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Abstract
We tackle the problem disentangling the latent
space of an autoencoder in order to separate la-
belled attribute information from other character-
istic information. This then allows us to change
selected attributes while preserving other informa-
tion. Our method, matrix subspace projection, is
much simpler than previous approaches to latent
space factorisation, for example not requiring mul-
tiple discriminators or a careful weighting among
their loss functions. Furthermore our new model
can be applied to autoencoders as a plugin, and
works across diverse domains such as images or
text. We demonstrate the utility of our method
for attribute manipulation in autoencoders trained
across varied domains, using both human eval-
uation and automated methods. The quality of
generation of our new model (e.g. reconstruction,
conditional generation) is highly competitive to a
number of strong baselines.

1. Introduction
We investigate the problem of manipulating multiple at-
tributes of data samples. This can be applied to image data,
for example to manipulate a picture of a face to add a beard,
change gender, or age. It can also be applied to text, for ex-
ample to change the style or sentiment of a text. We assume
that we have a training dataset where attributes are labelled.
However there is an unsupervised aspect because we do
not have samples of the same individual with different at-
tribute combinations, e.g., the same person with and without
a beard. Furthermore the training samples have some at-
tribute combinations that are highly correlated, while other
combinations are completely absent; e.g., in the CelebA
dataset blond hair and earrings are highly correlated with
female (Torfason et al., 2016), while a female with beard is
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absent. Nevertheless we would like our system to somehow
isolate the explanatory factors in pixel space, to understand,
e.g., that blond hair corresponds only to colour changes to
hair pixels, and no change elsewhere in the face.

This challenge of isolating multiple explanatory factors
poses interesting problems for generative models. In im-
ages of faces for example, even if the training data has no
bearded lady, a good generative model should be able to
‘imagine’ novel examples that combine attributes in ways
not present in training data. As noted by Higgins et al.
(2016) “Models are unable to generalise to data outside of
the convex hull of the training distribution . . . unless they
learn about the data generative factors and recombine them
in novel ways.” Ideally we should fully disentangle and
isolate the data generative factors, so that we can represent
the generative factors of a sample with a vector that has one
part labelled attribute information, and another part with
the other characteristic information of the sample. This is
in a small way part of a general trend to try to move deep
neural network research towards explanatory models of the
world (LeCun, 2013; Lake et al., 2016; Yuille & Liu, 2018),
which requires disentanglement. The problem is important
because isolating explanatory factors is a way to overcome
the combinatorial explosion of required training examples
if such factors are not isolated (Yuille & Liu, 2018).

A typical approach to the problem uses an autoencoder (AE)
which encodes a given input (e.g. picture, text, etc.) into a
latent vector, and then restores (decodes) the latent vector to
the given input (Lample et al., 2017; Hu et al., 2017; Xiao
et al., 2018; Li et al., 2019). The latent vector contains the
attribute information as well as other characteristic informa-
tion of the input. If one can change the attribute information
in the latent space, then one can generate examples with the
altered attributes. The difficulty here is twofold: (1) learn
a latent space representation which separates the attributes
from all other characteristic information, and (2) fully dis-
entangle the attributes. If we fail in the separation part,
then efforts to generate with specific attributes may conflict
with other information in the latent space (as in Kingma
et al. (2014) etc., see §2). If we fail in the second part then
examples generated with specified attributes will also be
contaminated with spurious attributes (see Fig. 1 Left).

Many recent approaches make use of auxiliary neural net-
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Figure 1. Left: from RelGAN (Wu et al., 2019), where the only
attribute changed is hair colour, but we see significant changes in
skin colour, eyebrows, eyes, and lips. Right: from Fader (Lample
et al., 2017), where female was changed to male, but female eye-
brows are retained above the male ones, due to skip connections.

work structures with adversarial training in the style of Gen-
erative Adversarial Networks (GANs). These new networks
can be used to remove attribute information from the latent
space (Lample et al., 2017), or to feedback a loss term to
impose the attributes they want to appear in the output (He
et al., 2019). These adversarial approaches have competing
loss terms (for example reconstruction loss, attribute clas-
sification loss, realistic output loss), and require a careful
choice of hyperparameters to weight these loss functions.
In the case of Lample et al. (2017) a slowly increasing loss
was critical. These hyperparameters and training schedules
must be determined by trial and error, to avoid training
instability. Even after successful training we have found
that some models ignore the desired attributes and put too
much weight on reconstruction and realistic output (see §4).
This is partly because we push systems to the very difficult
setting of training for multiple attributes together (e.g. 40
attributes for CelebA). This is a very demanding setting
for disentanglement, e.g. to dissociate lipstick, make-up,
and blond hair from female, and to dissociate beard, bushy
eyebrows, and 5 o’clock shadow from male.

We propose a simple and generic method, Matrix Subspace
Projection (MSP), which directly separates the attribute
information from all other non-attribute information, with-
out relying on weighting loss terms from auxiliary neural
networks. Our variables representing attributes are fully
disentangled, with one isolated variable for each attribute
of the training set. Therefore, when we do conditional gen-
eration, we can assign pure attributes combined with other
latent data which does not conflict, so that the generated pic-
tures are of high quality and not contaminated with spurious
attributes. Meanwhile, our model is a universal plugin. In
theory, it can be applied to any existing AEs (if and only if
the AEs use a latent vector). If the AE is a generative model
(such as VAE), with our approach, it becomes a conditional
generative model that generates content based on the given
condition constraints. In the case of images, we add a Patch-
GAN at the end of our generator to sharpen the image, but
this is not connected with the attribute manipulation task

and is not core to our model; it could be replaced with any
super resolution and sharpening method.

Our plugin has two uses: (1) samples can be generated from
a random seed, but with given attributes; (2) a given sample
can be modified to have desired specified attributes. Our
key contributions are: (1) A simple and universal plugin
for conditional generation and content replacement, directly
applicable to any AE architectures (e.g., image or text).
(2) Strong performance on learning disentangled latent rep-
resentations of multiple (e.g. 40) attributes. (3) A principled
weighting strategy for combining loss terms for training.
The code for our model is available online1.

2. Related Work
The first approaches to control of generation by attributes
(conditional VAEs (Kingma et al., 2014; Sohn et al., 2015;
Yan et al., 2016)) simply added attribute information as an
extra input to the encoder or the decoder. These approaches
generate using a latent vector z and also an attribute vector
y, where the z often conflicts with y, because attribute
information has not been removed from z. With conflicting
inputs the best the VAE can do is to produce a blurry image.

Generative Adversarial Networks (GANs) can be aug-
mented with encoders. IcGAN trains separate encoders
for the y and z vectors, but does not try to remove poten-
tially conflicting information (Perarnau et al., 2016). The
IcGAN authors also note that it can fail to generate unusual
attribute combinations such as a woman with a moustache,
because the GAN discriminator discourages the generator
from generating samples outside the training distribution.

More recent work tackled the problem of separating the
attribute information from the latent vector, using a new
auxiliary network (like a GAN discriminator) (Lample et al.,
2017; Creswell et al., 2017; Klys et al., 2018), which at-
tempts to guess the attribute of the latent vector z, and
penalise the generator if attribute information remains. A
significant drawback of these adversarial approaches is that
great care must be taken in training so that the loss from
the discriminator (which is trying to remove attribute in-
formation) does not disturb the training to produce a good
reconstruction. In the case of Fader networks (Lample et al.,
2017) it was necessary to start with a discriminator loss
weight of zero, and linearly increase to 0.0001 over the first
500,000 iterations; the authors state “This scheduling turned
out to be critical in our experiments. Without it, we observed
that the encoder was too affected by the loss coming from
the discriminator, even for low values of [loss coefficient].”

While this adversarial approach can successfully remove
attribute information from z, there is nothing to stop the

1Code: https://xiao.ac/proj/msp

https://xiao.ac/proj/msp
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Figure 2.Figure showing the dif�culty of disentangling attributes
for supervised `adversarial' approaches. (a) from Creswell et al.
(2017) shows signi�cant change in the eyebrows and eyes when
adding facial hair. (b,c,d) from Klys et al. (2018). (b) moving
across the glasses and facial hair subspace, from the female on the
left, brings signi�cant changes in eyebrows and eyes, and the shape
of cheeks, making the face more masculine. (c) moving in glasses
subspace shows changes around the eyes and mouth, looking older.
(d) also moving in glasses subspace shows a narrower smile and a
more masculine lower face. Note all of the pictures are generated
by VAE, none are original photographs.

decoder (generator) from associating other spurious infor-
mation with the attribute. For example the decoder might
associate the attribute intended to be for `glasses' with an
older or more masculine face. This is what we see in the
results of two of the adversarial approaches (see Fig. 2).
Most of the results in Creswell et al. (2017) focus on the at-
tribute `smiling' (not reproduced here), and this is very well
disentangled. It is only when the training dataset associates
other attributes with the trained attribute that entanglement
will arise. In Creswell et al. (2017) the attribute vector is a
single binary variable so that the system can only be trained
to control (or classify) one attribute. It is not unexpected
that a generator will associate spurious information with an
attribute if the association is present in the training data and
the system has been trained only on examples labelling a
single attribute, e.g., glasses. The system cannot know that
it should isolate `wearing glasses', and not `wearing glasses
and older'. Fader Networks (Lample et al., 2017) can train
for multiple attributes together, however He et al. (2019)
state that “Although Fader Networks is capable for multi-
ple attribute editing with one model, in practice, multiple
attribute setting makes the results blurry.”

The most recent works (2018-19) are GAN-based. They do
not try to remove attribute information from the latent space,
but instead add an additional attribute classi�er after genera-
tion, and impose an attribute classi�cation loss. This is in
addition to a typical GAN discriminator for realistic images.
AttGAN (He et al., 2019) uses an endoder, decoder (genera-
tor), and the attribute classi�er and discriminator applied to
the output of the generator. StarGAN (Choi et al., 2018) and
RelGAN (Wu et al., 2019) use no encoder, but use a singe
generator twice, in a cycle; the �rst direction alters attributes

like a conditional GAN, the second one attempts to recon-
struct the image (using original attributes), and so requires
that non-attribute information has been preserved. StarGAN
uses a discriminator and attribute classi�er, like AttGAN,
while RelGAN adds a third network for interpolation.

All the works cited from 2017 to 2019 have an adversar-
ial component (in the style of a GAN); they train auxiliary
classi�ers to feed back loss terms, to ensure they remove
undesirable attributes, or enforce desired ones. They need a
careful weighting among loss terms, but there is no princi-
pled method for determining these weighting hyperparame-
ters. Our work does not rely on an adversarial component
to manipulate attributes; we use a more direct method of
matrix projection onto subspaces, in order to factorise the
latent representation and separate attributes from other in-
formation. Furthermore, unlike the above works2 we do not
use any skip connections. Skip connections can introduce
errors when a region of the source and target image is quite
different, we illustrate this further in Fig. 1 Right.

In addition to the above works using labelled attributes there
is also work on the more dif�cult problem of unsupervised
learning of disentangled generative factors of data (Chen
et al., 2016; Higgins et al., 2017; Kumar et al., 2018). How-
ever the supervised (labelled) approaches generate much
clearer samples of selected attributes, and superior disentan-
glement. An alternative approach to controlled generation is
to simply train a deep convolutional network and do linear
interpolation in deep feature space (Upchurch et al., 2017).
This shows surprisingly good results, but in changing an
attribute that should only affect a local area it can affect
more image regions, and can produce unrealistic results for
more rare face poses.

3. Method

3.1. Problem Formulation

We are interested in factorising and manipulating multiple
attributes from a latent representation learned by anarbi-
trary Autoencoder (AE). Suppose we are given a dataset
D of elements(x; y ) with x 2 Rn andy 2 Y = f 0; 1gk

representingk attributes ofx.

Let an arbitrary AE be represented byz = F (x) and
x0 = G(z), whereF (�) is the encoder,G(�) is the decoder,z
is the latent vector encodingx, andx0 is the reconstruction
of x (see Fig. 3). Note that whenx0 is a good approx-
imation of x (i.e., x0 � x), the attribute information of
x represented iny will also be captured in the latent en-
codingz. Attribute manipulation means that we replace
the attributesy captured byz with new attributesyn . Let

2Not mentioned in the Fader networks paper, but in the pub-
lished code: https://github.com/facebookresearch/FaderNetworks


