (α,L)-Hölder continu-
ous, we can apply the on-average model stability to show
(see Proposition D.5)

ES
[
F (A(S))−FS(A(S))

]
= O(ES

[
F

2α
1+α (A(S))

]
/(nσ)),

where A(S) = arg minw∈Rd FS(w). This extends the
error bounds developed for ERM with strongly-smooth
loss functions (Shalev-Shwartz & Ben-David, 2014; Sre-
bro et al., 2010) to the non-smooth case, and removes the
G-admissibility assumption in Bousquet & Elisseeff (2002).
In a low-noise case with a small ES

[
F (A(S))

]
, the discus-

sion based on an on-average stability can imply optimistic
generalization bounds for ERM.

5. Stability with Relaxed Convexity
We now turn to stability and generalization of SGD for learn-
ing problems where the empirical objective FS is convex
but each loss function f(w; z) may be non-convex. For sim-
plicity, we impose Assumption 1 here and use the arguments
based on the uniform stability. The proofs of Theorem 9
and Theorem 10 are given in Appendix E.1.
Theorem 9. Let Assumption 1 hold. Assume for all
z ∈ Z , the function w 7→ f(w; z) is L-smooth. Let
S = {z1, . . . , zn} and S̃ = {z̃1, . . . , z̃n} be two sets of
training examples that differ by a single example. Let {wt}t
and {w̃t}t be produced by (3.3) based on S and S̃, respec-
tively. If for all S, FS is convex, then(
EA
[
‖wt+1−w̃t+1‖22

]) 1
2 ≤4GCt

t∑
j=1

ηj
n

+2G
(
Ct

t∑
j=1

η2
j

n

) 1
2

,

where we introduce Ct =
∏t
j̃=1

(
1 + L2η2

j̃

)
.

Remark 8. The derivation of uniform stability bounds in
Hardt et al. (2016) is based on the non-expansiveness of the
operator w 7→ w − ∂f(w; z), which requires the convexity
of w 7→ f(w; z) for all z. Theorem 9 relaxes this con-
vexity condition to a milder convexity condition on FS . If∑∞

j=1 η
2
j <∞, the stability bounds in Theorem 9 become

O(n−1
∑t
j=1 ηj + n−

1
2 ) since Ct <∞.

As shown below, minimax optimal generalization bounds
can be achieved for step sizes ηt = η1t

−θ for all θ ∈
(1/2, 1) as well as the step sizes ηt � 1/

√
T with T � n.

Theorem 10. Let Assumption 1 hold. Assume for all z ∈ Z ,
the function w 7→ f(w; z) is L-smooth. Let {wt}t be
produced by (3.3). Suppose for all S, FS is convex.
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(a) If ηt = η1t
−θ, θ ∈ (1/2, 1), then

ES,A[F (w
(1)
T )]−F (w∗) = O

(
n−1T 1−θ+n−

1
2 +T θ−1

)
.

If T �n
1

2−2θ , then ES,A[F (w
(1)
T )]−F (w∗) = O(n−

1
2 ).

(b) If ηt = c/
√
T for some c > 0 and T � n, then

ES,A[F (w
(1)
T )]− F (w∗) = O(n−

1
2 ).

Example: AUC Maximization. We now consider a spe-
cific example of AUC (Area under ROC curve) maximiza-
tion where the objective function is convex but each loss
function may be non-convex. As a widely used method in
imbalanced classification (Y = {+1,−1}), AUC maximiza-
tion was often formulated as a pairwise learning problem
where the corresponding loss function involves a pair of
training examples (Gao et al., 2013; Zhao et al., 2011). Re-
cently, AUC maximization algorithms updating models with
a single example per iteration were developed (Liu et al.,
2018; Natole et al., 2018; Ying et al., 2016). Specifically,
AUC maximization with the square loss can be formulated
as the minimization of the following objective function

F (w) := p(1− p)E
[(

1−w>(x− x̃)
)2|y = 1, ỹ = −1

]
,

(5.1)
where p = Pr{Y = 1} is the probability of an example
being positive. Let x+ = E[X|Y = 1] and x− = E[X|Y =
−1] be the conditional expectation of X given Y = 1 and
Y = −1, respectively. It was shown that Eit

[
f(w; zit)

]
=

F (w) for all w ∈ Rd (Natole et al., 2018, Theorem 1),
where

f(w; z)=(1−p)
(
w>(x−x+)

)2I[y=1]+p(1−p)
+2
(
1+w>(x−−x+)

)
w>x

(
pI[y=−1]−(1−p)I[y=1]

)
+p
(
w>(x−x−)

)2I[y=−1] −p(1− p)
(
w>(x−−x+)

)2
.

(5.2)

An interesting property is that (5.2) involves only a single
example z. This observation allows Natole et al. (2018) to
develop a stochastic algorithm as (3.3) to solve (5.1). How-
ever, for each z, the function z 7→ f(w; z) is non-convex
since the associated Hessian matrix may not be positively
definite. It is clear that its expectation F is convex.

6. Stability with Relaxed Strong Convexity
6.1. Stability and generalization errors

Finally, we consider learning problems with strongly convex
empirical objectives but possibly non-convex loss functions.
Theorem 11 provides stability bounds, while the minimax
optimal generalization bounds O(1/(σn)) are presented in
Theorem 12. The proofs are given in Appendix F.

Theorem 11. Let Assumptions in Theorem 9 hold. Suppose
for all S ⊂ Z , FS is σS-strongly convex. Then, there exists
a constant t0 such that for SGD with ηt = 2/((t+ t0)σS)
we have(

EA
[
‖wt+1 − w̃t+1‖22

]) 1
2 ≤ 4G

σS

( 1√
n(t+ t0)

+
1

n

)
.

Remark 9. Under the assumption w 7→ f(w, z) is
σ-strongly convex and smooth for all z, it was shown
that EA

[
‖wt+1 − w̃t+1‖2

]
= O(1/(nσ)) for ηt =

O(1/(σt)) (Hardt et al., 2016). Indeed, this strong con-
vexity condition is used to show that the operator w 7→
w − ∂f(w; z) is contractive. We relax the strong convex-
ity of f(w; z) to the strong convexity of FS . Our stability
bound holds even if w 7→ f(w; z) is non-convex. If t � n,
then our stability bound coincides with the one in Hardt
et al. (2016) up to a constant factor.
Theorem 12. Let Assumption 1 hold. Assume for all z ∈ Z ,
the function w 7→ f(w; z) is L-smooth. Suppose for all
S ⊂ Z , FS is σS-strongly convex. Then, there exists some
t0 such that for SGD with ηt = 2/((t+ t0)σS) and T � n
we have

ES,A[F (w
(2)
T )]− F (w∗) = O(ES

[
1/(nσS)

]
),

where w(2)
T =

(∑T
t=1(t+ t0 − 1)wt

)
/
∑T
t=1(t+ t0 − 1).

Example: Least Squares Regression. We now consider
an application to learning with the least squares loss, where
f(w; z) = 1

2

(
〈w, x〉 − y

)2
. Let Ω = {w ∈ Rd : ‖w‖2 ≤

R}. In this case, (3.3) becomes

wt+1 = ΠΩ

(
wt − ηt

(
〈wt, xt〉 − yt

)
xt
)
, (6.1)

where ΠΩ(w) = min{R/‖w‖2, 1}w. Note that each indi-
vidual loss function f(wt; zt) is non-strongly convex. How-
ever, as we will show below, the empirical objective satisfies
a strong convexity on a subspace containing the iterates
{wt}. For any S = {z1, . . . , zn} let CS = 1

n

∑n
i=1 xix

>
i

be the empirical covariance matrix and σ′S be the minimal
positive eigenvalue of CS . Then it is clear from (6.1) that
{wt}t belongs to the range ofCS . 1 Let S̃ ⊂ Zn differ from
S by a single example. For simplicity, we assume S and S̃
differ by the first example and denote S̃ = {z̃1, z2, . . . , zn}.
We construct a set S̄ = {0, z2, . . . , zn}. Let {wt}, {w̃t}
and {w̄t} be the sequence by (6.1) based on S, S̃ and S̄,
respectively. Then our previous discussion implies that
wt − w̄t ∈ Range(CS), w̃t − w̄t ∈ Range(CS̃) for
all t ∈ N (Range(CS̄) ⊆ Range(CS),Range(CS̄) ⊆
Range(CS̃)), where we denote by Range(C) the range of a
matrix C. It follows that wt − w̄t and w̃t − w̄t are orthog-
onal to the kernel of CS and CS̃ , respectively. Therefore,

〈wt − w̄t, CS(wt − w̄t)〉 ≥ σ′S‖wt − w̄t‖22,
1The range of CS is the linear span of x1, . . . , xn. Details are

given in Proposition F.1 in Appendix F.
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〈w̃t − w̄t, CS̃(w̃t − w̄t)〉 ≥ σ′S̃‖w̃t − w̄t‖22.
As we will see in the proof, Theorem 11 holds if only the
following local strong convexity holds, i.e.,

〈wt−w̃t, ∂FS(wt)−∂FS(w̃t)〉 ≥ σS‖wt−w̃t‖22, ∀t ∈ N.

Therefore, we can apply Theorem 11 with S̃ = S̄ and
σS = σ′S to derive (note ∂FS(w) = CSw − 1

n

∑n
i=1 yixi)

EA
[
‖wt+1 − w̄t+1‖2

]
≤ 4G

σ′S

( 1√
n(t+ t0)

+
1

n

)
.

A similar inequality also holds for EA
[
‖w̃t+1 − w̄t+1‖2

]
,

which together with the subadditivity of ‖ · ‖2 immediately
gives stability bounds on EA[‖wt+1 − w̃t+1‖2].

7. Conclusions
In this paper, we study stability and generalization of SGD
by removing the bounded gradient assumptions, and relax-
ing the smoothness assumption and the convexity require-
ment of each loss function in the existing analysis. We
introduce a novel on-average model stability able to capture
the risks of SGD iterates, which implies fast generaliza-
tion bounds in the low-noise case and stability bounds for
learning with even non-smooth loss functions. For all con-
sidered problems, we show that our stability bounds can
imply minimax optimal generalization bounds by balancing
optimization and estimation errors. We apply our results
to practical learning problems to justify the superiority of
our approach over the existing stability analysis. Our results
can be extended to stochastic proximal gradient descent,
high-probability bounds and SGD without replacement (de-
tails are given in Appendix G). In the future, it would be
interesting to study stability bounds for other stochastic op-
timization algorithms, e.g., Nesterov’s accelerated variants
of SGD (Nesterov, 2013).
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