
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Materials for
Closed Loop Neural-Symbolic Learning via

Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning

1. Posterior Approximation
In Section 3.2.3, we formulate the m-step back search as
a Metropolis-Hasting sampler to perform sampling from
p′(z|x, y), which is a smoothing of the true posterior distri-
bution p(z|x, y) as shown in Equation 11. Intuitively, as ε
gets smaller, the distance between two distribution p′(z|x, y)
and p(z|x, y) becomes smaller as well. Accordingly, we
have the following lemma proved with Equation 9 and Equa-
tion 11:
Lemma 1.1. Given an small ε, the Kullback–Leibler diver-
gence of p′(z|x, y) from p(z|x, y) is O(ε).

Proof. From the definition of Kullback–Leibler divergence,
we have:

KL(p||p′) =
∑
z

p(z|x, y) log p(z|x, y)
p′(z|x, y)

(1)

=
∑
z

p(z|x, y) log[p(y|z)
p(y|z) + ε

·
ε+

∑
z′ p(y|z′)pθ(z′|x)∑

z′ p(y|z′)pθ(z′|x)
]

(2)

=
∑
z∈Q

pθ(z|x)
C

log
C + ε

(1 + ε)C
(3)

= log
C + ε

(1 + ε)C
(4)

= log(1 +
ε

C
)− log (1 + ε) (5)

where C =
∑
z′ p(y|z′)pθ(z′|x) =

∑
z′∈Q pθ(z

′|x) is the
normalizing constant. With Taylor expansion, we get:

log(1 +
ε

C
) =

ε

C
+O(ε2) (6)

log (1 + ε) = ε+O(ε2) (7)

Then we have:

KL(p||p′) = (
1

C
− 1)ε+O(ε2) = O(ε) (8)

2. Handwritten Formula Recognition
2.1. Grammar for Math Formulas

For the handwritten formula recognition task, we define
the context-free grammar for the mathematical formulas, as

shown in Table 1. This grammar considers only simple arith-
metic operations over single-digit numbers. We compute
the parsed results using a calculator, which is the symbolic
reasoning module in this task.

To be noticed, the proposed method can be extended to
more complex computations by designing more complicated
grammar.

Table 1. The context-free grammar for the mathematical formulas.
G = (V, Σ, R, S)
V= {S, Expression, Term, Factor}
Σ = {+,−,×,÷, 0, 1, ..., 9}.
S is the start symbol.
R = {

S→ Expression
Expression→ Term
Expression→ Expression + Term
Expression→ Expression - Term
Term→ Factor
Term→ Term × Factor
Term→ Term ÷ Factor
Factor→ 0|1|2|3...|9 }

2.2. Data Generation

We generate the synthetic dataset based on CROHME 2019
Offline Handwritten Formula Recognition Task1. First, we
extract all the image patches of symbols from CROHME and
only keep ten digits (0∼9) and four basic operators (+,−,×,
÷). We split these images of symbols into a training symbol
set (80%) and a testing symbol set (20%). Then we generate
formulas by randomly sampling production rules from the
predefined grammar. For the training set, we generate 1K
formulas with length 1 (1 digit, 0 operator), 1K formulas
with length 3 (2 digits, 1 operator), 2K formulas with length
5 (3 digits, 2 operators), and 6K formulas with length 7
(4 digits, 3 operators). For the test set, we generate 200
formulas with length 1, 200 formulas with length 3, 400
formulas with length 5, and 1,200 formulas with length 7.
For each formula in the training/test set, we randomly select
symbol images from the training/test symbol set. In this
way, one symbol image can not exist in both the training set
and the test set. Overall, our dataset contains 10K training
formulas and 2K test formulas. The generated dataset is
also submitted with the code.

1https://www.cs.rit.edu/˜crohme2019/task.html

https://www.cs.rit.edu/~crohme2019/task.html

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Supplementary materials for Neural-Grammar-Symbolic

Figure 1. An illustrative example of the 1-BS process. The priority queue ranks the possible corrections to the original results with visiting
priority, which reflects the potential of changing the current node or its child nodes to correct the wrong answer.

2.3. Training Details

For the proposed Neural-Grammar-Symbolic models, we
use LeNet as the neural perception module and train the
models for 100K iterations using the Adam optimizer with
a fixed learning rate of 5 × 10−4 and a batch size of 64.
For the REINFORCE and reproduced MAPO baselines,
we set the reward decay as 0.99. For more details in the
implementation and reproduction of the experiment results,
please refer to the submitted code.

2.4. Qualitative Examples

Figure 1 shows an illustrative example of the 1-BS process
implemented with a priority queue. Figure 2 shows several
examples of correcting the wrong predictions using the m-
BS algorithms.

3. Neural-Symbolic VQA
3.1. Grammar for CLEVR programs

The grammar model in the neural-symbolic VQA task en-
sures the generated sequence of function modules can form
a valid program, which indicates the inputs and outputs of
these modules can be strictly matched. Table 3 groups all
function modules by the inputs and output types and Table 2
gives the context-free grammar for the CLEVR programs.

3.2. Implementation Details

The structure of the NGS model is shown in Figure 3. To get
the structural scene representations, we train a scene parser
following (Yi et al., 2018). Specifically, Mask-RCNN (He
et al., 2017) is used to generate segment proposals of all
objects in each image. Along with the segmentation mask,
the network also predicts the categorical labels of discrete

Table 2. The context-free grammar for the CLEVR programs.
G = (V, Σ, R, S)
V = {S, ObjectSet, Concept, Integer, Object}
Σ is the set of all modules as listed in Table 3.
S is the start symbol.
R = {

S→ count ObjectSet
S→ equal attribute Concept Concept
S→ exist ObjectSet
S→ greater than Integer Integer
S→ less than Integer Integer
S→ equal integer Integer Integer
S→ query attribute Object
ObjectSet→ scene
ObjectSet→ filter attribute[concept] ObjectSet
ObjectSet→ intersection ObjectSet ObjectSet
ObjectSet→ union ObjectSet ObjectSet
ObjectSet→ relate[RelConcept] Object
ObjectSet→ same attribute Object
Concept→ query attribute Object
Integer→ count ObjectSet
Object→ unique ObjectSet }

intrinsic attributes such as color, material, size, and shape.
The segment for each object is then paired with the orig-
inal image and sent to a ResNet-34 to extract the spacial
attributes such as pose and 3D coordinates. Both networks
of the scene parser are trained on 4,000 generated CLEVR
images with full annotations. Please refer to (Yi et al., 2018)
for more training details of the scene parser.

Instead of the attention-based seq2seq model used by (Yi
et al., 2018), we use a Pointer Network as the question parser.
Considering the small vocabulary of the CLEVR questions,
we can easily build a dictionary to map the keywords in
the question to the corresponding modules. Therefore, for
each question, we can extract a set of functional modules,
and the ground-truth program is a permutation of this set

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Supplementary materials for Neural-Grammar-Symbolic

Figure 2. Examples of correcting the wrong predictions using the proposed m-BS algorithm. Some of the wrong predictions are corrected
with the randomly sampled random walks noted by the yellow arrows. (6) and (8) are the spurious examples mentioned in Section 4.1.2

of modules. In the Pointer Network, both the encoder and
decoder are two-layer LSTMs with 256 hidden units. We
set the dimensions of both the encoder and decoder word
embedding to 300. The Pointer Network works as the neural
perception module in the proposed NGS model. Unlike (Yi
et al., 2018), we do not need to pre-train the question parser
on a small set of ground-truth question-program pairs.

The symbolic reasoning module in this task executes the
generated program on the structural scene representations.
The program executor is implemented as a collection of de-
terministic, generic functions in Python, designed to host all
the functional modules in the CLEVR programs. Each func-
tion is in one-to-one correspondence with a module from the
input program sequence, which has the same representation
as in (Johnson et al., 2017; Yi et al., 2018). The execution of
a program tree starts from the leaf nodes with scene tokens
and continues until the root node, which outputs the final
answer to the question.

Since the set of the functional modules is given for each
question, the 1-step back search algorithm works by switch-
ing two modules that belong to the same group according to

Table 3.

All models are trained with 30K iterations using the Adam
optimizer with a fixed learning rate of 1× 10−5 and a batch
size of 64. For the REINFORCE and MAPO baselines, we
set the reward decay as 0.99.

3.3. Qualitative Examples

Figure 4 shows several illustrative examples of correcting
the wrong programs using the 1-BS model.

References
He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-cnn. In

ICCV, 2017.

Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman, J., Fei-
Fei, L., Lawrence Zitnick, C., and Girshick, R. Inferring and
executing programs for visual reasoning. In ICCV, 2017.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum, J.
Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding. In NeurIPS, 2018.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Supplementary materials for Neural-Grammar-Symbolic

Table 3. Modules in the CLEVR programs. They are grouped by their inputs and output signatures. Modules listed in the same group
(row) can replace each other while keeping the program valid.

Modules Inputs Output Semantics
scene ∅ ObjectSet Return all objects in the scene.
count ObjectSet Integer Count the number of objects in the input object set.
equal attribute Concept, Concept Bool Check if two input concepts equal.
exist ObjectSet Bool Check if the object set is empty.
filter attribute[concept] ObjectSet ObjectSet Filter out a set of objects having the object-level concept
intersection, union ObjectSet, ObjectSet ObjectSet Return the intersection or union of two object sets.
greater than, less than, equal integer Integer, Integer Bool Compare two integers.
query attribute Object Concept Query the attribute (e.g., color) of the input object.
relate[RelConcept], same attribute Object ObjectSet Filter out objects with the relational concept or same attribute.
unique ObjectSet Object Return the unique object in the object set.

Figure 3. The Neural-Grammar-Symbolic VQA model for the CLEVR dataset.

Figure 4. Illustrative examples of correcting the wrong programs using the 1-BS algorithm. ∗ ∗ ∗ denotes the switched modules in the
1-BS algorithm. In the first two simple examples, given the set of the functional modules, only one permutation can form a valid program,
and we do not need to use the back search algorithm. In another two examples, 1-BS successfully finds the correct programs.

