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1. Proof of The Algorithm Consistency
This section provides the proof of the consistency to learn
a validation loss estimator ψ∗t by sampling architectures to
be evaluated with a sampler whose distribution centre is
updated by:

A′ ← A− η · ∇Aψ
∗
t (H̃), (1)

where A is the previous sampler centre, A′ is the new sam-
pler centre and H̃ is the previous sampled architecture.

We firstly give the definition of the empirical loss weighted
by the probability that an architecture is sampled and the
expected loss on the entire data space.
Definition 1 (Empirical Loss). The weighted empirical loss
of a given estimator ψ at time step T is

LT (ψ) =
1

T

T∑
t=1

1

pt
`(ψ(Ht),Lt) (2)

where pt is the probability that Ht is sampled, Lt is the
label of Ht.
Definition 2 (Expected Loss). Let H be an architecture
search space, D = {(H,L)|H ∼ H} be a data space, and `
be a loss function, the expected loss of a estimator ψ on the
data space D is

L(ψ) = E(H,L)∼D [`(ψ(H),L)] (3)

We demand that the gap, |LT (ψ) − L(ψ)|, between the
empirical loss and the expected loss of the validation loss
estimator ψ is bounded within an arbitrarily small value ε,
with probability arbitrarily to 1:

P[|LT (ψ)− L(ψ)| < ε] > 1− δ, (4)

where δ is a constant close to 0. To find this bound, a
concentration inequality of random process called Azuma’s
Inequality (Azuma, 1967) can be used.
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Theorem 1 (Azuma’s Inequality). Suppose {Xk, k =
0, 1, 2, . . . } is a martingale and |Xk − Xk−1| < ck al-
most surely. Then for all positive integers N and all positive
reals ε,

P [|XN −X0| ≥ ε] ≤ 2 exp

(
−ε2

2
∑N
k=1 c

2
k

)
(5)

Now, we give our conclusion of the bound in Theorem 2
and demonstrate the proof of it.

Theorem 2. Let Ψ be a hypothesis class containing all the
possible hypothesises of estimator ψ. For any δ > 0, with
probability at lest 1− δ, ∀ψ ∈ Ψ:

|LT (ψ)− L(ψ)| <

√
2
(
d+ ln 2

δ

)
T

(6)

where d is the Pollard’s pseudo-dimension of Ψ.

Proof. To use Azuma’s inequality, we need our target se-
quence to be a martingale. We consider a sequence of ran-
dom variables U1, . . . , UT , with Ut = 1

pt
`(ψ(Ht),Lt) −

L(ψ). Since probability pt ∈ [0, 1] and loss `(·) ∈ [0, 1],
we have |Ut| ≤ 1. Letting Zt =

∑t
i=1 Ui and Z0 = 0, Zt

is a martingale. For any 1 ≤ t ≤ T :

E[Zt|Zt−1, . . . , Z0]

=E[Ut + Zt−1|Zt−1, . . . , Z0]

=E[l(ψ(Ht),Lt)− L(H) + Zt−1|Zt−1, . . . , Z0]

=Zt−1

(7)

We can apply Azuma’s inequality on Zt. Given |Zt −
Zt−1| = |Ut| ≤ 1 and |ZT − Z0| = |ZT | = |T (LT (ψ) −
L(ψ))|, for any real value λ > 0, we have:

P

[
|LT (ψ)− L(ψ)| ≥ λ√

T

]
≤ 2e−λ

2/2 (8)

Setting λ =
√

2(d+ ln 2
δ ), we can have the desired result

in Theorem 2.
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2. Proof of The Label Complexity
In this section, we discuss the bound of label complexity
of our method on an architecture search space H with size
N . According to our sampling strategy in Eq. 1, the next
sample to be requested is determined by the current sam-
ple and current estimator. Thus after each time step, the
architecture to be sampled Ht+1 at time step t + 1 satis-
fies that the estimated validation loss of it is smaller than
the estimated validation loss of architecture previously sam-
pled at time step t, i.e. ψt(Ht+1) ≤ ψt(Ht), as long as
the step size η is within a reasonable range (e.g. small
enough). According to the standard label complexity, the
validation loss estimator ψt has an maximum allowed slack
∆t =

√
(8/t)(d+ ln(2/δ)), which means the estimated

validation loss at most larger than the ground truth than ∆t,
i.e. ψt(Ht) ≤ Lt + ∆t. This is equivalent to shrink the
current search space into a smaller subset Ht+1:

Ht+1 = {H ∈ Ht :

ψt(H) ≤ ψt(Ht) ≤ L(Ht) + ∆t}. (9)

The new sample Ht+1 should locate in the subset Ht+1.
The initial search space is set to be the entire search space:
H0 = H.

We define a pseudo-metric for architectures in Definition 3.
With this pseudo-metric, the probability that an architecture
is sampled can be defined.

Definition 3 (Pseudo-metric). At time step t, the pseudo-
metric of architecture H ∈ Ht is

ρt(H) = max
H′∈Ht

ψt−1(H ′)− ψt−1(H) (10)

Equation 10 measures the distance from a given architecture
to the worst one in the current sub search space. According
to our purpose, the further the distance is, the more likely
it is to sample the corresponding architecture. With the
pseudo-metric, the probability that an architecture Hn ∈ Ht
is sampled at time step t is pn = ρt(Hn).

Based on the above settings, we give the upper bound of
label complexity of our algorithm in Theorem 3.

Theorem 3. With probability at least 1 − δ, to learn an
estimator ψ with error bound ε ≤

√
(8/N)(d+ ln(2/δ)),

the number of labels requested by the algorithm is at most
the order of

O
(√

N(d+ ln (2/δ))
)

(11)

We need the following lemma for the proof of Theorem 3.

Lemma 4. For all sub search spaces Ht, for all concepts L
to be learned, for all δ > 0, with probability at least 1− δ,
for all samples H1, H2 ∈ Ht and all time steps t

|(ψt(H1)− ψt(H2))− (L(H1)− L(H2))| ≤ ∆t (12)

Proof. Given the definition of allowed slack ∆t, we can
have |(ψt(H) − L(H)| ≤ ∆t at time step t for H ∈
Ht. Thus |(ψt(H1) − ψt(H2)) − (L(H1) − L(H2))| =
|ψt(H1) − ψt(H2) − L(H1) + L(H2)| = |(ψt(H1) −
L(H1))− (ψt(H2)− L(H2))| ≤ ∆t.

Proof of Theorem 3. By applying Lemma 4, for two sam-
plesH1, H2 ∈ Ht, we haveL(H1)−L(H2) ≤ ψt−1(H1)−
ψt−1(H2) + ∆t−1 ≤ ψt−1(H∗) + ∆t−1 − ψt−1(H∗) +
∆t−1 = 2∆t−1.

Thus the expected value of sample probability E[pN ] =
EH∼HN

[maxH′∼HN
ψN (H ′)− ψN (HN )] ≤ L(H1) −

L(H2) = 2∆N−1. By N · E[pN ], the expected number
of architectures sampled is at most

O
(√

N(d+ ln (2/δ))
)

(13)
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