
Supplementary Materials

A Preliminaries

Before starting the proofs, we first introduce some preliminaries on the constrained convex optimization
problem. Assume f(x), ci(x), and hj(x) are continuous differentiable function define on Rn, consider
the constrained convex optimization problem defined as follows:

min
x∈Rn

f(x)

s.t. ci(x) ≤ 0, i = 1, 2, · · · , k
hj(x) = 0, j = 1, 2, · · · , l

(1)

The optimal solutions for above problem are given by the Lagrange Multiplier approach , as shown
in the following theorem:

Theorem 1. Assume f(x) and ci(x) are convex, hj(x) are affine, and ci are strictly feasible (there
exists one x satisfying ci(x) < 0 for all i). Define the Lagrange function as:

L(x, α, β) = f(x) +

k∑
i=1

αici(x) +

l∑
j=1

βjhj(x),

where α ≥ 0. Then the the following conditions are both sufficient and necessary for x to be a solution
in problem 1.

∇xL(x∗, α∗,β∗) = 0

∇αL(x∗, α∗,β∗) = 0

∇βL(x∗, α∗,β∗) = 0

α∗i ci(x
∗) = 0, i = 1, 2, · · · , k

ci(x
∗) ≤ 0, i = 1, 2, · · · , k
α∗i ≥ 0, i = 1, 2, · · · , k

hj(x
∗) = 0, j = 1, 2, · · · , k

(2)

The conditions in Equation 2 are called the Karush-Kuhn-Tucker(KKT) conditions.

B Proof of Theorem 1

For property 1, from U(Q′)− U(Q) = εf(Pi)− εf(Pj) = ε[f(Pi)− f(Pj)] > 0, we get f(Pi) > f(Pj).
We then get the conclusion by setting x1 = Pi and x2 = Pj .

For property 2, V (Q′)−V (Q) = [g(Qi+ε)+g(Qj−ε)]− [g(Qi)+g(Qj)] < 0 is true for any Qi > Qj .
Denote C = Qi +Qj and r(x) = g(x) + g(C − x), then we have V (Q′)− V (Q) = r(Qi + ε)− r(Qi) < 0
for any Qi, ε. Since 0 < Qi < Qi + ε < 1, we need r′(x) < 0 for x ∈ (0, 1). Then, since r′(x) =
g′(x) − g′(C − x) < 0 is true for any 0 < C − x < x < 1. Set x1 = C − x and x2 = x and we get
g′(x1) < g′(x2) for any x1 > x2 > 0 and x1 + x2 = Qi +Qj ≤ 1.

C Lemmas

We give two lemmas to support the proof of Theorem 2 and Theorem 3.
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C.1 Lemma 1

Lemma 1. If Q is a Pareto-optimum, then the following conditions are satisfied: if Pi > Pj, then
Qi ≥ Qj; if Pi = Pj, then Qi = Qj.

If Pi > Pj , assume Qi < Qj , we can construct Q′ where Q′k = Qk for all k 6= i, j and Q′i = Qj , Q
′
j =

Qi. As such, V (Q′) = V (Q) but U(Q′) − U(Q) = (Qj − Qi)[f(Pi) − f(Pj)] > 0. This means Q is
dominated by Q′, which conflicts with the fact that Q is a Pareto-optimum. So Qi ≥ Qj .

If Pi = Pj , assume Qi 6= Qj , and we can further assume Qi > Qj . Again we construct Q′

where Q′k = Qk for all k 6= i, j and Q′i = Q′j =
Qi+Qj

2 . Surely we have U(Q′) = U(Q), and

V (Q′)− V (Q) = 2g(
Qi+Qj

2 )− g(Qi)− g(Qj). Since g is strictly concave, we have V (Q′)− V (Q) > 0,
which means Q is dominated by Q′. This causes confliction, so Qi = Qj .

C.2 Lemma 2

Lemma 2. Assume α ∈ [0, 1) and Ψ(Q) = αU(Q)+(1−α)V (Q), then the distribution Q that maximize
Ψ(Q) satisfies Qi = ĝ′−1[w · f(Pi) + b], and w = α

α−1 .

Define the optimization problem as follows:

min
Q
−α · U(Q)− (1− α)V (Q)

s.t. 1−
N∑
i=1

Qi = 0

∀i, −Qi ≤ 0

Again we first check that the prerequisites in KKT are all satisfied. −U(Q) is linear and −V (Q) is

convex w.r.t. Q; 1−
∑N
i=1Qi is affine w.r.t. Q; since all Qi can be positive, so the inequalities are all

strictly feasible.
The Lagrange function is:

L(Qi, λ, ξi) = −α
N∑
i=1

Qif(Pi)− (1− α)

N∑
i=1

g(Qi) + λ(1−
N∑
i=1

Qi)−
N∑
i=1

ξiQi, ξ ≥ 0

Apply KKT and we get the following conditions for a optimal solution:

∀i, ∂L

∂Qi
= −αf(Pi)− (1− α)g′(Qi)− λ− ξi = 0,

∀i, −ξiQi = 0

For Qi 6= 0, there is ξi = 0, so

Qi = g′−1[
α

α− 1
f(Pi) +

λ

α− 1
];

for Qi = 0, there is ξi > 0, so
α

α− 1
f(Pi) +

λ

α− 1
> g′(0).

Denote w = α
α−1 and b = λ

α−1 and combine the two cases together, we get:

Qi = ĝ′−1[w · f(Pi) + b], w ≤ 0,

The above derivation is both sufficient and necessary, so we finished the proof.

D Proof of Theorem 2

We give the proofs for three conclusions individually.
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D.1 Conclusion 1

Here we only consider the case with U(Q) 6= maxQ U(Q), and the case where U(Q) = maxQ U(Q) will
be incorporated into conclusion 3. We try to find a distribution Q′ with the highest diversity while
quality is not lower than Q. Define a convex optimization problem as follows:

min
Q′
−V (Q′)

s.t. U(Q)− U(Q′) ≤ 0

1−
N∑
i=1

Q′i = 0

∀i, −Q′i ≤ 0

For Q to be a Pareto-optimum, it’s necessary for Q′ = Q to be a solution of above problem. Thus we
try to solve this problem next.

We first check that the prerequisites in KKT are all satisfied. −V (Q′) is convex w.r.t. Q′; 1−
∑N
i=1Q

′
i

is affine w.r.t. Q′; U(Q)− U(Q′) and −Q′i are convex(linear) w.r.t Q′; since all Q′i can be positive and
U(Q) 6= maxQ U(Q), so the inequalities are all strictly feasible.

The Lagrange function is:

L(Q′i, λ, η, ξi) = −
N∑
i=1

g(Q′i) + λ(1−
N∑
i=1

Q′i) + η

N∑
i=1

(Qi −Q′i)f(Pi)−
N∑
i=1

ξiQ
′
i, η, ξ ≥ 0

Apply KKT and we get the following conditions for a optimal solution:

∀i, ∂L

∂Q′i
= −g′(Q′i)− λ− ηf(Pi)− ξi = 0,

η[U(Q)− U(Q′)] = 0,

∀i, −ξiQ′i = 0

Since we need Q′ = Q to be a solution, so

∀i, −g′(Qi)− λ− ηf(Pi)− ξi = 0,

∀i, −ξiQi = 0

For Qi 6= 0, there is ξi = 0, so Qi = g′−1[−ηf(Pi)−λ]; for Qi = 0, there is ξi > 0, so −ηf(Pi)−λ > g′(0).
Denote w = −η and b = −λ and combine the two cases together, we get:

Qi = ĝ′−1[w · f(Pi) + b], w ≤ 0,

where

ĝ′−1(x) =

{
g′−1(x) if x < g′(0),
0 if x ≥ g′(0).

Now we get a necessary condition for Q to be a Pareto-optimum. To make it sufficient, we still require
that for any two distributions satisfying this form, no one could dominate another. This property can
be proved by combining conclusion 2 and 3.

D.2 Conclusion 2

We separate the proof into two parts: (1) b is correspondent to w; (2) the monotonicity of b w.r.t. w.
(1) The sum of all Qi should be 1. Denote

T (w, b) =

N∑
i=1

ĝ′−1[w · f(Pi) + b].

Since g′(x) is strictly monotonically decreasing, so T (w, b) is monotonically non-increasing w.r.t. b. If
T (w, b) > 0, there would be a term which is strictly monotonically decreasing w.r.t. b, under which
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condition T (w, b) is strictly monotonically decreasing w.r.t. b. Also, T (w, b) is continuous w.r.t. b since
g′−1 is continuous. When

b = g′(0)− w · f(max
i
Pi),

there is
w · f(Pi) + b ≥ w · f(max

i
Pi) + b = g′(0),

so T (w, b) = 0; when

b = g′(
1

N
)− w · f(min

i
Pi),

there is

w · f(Pi) + b ≤ w · f(min
i
Pi) + b = g′(

1

N
),

so T (w, b) ≥ 1. From above analysis, the value of T can reach 0 or be greater than 1. So combining
the monotonicity of T , there exists and only one b that satisfies T (w, b) = 1, leading to a rational
distribution.

(2) Define T (w, b) =
∑N
i=1 ĝ

′−1[w · f(Pi) + b(w)] as above. Since T (w, b) represents the total
probability of a distribution, so there should be T (w, b) ≡ 1, thus dT

dw = 0.

dT

dw
=
∑
i∈S

f(Pi) + b′(w)

g′′{g′−1[w · f(Pi) + b(w)]}
,

where S = {i|w · f(Pi) + b(w) < g′(0)}. By the condition dT
dw = 0, we get

b′(w) = −
∑
i∈S

f(Pi)
g′′{g′−1[w·f(Pi)+b(w)]}∑

i∈S
1

g′′{g′−1[w·f(Pi)+b(w)]}
.

Since g′′(x) < 0, so if f(x) < 0 for all x ∈ [0, 1], we can get b′(w) > 0, thus b is strictly monotonically
increasing w.r.t. w. Similarly, if f(x) > 0 for all x ∈ [0, 1], we can get b′(w) < 0, thus b is strictly
monotonically decreasing w.r.t. w.

D.3 Conclusion 3

We also separate the proof into two parts: (1) the uniqueness of Q(w); (2) the monotonicity of U and
V w.r.t. w.

(1) Since P is not uniform, so we can denote B, Pm1 , Pm2 as they are in the theorem. According to
Lemma 1, since Pm1 is the largest one, so the corresponding Qm1 is also the largest one, which means

Qm1 = ĝ′−1[w · f(Pm1) + b] > 0.

Thus we get
w · f(Pm1

) + b < g′(0).

At the same time, because we can get Qi = Qm1
if Pi = Pm1

, so we can sum up all the largest Qi and
get

M ·Qm1 ≤
N∑
i=1

Qi = 1,

we can get

w · f(Pm1
) + b ≥ g′( 1

M
). (3)

Consider the case where w ≥ B, we first prove that w · f(Pm2
) + b ≤ g′(0). Assume

w · f(Pm2
) + b > g′(0), (4)

then Qm2
= 0, and there is Qi = 0 for any i satisfying Pi ≤ Pm2

. As a result, there should be Qi = 1
M

for all i satisfying Pi = Pm1 , which means

w · f(Pm1) + b = g′(
1

M
). (5)
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Subtract Equation 5 by Equation 4, we get

w · [f(Pm1
)− f(Pm2

)] < g′(
1

M
)− g′(0),

so

w <
g′( 1

M )− g′(0)

f(Pm1
)− f(Pm2

)
= B.

This contradict with the fact that w ≥ B. Thus we have w · f(Pm2
) + b ≤ g′(0).

Combining the above conclusions, for any w1, w2 ∈ [B, 0], assume Q(w1) = Q(w2), then

w1 · f(Pm1
) + b1 = w2 · f(Pm1

) + b2,

w1 · f(Pm2
) + b1 = w2 · f(Pm2

) + b2.

As Pm1
6= Pm2

, so w1 = w2, causing contradiction. Thus we have Q(w1) 6= Q(w2).
For any w ≤ B, assume

w · f(Pm2) + b < g′(0). (6)

By subtracting Equation 3 and Equation 6, we get

w · [f(Pm1
)− f(Pm2

)] > g′(
1

M
)− g′(0),

so

w >
g′( 1

M )− g′(0)

f(Pm1
)− f(Pm2

)
= B.

This causes contradiction, so the above assumption does not hold. Thus we have w · f(Pm2
) + b ≥ g′(0),

which means Qm2 = 0. Borrowing the proof above, we know that Qi = 1
M for all i satisfying Pi = Pm1 .

This is a trivial Pareto-optimal case where U(Q) = maxQ U(Q). Now we know the distribution Q is
fixed and does not change as w changes, so for any w1, w2 ≤ B, there is Q(w1) = Q(w2).

(2) For the expression of Qi, since f and g′ are both continuous and monotonic, so it is easy to
know that Qi is continuous w.r.t. w, then U(Q(w)) and V (Q(w)) are both continuous w.r.t. w. We
just need to prove the monotonicity.

Assume B ≤ w1 < w2 ≤ 0, the goal is to prove that U(Q(w1)) > U(Q(w2)) and V (Q(w1)) <
V (Q(w2)). According to Lemma 2, w1 and w2 have their corresponding α1 = w1

w1−1 and α2 = w2

w2−1 ,
and α1 > α2. Since Q(w) is the optimal solution for problem αU(Q) + (1 − α)V (Q), and Q(w1) is
different with Q(w2), so the following inequalities hold:

α1U(Q(w1)) + (1− α1)V (Q(w1)) > α1U(Q(w2)) + (1− α1)V (Q(w2)),

α2U(Q(w1)) + (1− α2)V (Q(w1)) < α2U(Q(w2)) + (1− α2)V (Q(w2)).

Subtracting the first equation by the second one, we get

(α1 − α2)[(U(Q(w1))− U(Q(w2)))− (V (Q(w1))− V (Q(w2)))] > 0.

As α1 > α2, so
U(Q(w1))− U(Q(w2)) > V (Q(w1))− V (Q(w2)).

Because Q(w1) and Q(w2) are both Pareto-optima, there quality and diversity should satisfy one of
the following: U(Q(w1)) > U(Q(w2)), V (Q(w1)) < V (Q(w2)) or U(Q(w1)) < U(Q(w2)), V (Q(w1)) >
V (Q(w2)). With the derived restriction U(Q(w1))− U(Q(w2)) > V (Q(w1))− V (Q(w2)), we know the
first one holds, that is U(Q(w1)) > U(Q(w2)) and V (Q(w1)) < V (Q(w2)).

E Proof of Theorem 3

The requirement that Q = P being a Pareto-optimum is equivalent to the following condition: for any
P , there exist w0 ≤ 0 and b0 that for any i, there is

Pi = ĝ′−1[w0 · f(Pi) + b0].
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Figure 1: Illustration of the Pareto-frontier on a random toy categorical distribution with size 20. The
ground truth distribution is under the frontier curve. Left: Pair LL with NRR. Right: Pair CR with
SE.

This means, for any Pi > 0, there is w0 · f(Pi) + b0 = g′(Pi). Since f and g′ are both continuous, so

w0 · f(0) + b0 − g′(0) = lim
Pi→0

w0 · f(Pi) + b0 − g′(Pi) = 0.

We can see w0 · f(Pi) + b0 = g′(Pi) is also true for Pi = 0. By solving this differential equation, we get

g(x) = w0

∫ x

0

f(u)du+ b0x.

Here b0 can be any value because Pi = g′−1[w0 · f(Pi) + b0] always lead to a plausible distribution
P . Under this condition, we know that Q = P is the only distribution that maximize Ψ(Q) =
αU(Q) + (1− α)V (Q) where α = w0

w0−1 according to Lemma 2. With above conclusions, it is easy to
check that D(P ||Q) = Ψ(P ) − Ψ(Q) ≥ 0 and D(P ||Q) = 0 if and only if Q = P , thus D(P ||Q) is a
divergence metric.

F Pareto-frontier with Mismatched Metrics

We show in Figure 1 that the point Q = P is under the Pareto-frontier curve when quality and diversity
metrics are not matched, i.e. the condition in Theorem 3 is not satisfied. We use the same toy dataset,
but pair LL with NRR and CR with SE. Note that there is always a gap between the star and the
curve, indicating that the real distribution lies on neither of the two Pareto-frontiers.

G Additional Information for Experiments

G.1 Experiments on Synthetic Data

The probabilities of synthetic ground truth distributions are shown in Figure 2. We use different
standard deviations to get different kind of distributions. Distribution with σ = 0.5 is more flat and of
higher entropy, and distribution with σ = 2.0 is more sharp and of lower entropy.

We show the training curve of the optimization process used on synthetic data in Figure 3. Learning
rates are adjusted according to each process, so as to find a best distribution. Points are neglected if
V (Q) ≤ V (P ) or U(Q) ≤ U(P ), i.e. they fail to dominate the ground truth distribution.

We show the correlation between CR/NRR/CND and quality/diversity/divergence on synthetic data,
respectively. We use the well-defined Pareto-frontier under LL-SE in text space as target models, i.e.
Qi ∝ P βi . As β decreases, the corresponding Pareto-optimum becomes more close to uniform distribution,
so that quality decreases and diversity increases according to Theorem 2, and minimal divergence is
taken when β = 1 according to Theorem 3. We plot the curves of BLEU-NSBLEU, CR-NRR, and CND
in Figure 4. We can see CR/NRR/CND can properly reflect quality/diversity/divergence, respectively.
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Figure 2: The log-probabilities of three synthetic ground truth distributions used in our experiments,
shown in descending order.

Figure 3: The optimization curve of Quality-Discrepancy for BLEU-NSBLEU metric pair on synthetic
data with different standard deviations, σ = 0.5, 1.0, 2.0 from left to right.

G.2 Experiments on Real Text Data

For MSCOCO dataset, we remove words with frequency lower than 20, as well as sentences containing
them. The vocabulary size is 5,473, and maximum text length is 32. Sentences longer than 32 are also
removed, and we get a total number of 530,093 sentences. We randomly sample 50,000 sentences as
candidate set, 50,000 sentences as reference set, and another 200,000 sentences for training data of the
RNNLM.

For WMT dataset, we use the Europarl-v7 part. We remove words with frequency lower than 400,
as well as sentences containing them. The vocabulary size is 6,655, and maximum text length is 50.
Sentences longer than 50 or shorter than 20 are also removed, and we get a total number of 475,662
sentences. We again randomly sample 50,000 sentences as candidate set, 50,000 sentences as reference
set, and another 200,000 sentences for training data of the RNNLM.

Figure 4: Evaluation of BLEU-NSBLEU, CR-NRR, and CND on synthetic data with σ = 1.0. Test
models are Pareto-optima parameterized by β under LL-SE metric pair.

7


	Preliminaries
	Proof of Theorem 1
	Lemmas
	Lemma 1
	Lemma 2

	Proof of Theorem 2
	Conclusion 1
	Conclusion 2
	Conclusion 3

	Proof of Theorem 3
	Pareto-frontier with Mismatched Metrics
	Additional Information for Experiments
	Experiments on Synthetic Data
	Experiments on Real Text Data


