
Closed Loop Neural-Symbolic Learning via
Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning

Qing Li 1 Siyuan Huang 1 Yining Hong 1 Yixin Chen 1 Ying Nian Wu 1 Song-Chun Zhu 1

Abstract
The goal of neural-symbolic computation is to in-
tegrate the connectionist and symbolist paradigms.
Prior methods learn the neural-symbolic models
using reinforcement learning (RL) approaches,
which ignore the error propagation in the sym-
bolic reasoning module and thus converge slowly
with sparse rewards. In this paper, we address
these issues and close the loop of neural-symbolic
learning by (1) introducing the grammar model
as a symbolic prior to bridge neural perception
and symbolic reasoning, and (2) proposing a novel
back-search algorithm which mimics the top-
down human-like learning procedure to propa-
gate the error through the symbolic reasoning
module efficiently. We further interpret the pro-
posed learning framework as maximum likeli-
hood estimation using Markov chain Monte Carlo
sampling and the back-search algorithm as a
Metropolis-Hastings sampler. The experiments
are conducted on two weakly-supervised neural-
symbolic tasks: (1) handwritten formula recog-
nition on the newly introduced HWF dataset;
(2) visual question answering on the CLEVR
dataset. The results show that our approach sig-
nificantly outperforms the RL methods in terms
of performance, converging speed, and data ef-
ficiency. Our code and data are released at
https://liqing-ustc.github.io/NGS.

1. Introduction
Integrating robust connectionist learning and sound sym-
bolic reasoning is a key challenge in modern Artificial Intel-
ligence. Deep neural networks (LeCun et al., 2015a; 1995;
Hochreiter & Schmidhuber, 1997) provide us powerful and
flexible representation learning that has achieved state-of-

1 University of California, Los Angeles, USA. Correspondence
to: Qing Li <liqing@ucla.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. Comparison between the original neural-symbolic model
learned by REINFORCE (NS-RL) and the proposed neural-
grammar-symbolic model learned by back-search (NGS-BS). In
NS-RL, the neural network predicts an invalid formula, causing a
failure in the symbolic reasoning module. There is no backward
pass in this example since it generates zero reward. In contrast,
NGS-BS predicts a valid formula and searches a correction for its
prediction. The neural network is updated using this correction as
the pseudo label.

the-art performances across a variety of AI tasks such as
image classification (Krizhevsky et al., 2012; Szegedy et al.,
2015; He et al., 2016), machine translation (Sutskever et al.,
2014), and speech recognition (Graves et al., 2013). How-
ever, it turns out that many aspects of human cognition, such
as systematic compositionality and generalization (Fodor
et al., 1988; Marcus, 1998; Fodor & Lepore, 2002; Calvo
& Symons, 2014; Marcus, 2018; Lake & Baroni, 2018),
cannot be captured by neural networks. On the other hand,
symbolic reasoning supports strong abstraction and gener-
alization but is fragile and inflexible. Consequently, many
methods have focused on building neural-symbolic models
to combine the best of deep representation learning and
symbolic reasoning (Sun, 1994; Garcez et al., 2008; Bader
et al., 2009; Besold et al., 2017; Yi et al., 2018).

Recently, this neural-symbolic paradigm has been exten-
sively explored in the tasks of the visual question answer-
ing (VQA) (Yi et al., 2018; Vedantam et al., 2019; Mao
et al., 2019), vision-language navigation (Anderson et al.,

https://liqing-ustc.github.io/NGS

Neural-Grammar-Symbolic

2018; Fried et al., 2018), embodied question answering
(Das et al., 2018a;b), and semantic parsing (Liang et al.,
2016; Yin et al., 2018), often with weak supervision. Con-
cretely, for these tasks, neural networks are used to map raw
signals (images/questions/instructions) to symbolic repre-
sentations (scenes/programs/actions), which are then used
to perform symbolic reasoning/execution to generate �nal
outputs. Weak supervision in these tasks usually provides
pairs of raw inputs and �nal outputs, with intermediate sym-
bolic representations unobserved. Since symbolic reasoning
is non-differentiable, previous methods usually learn the
neural-symbolic models by policy gradient methods like
REINFORCE. The policy gradient methods generate sam-
ples and update the policy based on the generated samples
that happen to hit high cumulative rewards. No efforts are
made to improve each generated sample to increase its cu-
mulative reward. Thus the learning has been proved to
be time-consuming because it requires generating a large
number of samples over a large latent space of symbolic
representations with sparse rewards, in the hope that some
samples may be lucky enough to hit high rewards so that
such lucky samples can be utilized for updating the policy.
As a result, policy gradients methods converge slowly or
even fail to converge without pre-training the neural net-
works on fully-supervised data.

To model the recursive compositionality in a sequence of
symbols, we introduce thegrammar model to bridge neural
perception and symbolic reasoning. The structured symbolic
representation often exhibits compositional and recursive
properties over individual symbols in it. Correspondingly,
the grammar models encodesymbolic priorabout composi-
tion rules, thus can dramatically reduce the solution space
by parsing the sequence of symbols into valid sentences. For
example, in the handwritten formula recognition problem,
the grammar model ensures that the predicted formula is
always valid, as shown in Figure 1.

To make the neural-symbolic learning more ef�cient, we pro-
pose a novelback-searchstrategy which mimics human's
ability to learn from failures via abductive reasoning (Mag-
nani, 2009; Zhou, 2019). Speci�cally, the back-search al-
gorithm propagates the error from the root node to the leaf
nodes in the reasoning tree and �nds the most probable
correctionthat can generate the desired output. The correc-
tion is further used as a pseudo label for training the neural
network. Figure 1 shows an exemplar backward pass of
the back-search algorithm. We argue that the back-search
algorithm makes a �rst step towards closing the learning
loop by propagating the error through the non-differentiable
grammar parsing and symbolic reasoning modules. We also
show that the proposed multi-step back-search algorithm
can serve as a Metropolis-Hastings sampler which samples
the posterior distribution of the symbolic representations in
the maximum likelihood estimation in Subsubsection 3.2.3.

We conduct experiments on two weakly-supervised neural-
symbolic tasks: (1) handwritten formula recognition on the
newly introduced HWF dataset (Hand-Written Formula),
where the input image and the formula result are given dur-
ing training, while the formula is hidden; (2) visual question
answering on the CLEVR dataset. The question, image, and
answer are given, while the functional program generated
by the question is hidden. The evaluation results show that
the proposed Neural-Grammar-Symbolic (NGS) model with
back-search signi�cantly outperforms the baselines in terms
of performance, convergence speed, and data ef�ciency. The
ablative experiments also demonstrate the ef�cacy of the
multi-step back-search algorithm and the incorporation of
grammar in the neural-symbolic model.

2. Related Work

Neural-symbolic Integration. Researchers have proposed
to combine statistical learning and symbolic reasoning in the
AI community, with pioneer works devoted to different as-
pects including representation learning and reasoning (Sun,
1994; Garcez et al., 2008; Manhaeve et al., 2018), abduc-
tive learning (Dai & Zhou, 2017; Dai et al., 2019; Zhou,
2019), knowledge abstraction (Hinton et al., 2006; Bader
et al., 2009), knowledge transfer (Falkenhainer et al., 1989;
Yang et al., 2009),etc. Recent research shifts the focus
to the application of neural-symbolic integration, where a
large amount of heterogeneous data and knowledge descrip-
tions are needed, such as neural-symbolic VQA (Yi et al.,
2018; Vedantam et al., 2019; Mao et al., 2019; Li et al.,
2018a;b; 2020), semantic parsing in Natural Language Pro-
cessing (NLP) (Liang et al., 2016; Yin et al., 2018), math
word problem (Lample & Charton, 2019; Lee et al., 2019)
and program synthesis (Evans & Grefenstette, 2018; Kalyan
et al., 2018; Manhaeve et al., 2018). Different from previous
methods, the proposed NGS model considers the compo-
sitionality and recursivity in natural sequences of symbols
and brings together the neural perception and symbolic rea-
soning module with a grammar model.

Grammar Model. Grammar model has been adopted in
various tasks for its advantage in modeling compositional
and recursive structures, like image parsing (Tu et al., 2005;
Han & Zhu, 2005; Zhu et al., 2007; Zhao & Zhu, 2011;
Friesen & Domingos, 2018), video parsing (Gupta et al.,
2009; Qi et al., 2018a; 2020), scene understanding (Huang
et al., 2018b;a; Qi et al., 2018b; Jiang et al., 2018; Chen et al.,
2019), and task planning (Xie et al., 2018). By integrating
the grammar into the neural-symbolic task as a symbolic
prior for the �rst time, the grammar model ensures the de-
sired dependencies and structures for the symbol sequence
and generates valid sentences for symbolic reasoning. Fur-
thermore, it improves the learning ef�ciency signi�cantly by
shrinking the search space with the back-search algorithm.

Neural-Grammar-Symbolic

Policy Gradient. Policy gradient methods like REIN-
FORCE (Williams, 1992) are the most commonly used
algorithm for the neural-symbolic tasks to connect the learn-
ing gap between neural networks and symbolic reason-
ing (Mascharka et al., 2018; Mao et al., 2019; Andreas
et al., 2017; Das et al., 2018b; Bunel et al., 2018; Guu
et al., 2017). However, original REINFORCE algorithm
suffers from large sample estimate variance, sparse rewards
from cold start and exploitation-exploration dilemma, which
lead to unstable learning dynamics and poor data ef�ciency.
Many papers propose to tackle this problem (Liang et al.,
2016; Guu et al., 2017; Liang et al., 2018; Wang et al., 2018;
Agarwal et al., 2019). Speci�cally, Liang et al. (2016) uses
iterative maximum likelihood to �nd pseudo-gold symbolic
representations, and then add these representations to the
REINFORCE training set. Guu et al. (2017) combines the
systematic beam search employed in maximum marginal
likelihood with the greedy randomized exploration of REIN-
FORCE. Liang et al. (2018) proposes Memory Augmented
Policy Optimization (MAPO) to express the expected return
objective as a weighted sum of an expectation over the high-
reward history trajectories, and a separate expectation over
new trajectories. Although utilizing positive representations
from either beam search or past training process, these meth-
ods still cannot learn from negative samples and thus fail
to explore the solution space ef�ciently. On the contrary,
we propose to diagnose and correct the negative samples
through the back-search algorithm under the constraint of
grammar and symbolic reasoning rules. Intuitively speak-
ing, the proposed back-search algorithm traverses around
the negative sample and �nd a nearby positive sample to
help the training.

3. Neural-Grammar-Symbolic Model (NGS)

In this section, we will �rst describe the inference and learn-
ing algorithms of the proposed neural-grammar-symbolic
(NGS) model. Then we provide an interpretation of our
model based on maximum likelihood estimation (MLE)
and draw the connection between the proposed back-search
algorithm and Metropolis-Hastings sampler. We further
introduce the task-speci�c designs in Section 4.

3.1. Inference

In a neural-symbolic system, letx be the input (e.g.an im-
age or question),z be the hidden symbolic representation,
andy be the desired output inferred byz. The proposed
NGS model combines neural perception, grammar parsing,
and symbolic reasoning modules ef�ciently to perform the
inference.

Neural Perception. The neural network is used as a percep-
tion module which maps the high-dimensional inputx to a
normalized probability distribution of the hidden symbolic

representationz:

p� (zjx) = sof tmax (� � (z; x)) (1)

=
exp(� � (z; x))

P
z0 exp(� � (z0; x))

; (2)

where� � (z; x) is a scoring function or a negative energy
function represented by a neural network with parameters� .

Grammar Parsing. Takez as a sequence of individual
symbols: z = (z1; z2; :::; zl); zi 2 � , where� denotes
the vocabulary of possible symbols. The neural network is
powerful at modeling the mapping betweenx andz, but the
recursive compositionality among the individual symbolszi

is not well captured. Grammar is a natural choice to tackle
this problem by modeling the compositional properties in
sequence data.

Take thecontext-free grammar(CFG) as an example. In
formal language theory, a CFG is a type of formal grammar
containing a set of production rules that describe all possible
sentences in a given formal language. Speci�cally, a context-
free grammarG in Chomsky Normal Form is de�ned by a
4-tupleG = (V;� ; R; S), where

� V is a �nite set of non-terminal symbols that can be
replaced by/expanded to a sequence of symbols.

� � is a �nite set of terminal symbols that represent
actual words in a language, which cannot be further ex-
panded. Here� is the vocabulary of possible symbols.

� R is a �nite set of production rules describing the re-
placement of symbols, typically of the formA ! BC
or A ! � , whereA; B; C 2 V and� 2 � . A pro-
duction rule replaces the left-hand side non-terminal
symbols by the right-hand side expression. For ex-
ample,A ! BC j� means thatA can be replaced by
eitherBC or � .

� S 2 V is the start symbol.

Given a formal grammar,parsingis the process of deter-
mining whether a string of symbolic nodes can be accepted
according to the production rules in the grammar. If the
string is accepted by the grammar, the parsing process gen-
erates a parse tree. A parse tree represents the syntactic
structure of a string according to certain CFG. The root
node of the tree is the grammar root. Other non-leaf nodes
correspond to non-terminals in the grammar, expanded ac-
cording to grammar production rules. The leaf nodes are
terminal nodes. All the leaf nodes together form a sentence.

In neural-symbolic tasks, the objective of parsing is to �nd
the most probablez that can be accepted by the grammar:

ẑ = arg max
z2 L (G)

p� (zjx) (3)

Neural-Grammar-Symbolic

whereL(G) denotes the language ofG, i.e., the set of all
valid z that accepted byG.

Traditional grammar parsers can only work on symbolic
sentences. Qi et al. (2018a) proposes a generalized version
of Earley Parser, which takes a probability sequence as input
and outputs the most probable parse. We use this method to
compute the best parsêz in Equation 3.

Symbolic Reasoning. Given the parsed symbolic represen-
tationẑ, the symbolic reasoning module performs determin-
istic inference witĥz and the domain-speci�c knowledge
� . Formally, we want to �nd the entailed sentenceŷ given
ẑ and� :

ŷ : ẑ ^ � j= ŷ (4)

Since the inference process is deterministic, we re-write the
above equation as:

ŷ = f (ẑ; �) ; (5)

wheref denotes complete inference rules under the domain
� . The inference rules generate a reasoning path�̂ that
leads to the predicted outputŷ from ẑ and� . The reasoning
path�̂ has a tree structure with the root nodeŷ and the leaf
nodes from̂z or � .

3.2. Learning

It is challenging to obtain the ground truth of the symbolic
representationz, and the rules (i.e.grammar rules and the
symbolic inference rules) are usually designed explicitly by
human knowledge. We formulate the learning process as
a weakly-supervised learning of the neural network model
� where the symbolic representationz is missing, and the
grammar modelG, domain-speci�c language� , the sym-
bolic inference rulesf are given.

3.2.1. 1-STEP BACK-SEARCH (1-BS)

As shown in Figure 1, previous methods using policy gra-
dient to learn the model discard all the samples with zero
reward and learn nothing from them. It makes the learn-
ing process inef�cient and unstable. However, humans can
learn from the wrong predictions bydiagnosingandcor-
rectingthe wrong answers according to the desired outputs
with top-down reasoning. Based on such observation, we
propose a 1-step back-search (1-BS) algorithm which can
correctwrong samples and use the corrections as pseudo
labels for training. The1-BS algorithm closes the learn-
ing loop since the error can also be propagated through the
non-differentiable grammar parsing and symbolic reasoning
modules. Speci�cally, we �nd the most probable correction
for the wrong prediction by back-tracking the symbolic rea-
soning tree and propagating the error from the root node
into the leaf nodes in a top-down manner.

The1-BS algorithm is implemented with a priority queue as
shown in Algorithm 1. The1-BS gradually searches down
the reasoning treê� starting from the root nodeS to the
leaf nodes. Speci�cally, each element in the priority queue
represents a valid change, de�ned as a 3-tuple(A; � A ; p):

� A 2 V [� is the current visiting node.
� � A is the expected value on this node, which means if

the value ofA is changed to� A , ẑ will execute to the
ground-truth answery, i.e.y = f (ẑ(A ! � A); �)) .

� p is the visiting priority, which re�ects the potential of
changing the value ofA.

Formally, the priority for this change is de�ned as the prob-
ability ratio:

p(A ! � A) =

(
1� p(A)

p(A) ; if A =2 �
p(� A)
p(A) ; if A 2 � & � A 2 � :

(6)

wherep(A) is calculated as Equation 1,ifA 2 � ; otherwise,
it is de�ned as the product of the probabilities of all leaf
nodes inA. If A 2 � and � A =2 � , it means we need
to correct the terminal node to a value that is not in the
vocabulary. Therefore, this change is not possible and thus
should be discarded.

The error propagation through the reasoning tree is achieved
by asolve(B; A; � A j� ; G) function, which aims at com-
puting the expected value� B of the child nodeB from the
expected value� A of its parent nodeA, i.e., �nding � B

satisfyingf (ẑ(B ! � B); �)) = f (ẑ(A ! � A); �)) = y.
Please refer to thesupplementary materialfor some illustra-
tive examples of the1-BS process.

In the1-BS, we make a greedy assumption that only one
symbol can be replaced at a time. This assumption implies
only searching the neighborhood ofẑ at one-step distance.
In Subsubsection 3.2.3, the1-BS is extended to the multi-
step back-search algorithm, which allows searching beyond
one-step distance.

Algorithm 1 1-step back-search (1-BS)

1: Input : ẑ; S; y
2: q = PriorityQueue ()
3: q:push(S; y;1)
4: while A; � A ; p = q:pop() do
5: if A 2 � then
6: z� = ẑ(A ! � A)
7: return z�

8: for B 2 child (A) do
9: � B = solve(B; A; � A j� ; G)

10: q:push(B; � B ; p(B ! � B))
11: return ?

Neural-Grammar-Symbolic

3.2.2. MAXIMUM L IKELIHOOD ESTIMATION

Sincez is conditioned onx andy is conditioned onz, the
likelihood for the observation(x; y) marginalized overz is:

p(yjx) =
X

z

p(y; zjx) =
X

z

p(yjz)p� (zjx): (7)

The learning goal is to maximize the observed-data log
likelihoodL(x; y) = log p(yjx).

By taking derivative, the gradient for the parameter� is
given by

r � L(x; y) = r � logp(yjx)

=
1

p(yjx)
r � p(yjx)

=
X

z

p(yjz)p� (zjx)
P

z0 p(yjz0)p� (z0jx)
r � logp� (zjx)

= Ez� p(zjx;y) [r � logp� (zjx)]; (8)

wherep(zjx; y) is the posterior distribution ofz givenx; y.
Sincep(yjz) is computed by the symbolic reasoning module
and can only be 0 or 1,p(zjx; y) can be written as:

p(zjx; y) =
p(yjz)p� (zjx)

P
z0 p(yjz0)p� (z0jx)

=

(
0; for z 62Q

p� (zjx)P
z 02 Q p� (z0j x) ; for z 2 Q (9)

whereQ = f z : p(yjz) = 1 g = f z : f (z; �) = yg is the
set ofz that generatesy. UsuallyQ is a very small subset
of the whole space ofz.

Equation 9 indicates thatz is sampled from the posterior
distributionp(zjx; y), which only has non-zero probabilities
onQ, instead of the whole space ofz. Unfortunately, com-
puting the posterior distribution is not ef�cient as evaluating
the normalizing constant for this distribution requires sum-
ming over all possiblez, and the computational complexity
of the summation grows exponentially.

Nonetheless, it is feasible to design algorithms that sam-
ple from this distribution using Markov chain Monte Carlo
(MCMC). Sincez is always trapped in the modes where
p(zjx; y) = 0 , the remaining question is how we can sam-
ple the posterior distributionp(zjx; y) ef�ciently to avoid
redundant random walk at states with zero probabilities.

3.2.3.m-BS AS METROPOLIS-HASTINGS SAMPLER

In order to perform ef�cient sampling, we extend the 1-
step back search to a multi-step back search (m-BS), which
serves as a Metropolis-Hastings sampler.

A Metropolis-Hastings sampler for a probability distribution
� (s) is a MCMC algorithm that makes use of a proposal

Algorithm 2 m-step back-search (m-BS)

1: Hyperparameters: T, �
2: Input : ẑ; y
3: z(0) = ẑ
4: for t 0 to T � 1 do
5: z� = 1 -BS(zt ; y)
6: drawu � U (0; 1)
7: if u � � andz� 6= ? then
8: zt +1 = z�

9: else
10: zt +1 = RANDOMWALK (zt)
11: return zT

12:
13: function RANDOMWALK (zt)
14: samplez� � g(�jzt)
15: compute acceptance ratioa = min (1; p� (z � j x)

p� (z t j x))
16: drawu � U (0; 1)

17: zt +1 =
�

z� ; if u � a
zt ; otherwise:

distributionQ(s0js) from which it draws samples and uses
an acceptance/rejection scheme to de�ne a transition kernel
with the desired distribution� (s). Speci�cally, given the
current states, a samples0 6= s drawn fromQ(s0js) is
accepted as the next state with probability

A(s; s0) = min
�

1;
� (s0)Q(sjs0)
� (s)Q(s0js)

�
: (10)

Since it is impossible to jump between the states with zero
probability, we de�nep0(zjx; y) as a smoothing ofp(zjx; y)
by adding a small constant� to p(yjz):

p0(zjx; y) =
[p(yjz) + �]p� (zjx)

P
z0[p(yjz0) + �]p� (z0jx)

(11)

As shown in Algorithm 2, in each step, them-BS proposes
1-BS search with probability of� (� < 1) and random walk
with probability of1 � � . The combination of1-BS and
random walk helps the sampler to traverse all the states with
non-zero probabilities and ensures the Markov chain to be
ergodic.

Random Walk: De�ning a Poisson distribution for the
random walk as

g(z1jz2) = Poisson(d(z1; z2); �); (12)

whered(z1; z2) denotes the edit distance betweenz1; z2,
and� is equal to the expected value ofd and also to its
variance.� is set as 1 in most cases due to the preference
for a short-distance random walk. The acceptance ratio for

Neural-Grammar-Symbolic

sampling az� from g(�jzt) is a = min (1; r (zt ; z�)) , where

r (zt ; z�) =
q(z�)(1 � �)g(zt jz�)
q(zt)(1 � �)g(z� jzt)

=
p� (z� jx)
p� (zt jx)

: (13)

1-BS: While proposing thez� with 1-BS, we search az�

that satis�esp(yjz�) = 1 . If z� is proposed, the acceptance
ratio for isa = min (1; r (zt ; z�)) , where

r (z(t) ; z�) =
q(z�)[0 + (1 � �)g(zt jz�)]

q(zt) � [� + (1 � �)g(z� jz(t))]
(14)

=
1 + �

�
�

p� (z� jx)
p� (zt jx)

�
(1 � �)g(zt jz�)

� + (1 � �)g(z� jzt)
:

q(z) = [p(yjz) + �]p� (zjx) is denoted as the numerator of
p0(zjx; y). With an enough small� , 1+ �

� � 1, r (zt ; z�) > 1,
we will always acceptz� .

Notably, the1-BS algorithm tries to transit the current state
into a state wherez� = 1 -BS(zt ; y), making movements in
directions of increasing the posterior probability. Similar to
the gradient-based MCMCs like Langevin dynamics (Duane
& Kogut, 1986; Welling & Teh, 2011), this is the main
reason that the proposed method can sample the posterior
ef�ciently.

3.2.4. COMPARISON WITH POLICY GRADIENT

Since grammar parsing and symbolic reasoning are non-
differentiable, most of the previous approaches for neural-
symbolic learning use policy gradient like REINFORCE
to learn the neural network. Treatp� (zjx) as the policy
function and the reward givenz; y can be written as:

r (z; y) =
�

0; if f (z; �) 6= y:
1; if f (z; �) = y:

(15)

The learning objective is to maximize the expected reward
under current policyp� :

R(x; y) = Ez� p� (zjx)) r (z; y) =
X

z

p� (zjx)r (z; y):

(16)Then the gradient for� is:

r � R(x; y) =
X

z

r (z; y)p� (zjx)r � logp� (zjx)

= Ez� p� (zjx)) [r (z; y)r � logp� (zjx)]: (17)
We can approximate the expectation using one sample at
each time, and then we get the REINFORCE algorithm:

r � = r (z; y)r � logp� (zjx); z � p� (zjx)

=
�

0; if f (z; �) 6= y:
r � logp� (zjx); if f (z; �) = y:

(18)

Equation 18 reveals the gradient is non-zero only when
the sampledz satis�esf (z; �) = y. However, among the
whole space ofz, only a very small portion can generate
the desiredy, which implies thatthe REINFORCE will
get zero gradients from most of the samples. This is why
the REINFORCE method converges slowly or even fail to
converge, as also shown from the experiments in Section 4.

4. Experiments and Results

4.1. Handwritten Formula Recognition

4.1.1. EXPERIMENTAL SETUP

Task de�nition . The handwritten formula recognition task
tries to recognize each mathematical symbol given a raw
image of the handwritten formula. We learn this task in a
weakly-supervised manner, where raw image of the hand-
written formula is given as input datax, and the computed
results of the formulas is treated as outputsy. The symbolic
representationz that represent the ground-truth formula
composed by individual symbols is hidden. Our task is
to predict the formula, which could further be executed to
calculate the �nal result.

HWF Dataset. We generate the HWF dataset based on the
CROHME 2019 Of�ine Handwritten Formula Recognition
Task1. First, we extract all symbols from CROHME and
only keep ten digits (0� 9) and four basic operators (+ ,� ,� ,
�). Then we generate formulas by sampling from a pre-
de�ned grammar that only considers arithmetic operations
over single-digit numbers. For each formula, we randomly
select symbol images from CROHME. Overall, our dataset
contains 10K training formulas and 2K test formulas.

Evaluation Metrics. We report both the calculation accu-
racy (i.e.whether the calculation of predicted formula yields
to the correct result) and the symbol recognition accuracy
(i.e.whether each symbol is recognized correctly from the
image) on the synthetic dataset.

Models. In this task, we use LeNet (LeCun et al., 2015b)
as the neural perception module to process the handwritten
formula. Before feeding into LeNet, the original image
of an formula is pre-segmented into a sequence of sub-
images, and each sub-image contains only one symbol. The
symbolic reasoning module works like a calculator, and
each inference step computes the parent value given the
values of two child nodes (left/right) and the operator. The
solve(B; A; � A) function in 1-step back-search algorithm
works in the following way for mathematical formulas:

� If B is A's left or right child, we directly solve the equa-
tion � B

L
childR (A) = � A or childL (A)

L
� B =

� A to get� B , where
L

denotes the operator.

1https://www.cs.rit.edu/ ~crohme2019/task.html

