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Abstract

The variance reduction class of algorithms includ-
ing the representative ones, SVRG and SARAH,
have well documented merits for empirical risk
minimization problems. However, they require
grid search to tune parameters (step size and the
number of iterations per inner loop) for optimal
performance. This work introduces ‘almost tune-
free’ SVRG and SARAH schemes equipped with
i) Barzilai-Borwein (BB) step sizes; ii) averaging;
and, iii) the inner loop length adjusted to the BB
step sizes. In particular, SVRG, SARAH, and
their BB variants are first reexamined through an
‘estimate sequence’ lens to enable new averaging
methods that tighten their convergence rates theo-
retically, and improve their performance empiri-
cally when the step size or the inner loop length is
chosen large. Then a simple yet effective means
to adjust the number of iterations per inner loop is
developed to enhance the merits of the proposed
averaging schemes and BB step sizes. Numerical
tests corroborate the proposed methods.

1. Introduction
In this work, we deal with the frequently encountered em-
pirical risk minimization (ERM) problem expressed as

min
x∈Rd

f(x) :=
1

n

∑
i∈[n]

fi(x) (1)

where x ∈ Rd is the parameter vector to be learned from
data; the set [n] := {1, 2, . . . , n} collects data indices; and,
fi is the loss function associated with datum i. Suppose
that f is µ-strongly convex and has L-Lipchitz continuous
gradient. The condition number of f is denoted by κ :=
L/µ. Throughout, x∗ denotes the optimal solution of (1).
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The standard approach to solve (1) is gradient descent (GD)
(Nesterov, 2004), which updates the decision variable via

xk+1 = xk − η∇f(xk)

where k is the iteration index and η the step size (or learning
rate). For a strongly convex f , GD convergences linearly
to x∗, that is, ‖xk − x∗‖2 ≤ (cκ)k‖x0 − x∗‖2 for some
κ-dependent constant cκ ∈ (0, 1) (Nesterov, 2004).

In the big data regime, however, where n is large, obtaining
the gradient per iteration can be computationally prohibitive.
To cope with this, the stochastic gradient descent (SGD)
reduces the computational burden by drawing uniformly
at random an index ik ∈ [n] per iteration k, and adopting
∇fik(xk) as an estimate of ∇f(xk). Albeit computation-
ally lightweight with the simple update

xk+1 = xk − ηk∇fik(xk)

the price paid is that SGD comes with sublinear convergence,
hence slower than GD (Robbins and Monro, 1951; Bottou
et al., 2016). It has been long recognized that the variance
E[‖∇fit(xt)−∇f(xt)‖2] of the gradient estimate affects
critically SGD’s convergence slowdown.

This naturally motivated gradient estimates with reduced
variance compared with SGD’s simple ∇fik(xk). A gra-
dient estimate with reduced variance can be obtained by
capitalizing on the finite sum structure of (1). One idea is to
judiciously evaluate a so-termed snapshot gradient∇f(xs),
and use it as an anchor of the stochastic draws in subsequent
iterations. Members of the variance reduction family in-
clude SVRG (Johnson and Zhang, 2013), SAG (Roux et al.,
2012), SAGA (Defazio et al., 2014), MISO (Mairal, 2013),
SARAH (Nguyen et al., 2017), and their variants (Konecnỳ
and Richtárik, 2013; Lei et al., 2017; Kovalev et al., 2019;
Li et al., 2020). Most of these algorithms rely on the up-
date xk+1 = xk − ηvk, where η is a constant step size
and vk is an algorithm-specific gradient estimate that takes
advantage of the snapshot gradient. In this work, SVRG and
SARAH are of central interest because they are memory
efficient compared with SAGA, and have no requirement
for the duality arguments that SDCA (Shalev-Shwartz and
Zhang, 2013) entails. Variance reduction methods converge
linearly when f is strongly convex. To fairly compare the
complexity of (S)GD with that of variance reduction algo-
rithms which combine snapshot gradients with the stochastic
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ones, we will rely on the incremental first-order oracle (IFO)
(Agarwal and Bottou, 2015).

Definition 1. An IFO takes fi and x ∈ Rd as input, and
returns the (incremental) gradient∇fi(x).

For convenience, IFO complexity is abbreviated as complex-
ity in this work. A desirable algorithm obtains an ε-accurate
solution satisfying E[‖∇f(x)‖2] ≤ ε or E[f(x)−f(x∗)] ≤
ε with minimal complexity for a prescribed ε. Complex-
ity for variance reduction alternatives such as SVRG and
SARAH isO

(
(n+κ) ln 1

ε

)
, a clear improvement over GD’s

complexity O
(
nκ ln 1

ε

)
. And when high accuracy (small ε)

is desired, the complexity of variance reduction algorithms
is also lower than SGD’s complexity of O

(
1
ε

)
. The mer-

its of gradient estimates with reduced variance go beyond
convexity; see e.g., (Reddi et al., 2016; Fang et al., 2018;
Cutkosky and Orabona, 2019), but nonconvex ERM are out
of the present work’s scope.

Though theoretically appealing, SVRG and SARAH entail
grid search to tune the step size, which is often painstakingly
hard and time consuming. An automatically tuned step size
for SVRG was introduced by (Barzilai and Borwein, 1988)
(BB) and (Tan et al., 2016). However, since both SVRG
and SARAH have a double-loop structure, the inner loop
length also requires tuning in addition to the step size. Other
works relying on BB step sizes introduce additional tunable
parameters on top of the inner loop length (Liu et al.; Yang
et al., 2019). In a nutshell, ‘tune-free’ variance reduction
algorithms still have desired aspects to investigate and fulfill.

Along with the BB step sizes, this paper establishes that
in order to obtain ‘tune-free’ SVRG and SARAH schemes,
one must: i) develop novel types of averaging; and, ii)
adjust the inner loop length along with step size as well.
Averaging in double-loop algorithms reflects the means of
choosing the starting point of the next outer loop (Johnson
and Zhang, 2013; Tan et al., 2016; Nguyen et al., 2017). The
types of averaging considered so far have been employed as
tricks to simplify proofs, while in the algorithm itself the last
iteration is the most prevalent choice for the starting point of
the ensuing outer loop. However, we contend that different
averaging methods result in different performance. And the
best averaging depends on the choice of other parameters.
In addition to averaging, we argue that the choice of the
inner loop length for BB-SVRG in (Tan et al., 2016) is too
pessimistic. Addressing this with a simple modification
leads to the desired ‘almost tune-free’ SVRG and SARAH.

Our detailed contributions can be summarized as follows.

• We empirically argue that averaging is not merely a
proof trick. It is prudent to adjust averaging in accor-
dance with the step size and the inner loop length.

• SVRG and SARAH are analyzed using the notion of

estimate sequence (ES). This prompts a novel averag-
ing that tightens up convergence rate for SVRG, and
further improves SARAH’s convergence over existing
works under certain conditions. Besides tighter rates,
our analysis broadens the analytical tool, ES, by en-
dowing it with the ability to deal with SARAH’s biased
gradient estimate.

• The theoretical guarantees for BB-SVRG and BB-
SARAH with different types of averaging are estab-
lished and leveraged for performance improvement.

• Finally, we offer a principled design of the inner loop
length to obtain almost tune-free BB-SVRG and BB-
SARAH. The choice for the inner loop length is guided
by the regime that the proposed averaging schemes fa-
vor. Numerical tests further corroborate the efficiency
of the proposed algorithms.

Notation. Bold lowercase letters denote column vectors;
E represents expectation; ‖x‖ stands for the `2-norm of x;
and 〈x,y〉 denotes the inner product of vectors x and y.

2. Preliminaries
We will first focus on the averaging techniques, whose gen-
erality goes beyond BB step sizes. To start with, this section
briefly reviews the vanilla SVRG and SARAH, while their
BB variants are postponed slightly.

2.1. Basic Assumptions

Assumption 1. Each fi : Rd → R has L-Lipchitz gradient,
that is, ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀x,y ∈ Rd.

Assumption 2. Each fi : Rd → R is convex.

Assumption 3. Function f : Rd → R is µ-strongly con-
vex, that is, there exists µ > 0, such that f(x) − f(y) ≥
〈∇f(y),x− y〉+ µ

2 ‖x− y‖2, ∀x,y ∈ Rd.

Assumption 4. Each fi : Rd → R is µ-strongly con-
vex, meaning there exists µ > 0, so that fi(x) − fi(y) ≥
〈∇fi(y),x− y〉+ µ

2 ‖x− y‖2, ∀x,y ∈ Rd.

Assumption 1 requires each loss function to be sufficiently
smooth. One can certainly require smoothness of each in-
dividual loss function and refine Assumption 1 as fi has
Li-Lipchitz gradient. Clearly L = maxi Li. By combining
with importance sampling (Xiao and Zhang, 2014; Kulun-
chakov and Mairal, 2019), such a refined assumption can
slightly tighten the κ dependence in the complexity bound.
However, since the extension is straightforward, we will
keep using the simpler Assumption 1 for clarity. Assump-
tion 3 only requires f to be strongly convex, which is weaker
than Assumption 4. Assumptions 1 – 4 are all standard in
variance reduction algorithms.
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Algorithm 1 SVRG
1: Initialize: x̃0, η, m, S
2: for s = 1, 2, . . . , S do
3: xs0 = x̃s−1

4: gs = ∇f(xs0)
5: for k = 0, 1, . . . ,m− 1 do
6: uniformly draw ik ∈ [n]
7: vsk = ∇fik(xsk)−∇fik(xs0) + gs

8: xsk+1 = xsk − ηvsk
9: end for

10: draw x̃s randomly from {xsk}mk=0 according to ps

11: end for
12: Output: x̃S

Algorithm 2 SARAH
1: Initialize: x̃0, η, m, S
2: for s = 1, 2, . . . , S do
3: xs0 = x̃s−1, and vs0 = ∇f(xs0)
4: xs1 = xs0 − ηvs0
5: for k = 1, 2, . . . ,m− 1 do
6: uniformly draw ik ∈ [n]
7: vsk = ∇fik(xsk)−∇fik(xsk−1) + vsk−1
8: xsk+1 = xsk − ηvsk
9: end for

10: draw x̃s randomly from {xsk}mk=0 according to ps

11: end for
12: Output: x̃S

2.2. Recap of SVRG and SARAH

The steps of SVRG and SARAH are listed in Algs. 1
and 2, respectively. Each employs a fine-grained reduced-
variance gradient estimate per iteration. For SVRG, vsk is
an unbiased estimate since E[vsk|Fsk−1] = ∇f(xsk), where
Fsk−1 := σ(x̃s−1, i0, i1, . . . , ik−1) is the σ-algebra gen-
erated by x̃s−1, i1, i2, . . . , ik−1; while SARAH adopts a
biased vsk, that is, E[vsk|Fsk−1] = ∇f(xsk) −∇f(xsk−1) +
vsk−1 6= ∇f(xsk). The variance (mean-square error (MSE))
of vsk in SVRG (SARAH) can be upper bounded by quanti-
ties that dictate the optimality gap (gradient norm square).
Lemma 1. (Johnson and Zhang, 2013; Nguyen et al., 2017)
The MSE of vsk in SVRG is bounded as follows

SVRG : E
[
‖∇f(xsk)− vsk‖2

]
≤ E

[
‖vsk‖2

]
(2a)

≤ 4LE
[
f(xsk)− f(x∗)

]
+ 4LE

[
f(xs0)− f(x∗)

]
.

The MSE of vsk in SARAH is also bounded as

SARAH : E
[
‖∇f(xsk)− vsk‖2

]
(2b)

≤ ηL

2− ηL

(
E
[
‖∇f(xs0)‖2

]
− E

[
‖vsk‖2

])
.

Another upper bound on SVRG’s gradient estimate is avail-
able; see e.g., (Kulunchakov and Mairal, 2019), but it is not

suitable for our analysis. Intuitively, Lemma 1 suggests that
if SVRG or SARAH converges, the MSE of their gradient
estimates also approaches to zero.

At the end of each inner loop, the starting point of the next
outer loop is randomly selected among {xsk}mk=0 accord-
ing to a pmf vector ps ∈ ∆m+1, where ∆m+1 := {p ∈
Rm+1

+ |〈1,p〉 = 1}. We term ps the averaging weight vec-
tor, and let psj denote the jth entry of ps. Leveraging the
MSE bounds in Lemma 1 and choosing a proper averag-
ing vector, SVRG and SARAH iterates for strongly convex
problems can be proved to converge linearly.

For SVRG, two types of averaging exist.

• U-Avg (SVRG) (Johnson and Zhang, 2013): vector ps

is chosen as the pmf of an (almost) uniform distribution,
that is, psm = 0, and psk = 1/m for k = {0, 1, . . . ,m−
1}. Under Assumptions 1 – 3, the choice of η =
O(1/L) and m = O(κ) ensures that SVRG iterates
converge linearly.1

• L-Avg (SVRG) (Tan et al., 2016; Hu et al., 2018):
Only the last iteration is used for averaging by setting
x̃s = xsm; or equivalently, by setting psm = 1, and
psk = 0,∀k 6= m. Under Assumptions 1 – 3, linear
convergence is ensured by choosing η = O(1/(Lκ))
and m = O(κ2).

To guarantee linear convergence, SVRG with L-Avg must
adopt a much smaller η and larger m compared with U-
Avg. L-Avg with such a small step size leads to complexity
O
(
(n+ κ2) ln 1

ε

)
that has worse dependence on κ.

For SARAH, there are also two averaging options.

• U-Avg (SARAH) (Nguyen et al., 2017): here ps is
selected to have entries psm = 0, and psk = 1/m, for
k = {0, 1, . . . ,m− 1}. Linear convergence is guaran-
teed with complexity O

(
(n+ κ) ln 1

ε

)
under Assump-

tions 1 – 3 so long as one selects η = O(1/L) and
m = O(κ).

• L-Avg (SARAH) (Li et al., 2020)2: here ps is cho-
sen with entries psm−1 = 1 and psk = 0,∀k 6= m − 1.
Under Assumptions 1 – 3 and with η = O(1/L) as
well as m = O(κ2), linear convergence is guaran-
teed at complexity of O

(
(n + κ2) ln 1

ε

)
. When both

Assumptions 1 and 4 hold, setting η = O(1/L) and
m = O(κ) results in linear convergence along with a
reduced complexity of order O

(
(n+ κ) ln 1

ε

)
.

1For simplicity and clarity of exposition we only highlight the
order of η and m, and hide other constants in big-O notation.
Detailed choices can be found in the corresponding references.

2There is another version of L-Avg for SARAH (Liu et al.),
but convergence claims require undesirably small step sizes η =
O(µ/L2). This is why we focus on the L-Avg in (Li et al., 2020).
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U-Avg (for both SVRG and SARAH) is usually employed
as a ‘proof-trick’ to carry out convergence analysis, while
L-Avg is implemented most of the times. However, we will
argue in the next section that with U-Avg adapted to the step
size choice, it is possible to improve empirical performance.
Although U-Avg appears at first glance to waste updates, a
simple trick in the implementation can fix this issue.

Implementation of Averaging. Rather than updating m
times and then choosing x̃s according to Line 10 of SVRG
or SARAH, one can generate a random integer Ms ∈
{0, 1, . . . ,m} according to the averaging weight vector ps.
Having available xsMs , it is possible to start the next outer
loop immediately.

3. Weighted Averaging for SVRG and
SARAH

This section introduces weighted averaging for SVRG and
SARAH, which serves as an intermediate step for the ulti-
mate ‘tune-free variance reduction.’ Such an averaging for
SVRG will considerably tighten its analytical convergence
rate; while for SARAH it will improve its convergence rate
when m or η is chosen sufficiently large. These analytical
results are obtained by reexamining SVRG and SARAH
through the ‘estimate sequence’ (ES), a tool that has been
used for analyzing momentum schemes (Nesterov, 2004);
see also (Nitanda, 2014; Lin et al., 2015; Kulunchakov and
Mairal, 2019). Different from existing ES analysis that relies
heavily on the unbiasedness of vsk, our advances here will
endow ES with the ability to deal with the biased gradient
estimate of SARAH.

3.1. Estimate Sequence

Since in this section we will focus on a specific inner loop
indexed by s, the superscript s is dropped for brevity. For
example, xsk and vsk are written as xk and vk, respectively.

Associated with the ERM objective f and a particular point
x0, consider a series of quadratic functions {Φk(x)}mk=0

that comprise what is termed ES, with the first one given by

Φ0(x) = Φ∗0 +
µ0

2
‖x− x0‖2 (3a)

and the rest defined recursively as

Φk(x) =(1− δk)Φk−1(x) + δk

[
f(xk−1) (3b)

+ 〈vk−1,x− xk−1〉+
µ

2
‖x− xk−1‖2

]
where vk−1 is the gradient estimate in SVRG or SARAH;
while Φ∗0, µ0, and δk are some constants to be specified later.
The design is similar to that of (Kulunchakov and Mairal,
2019), but the ES here is constructed per inner loop. In

addition, here we will overcome the challenge of analyzing
SARAH’s biased gradient estimate vk.

Upon defining Φ∗k := minx Φk(x), the key properties of
the sequence {Φk(x)}mk=0 are collected in the next lemma.

Lemma 2. For {Φk(x)}mk=0 as in (3), it holds that:
i) Φ0(x) is µ0-strongly convex, and Φk(x) is µk-strongly
convex with µk = (1− δk)µk−1 + δkµ;
ii) xk minimizes Φk(x) if δk = ηµk; and
iii) Φ∗k = (1− δk)Φ∗k−1 + δkf(xk−1)− µkη

2

2 ‖vk−1‖
2.

Lemma 2 holds for both SVRG and SARAH. To better
understand the role of ES, it is instructive to use an example.

Example. With Φ∗0 = f(x0), µ0 = µ, and δk = µkη for
SVRG, it holds that µk = µ,∀k, and δk = µη,∀k. If for
convenience we let δ := µη, we show in Appendix A.2 that

E
[
Φk(x)

]
≤ (1− δ)k

[
Φ0(x)− f(x∗)

]
+ f(x). (4)

As k → ∞, one has (1 − δ)k → 0, and hence Φk(x)
approaches in expectation a lower bound of f(x).

Now, we are ready to view SVRG and SARAH through the
lens of {Φk(x)}mk=0 to obtain new averaging schemes.

3.2. Weighted Averaging for SVRG

The new averaging vector ps for SVRG together with the
improved convergence rate is summarized in the following
theorem.

Theorem 1. (SVRG with W-Avg.) Under Assumptions 1 –
3, construct the ES as in (3) with µ0 = µ, δk = µkη, and
Φ∗0 = f(x0). Choose η < 1/(4L), and m large enough
such that

λSVRG :=
1

1− (1− µη)m−1

[
(1− µη)m

1− 2ηL

+
2µLη2(1− µη)m−1

1− 2Lη
+

2Lη

1− 2Lη

]
< 1.

Let ps0 = psm = 0, and psk = (1 − µη)m−k−1/q for k =
1, 2, . . . ,m − 1, where q = [1 − (1 − µη)m−1]/(µη). It
then holds for SVRG with this weighted averaging (W-Avg)
that

E
[
f(x̃s)− f(x∗)

]
≤ λSVRGE

[
f(x̃s−1)− f(x∗)

]
.

Comparing the W-Avg in Theorem 1 against U-Avg and L-
Avg we saw in Section 2.2, the upshot of W-Avg is a much
tighter convergence rate. When choosing η = O(1/L),
the dominating terms of the convergence rate for W-Avg
are O

( (1−1/κ)m
1−2Lη + 2Lη

1−2Lη
)
, and O

(
κ

m(1−2Lη) + 2Lη
1−2Lη

)
for U-Avg (Johnson and Zhang, 2013). Clearly, the factor
(1 − 1/κ)m in W-Avg can be much smaller than κ/m in
U-Avg; see Fig. 1(a) for comparison of convergence rates of
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Figure 1. A comparison of the analytical convergence rate for
SVRG and SARAH. In both figures we set κ = 105 with L = 1,
µ = 10−5, and the step sizes are selected as: (a) SVRG with
η = 0.1/L; and (b) SARAH with η = 0.5/L.

different averaging types. Since convergence of SVRG with
L-Avg requires η and m to be chosen differently from those
in U-Avg and W-Avg, L-Avg is not plotted in Fig. 1(a).

Next, we assess the complexity of SVRG with W-Avg.

Corollary 1. Choosing m = O(κ) and other parameters
as in Theorem 1, the complexity of SVRG with W-Avg to find
x̃s satisfying E

[
f(x̃s)− f(x∗)

]
≤ ε is O

(
(n+ κ) ln 1

ε

)
.

Note that similar to U-Avg, W-Avg incurs lower complexity
compared with L-Avg in (Tan et al., 2016; Hu et al., 2018).

3.3. Weighted Averaging for SARAH

SARAH is challenging to analyze due to the bias present
in the estimate vk, which makes the ES-based treatment of
SARAH fundamentally different from that of SVRG. To see
this, it is useful to start with the following lemma.

Lemma 3. For any deterministic x, it holds in SARAH that

E
[
〈vk −∇f(xk),x− xk〉

]
=
η

2

k−1∑
τ=0

E
[
‖vτ −∇f(xτ )‖2 + ‖vτ‖2 − ‖∇f(xτ )‖2

]
.

Lemma 3 reveals the main difference in the ES-based argu-
ment for SARAH, namely that E

[
〈vk−∇f(xk),x−xk〉

]
6=

0, while the same inner product for SVRG equals to 0 in
expectation. Reflecting back to (4), the consequence of hav-
ing a non-zero E

[
〈vk−∇f(xk),x−xk〉

]
is that E[Φk(x)]

is not necessarily approaching a lower bound of f(x) as
k →∞; thus,

E
[
Φk(x)

]
≤ (1− δ)k

[
Φ0(x)− f(x)

]
+ f(x) + C (5)

where C is a non-zero term that is not present in (4) when
applied to SVRG; see detailed derivations in Appendix A.2.

Interestingly, upon capitalizing on the properties of vk, the
ensuing theorem establishes linear convergence for SARAH
with a proper W-Avg vector ps.

Theorem 2. (SARAH with W-Avg.) Under Assumptions 1
and 4, define the ES as in (3) with µ0 = µ, δk = µkη,∀k,
and Φ∗0 = f(x0). With δ := µη, select η < 1/L and m
large enough, so that

λSARAH :=

[
(1−δ)m −

(
1− 2ηL

1+κ

)m] L+µ

c(L−µ)

+
(1−δ)m

cδ
+
ηL(m−1)

c(2−ηL)
+

2−2ηL

2−ηL
1 + κ

2cηL
< 1

where c = m − 1
δ + (1−δ)m

δ . Setting pk = (1 − (1 −
δ)m−k−1)/c,∀k = 0, 1, . . . ,m− 2, and pm−1 = pm = 0,
SARAH with this W-Avg satisfy

E
[
‖∇f(x̃s)‖2

]
≤ λSARAHE

[
‖∇f(x̃s−1)‖2

]
.

The expression of λSARAH is complicated because we want
the upper bound of the convergence rate to be as tight as
possible. To demonstrate this with an example, choosing
η = 1/(2L) and m = 5κ, we have λSARAH ≈ 0.8. Fig. 1(b)
compares SARAH with W-Avg versus SARAH with U-Avg
and L-Avg. The advantage of W-Avg is more pronounced
as m is chosen larger.

As far as complexity of SARAH with W-Avg, it is compara-
ble with that of L-Avg or U-Avg, as asserted next.

Corollary 2. Choosing m = O(κ) and other parameters
as in Theorem 2, the complexity of SARAH with W-Avg to
find x̃s satisfying E[‖∇f(x̃s)‖2] ≤ ε, is O

(
(n+ κ) ln 1

ε

)
.

A few remarks are now in order on our analytical findings:
i) most existing ES-based proofs use E[f(x̃s)− f(x∗)] as
optimality metric, while Theorem 2 and Corollary 2 rely
on E[‖∇f(x̃s)‖2]; ii) the analysis method still holds when
Assumption 4 is weakened to Assumption 3, at the price
of having worse κ-dependence of the complexity, that is,
O
(
(n + κ2) ln 1

ε

)
, which is of the same order as L-Avg

under Assumptions 1 – 3 (Li et al., 2020; Liu et al.).

3.4. Averaging Is More Than A ‘Proof Trick’

Existing forms of averaging such as U-Avg and W-Avg, are
typically considered as ‘proof tricks’ for simplifying the
theoretical analysis (Johnson and Zhang, 2013; Tan et al.,
2016; Nguyen et al., 2017; Li et al., 2020). In this subsection,
we contend that averaging can distinctly affect performance,
and should be adapted to other parameters. We will take
SARAH with η = O(1/L) and m = O(κ) as an example
rather than SVRG since such parameter choices guarantee
convergence regardless of the averaging employed. (For
SVRG with L-Avg on the other hand, the step size has to be
chosen differently with W-Avg or U-Avg.)

We will first look at the convergence rate of SARAH across
different averaging options. Fixing m = O(κ) and chang-
ing η, the theoretical convergence rate is plotted in Fig. 2. It
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Figure 2. SARAH’s analytical convergence rate with different aver-
aging options (κ = 105, L = 1, µ = 10−5, and fixed m = 10κ).

is observed that with smaller step sizes, L-Avg enjoys faster
convergence, while larger step sizes tend to favor W-Avg
and U-Avg instead.

Next, we will demonstrate empirically that the type of aver-
aging indeed matters. Consider binary classification using
the regularized logistic loss function

f(x) =
1

n

∑
i∈[n]

ln
[
1 + exp(−bi〈ai,x〉)

]
+
µ

2
‖x‖2 (6)

where (ai, bi) is the (feature, label) pair of datum i. Clearly,
(6) is an instance of the cost in (1) with fi(x) = ln

[
1 +

exp(−bi〈ai,x〉)
]

+ µ
2 ‖x‖

2; and it can be readily verified
that Assumptions 1 and 4 are satisfied in this case.

SARAH with L-Avg, U-Avg and W-Avg are tested with
fixed (moderate) m = O(κ) but different step size choices
on the dataset w7a; see also Appendix D.1 for additional
tests with datasets a9a and diabetes. Fig. 3(a) shows that
for a large step size η = 0.9/L, W-Avg outperforms U-Avg
as well as L-Avg by almost two orders at the 30th sample
pass. For a medium step size η = 0.6/L, W-Avg and L-Avg
perform comparably, while both are outperformed by U-
Avg. When η is chosen small, L-Avg is clearly the winner.
In short, the performance of averaging options varies with
the step sizes. This is intuitively reasonable because the
MSE of vk: i) scales with η (cf. Lemma 1); and ii) tends to
increase with k as E[‖vk‖2] decreases linearly (see Lemma
5 in Appendix B.2, and the MSE bound in Lemma 1). As
a result, when both η and k are large, the MSE of vk tends
to be large too. Iterates with gradient estimates having high
MSE can jeopardize the convergence. This explains the
inferior performance of L-Avg in Figs. 3(a) and 3(b). On
the other hand, when η is chosen small, the MSE tends
to be small as well; hence, working with L-Avg does not
compromise convergence, while in expectation W-Avg and
U-Avg compute full gradient more frequently than L-Avg.
These two reasons explain the improved performance of
L-Avg in Fig. 3(c).

When we fix η and change m, as depicted in Fig. 1(b), the
analytical convergence rate of W-Avg improves over that
of U-Avg and L-Avg when m is large. This is because the
MSE of vk increases with k. W-Avg and U-Avg ensure
better performance through “early ending,” by reducing the
number of updates that utilize vk with large MSE.

In sum, the choice of averaging scheme should be adapted
with η and m to optimize performance. For example, the
proposed W-Avg for SARAH favors the regime where either
η or m is chosen large, as dictated by the convergence rates
and corroborated by numerical tests.

4. Tune-Free Variance Reduction
This section copes with variance reduction without tuning.
In particular, i) Barzilai-Borwein (BB) step size, ii) averag-
ing schemes, and iii) a time varying inner loop length are
adopted for the best empirical performance.

4.1. Recap of BB Step Sizes

Aiming to develop ‘tune-free’ SVRG and SARAH, we will
first adopt the BB scheme to obtain suitable step sizes au-
tomatically (Tan et al., 2016). In a nutshell, BB monitors
progress of previous outer loops, and chooses the step size
of outer loop s accordingly via

ηs =
1

θκ

‖x̃s−1 − x̃s−2‖2〈
x̃s−1 − x̃s−2,∇f(x̃s−1)−∇f(x̃s−2)

〉 (7)

where θκ is a κ-dependent parameter to be specified later.
Note that ∇f(x̃s−1) and ∇f(x̃s−2) are computed at the
outer loops s and s − 1, respectively; hence, the imple-
mentation overhead of BB step sizes only includes almost
negligible memory to store x̃s−2 and ∇f(x̃s−2).

BB step sizes for SVRG with L-Avg have relied on θκ =
m = O(κ2) (Tan et al., 2016). Such a choice of parameters
offers provable convergence at complexityO

(
(n+κ2) ln 1

ε

)
,

but has not been effective in our simulations for two reasons:
i) step size ηs depends on m, which means that tuning
is still required for step sizes; and, ii) the optimal m of
O(κ) with best empirical performance significantly deviates
from the theoretically suggested O(κ2); see also Fig. 4(a).
Other BB based variance reduction methods introduce extra
parameters to be tuned in additional to m; e.g., some scalars
in (Liu et al.) and the mini-batch sizes in (Yang et al., 2019).
This prompts us to design more practical BB methods – how
to choose m with minimal tuning is also of major practical
value.

4.2. Averaging for BB Step Sizes

We start with a fixed choice of m to theoretically investigate
different types of averaging for the BB step sizes. The final
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Figure 3. Comparing SARAH with different types of averaging on dataset w7a (µ = 0.005 and m = 5κ in all tests).
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Figure 4. (a) Performance of BB-SVRG (Tan et al., 2016) under
different choices of m. (b) BB-SARAH with different averaging
schemes. Both tests use dataset a9a with κ = 1, 388.

‘tune-free’ implementation of SVRG and SARAH will rely
on the analysis of this subsection.

Proposition 1. (BB-SVRG) Under Assumptions 1 – 3, if
we choose m = O(κ2) and θκ = O(κ) (but with θκ > 4κ),
then BB-SVRG with U-Avg and W-avg can find x̃s with
E
[
f(x̃s)− f(x∗)

]
≤ ε using O

(
(n+ κ2) ln 1

ε

)
IFO calls.

Similar to BB-SVRG, the ensuing result asserts that for BB-
SARAH, W-Avg, U-Avg and L-Avg have identical order of
complexity.

Proposition 2. (BB-SARAH) Under Assumptions 1 and
4, if we choose m = O(κ2) and θκ = O(κ), then BB-
SARAH finds a solution with E

[
‖∇f(x̃s)‖2

]
≤ ε using

O
(
(n+ κ2) ln 1

ε

)
IFO calls, when one of these conditions

holds: i) either U-Avg with θκ > κ; or ii) L-Avg with
θκ > 3/2κ; or, iii) W-Avg with θκ > κ.

The price paid for having automatically tuned step sizes is a
worse dependence of the complexity on κ, compared with
the bounds in Corollaries 1 and 2. The cause of the worse
dependence on κ is that one has to choose a large m at
the order of O(κ2). However, such an automatic tuning of
the step size comes almost as a “free lunch” when problem
(1) is well conditioned, or, in the big data regime, e.g.,
κ2 ≈ n or κ2 � n, since the dominant term in complexity
is O(n ln 1

ε ) for both SVRG and BB-SVRG. On the other
hand, it is prudent to stress that with κ2 � n, the BB step
sizes slow down convergence.

Given the same order of complexity, the empirical perfor-
mance of BB-SARAH with different averaging types is
showcased in Fig. 4(b) with the parameters chosen as in
Proposition 2. It is observed that W-Avg converges most
rapidly, while U-Avg outperforms L-Avg. This confirms
our theoretical insight, that is, W-Avg and U-Avg are more
suitable when m is chosen large enough.

4.3. Tune-Free Variance Reduction

Next, the ultimate format of the almost tune-free variance
reduction is presented using SARAH as an example. We
will discuss how to choose the iteration number of inner
loops and averaging schemes for BB step sizes.

Adaptive inner loop length. It is observed that the BB step
size can change over a wide range of values (see Appendix
C for derivations),

1

θκL
≤ ηs ≤ 1

θκµ
. (8)

Given θκ = O(κ), ηs can vary from O(µ/L2) to O(1/L).
Such a wide range of ηs blocks the possibility to find a
single m suitable for both small and large ηs at the same
time. From a theoretical perspective, choosing m = O(κ2)
in both Propositions 1 and 2 is mainly for coping with the
small step sizes ηs = O(1/(Lθκ)). But such a choice is
too pessimistic for large ones ηs = O(1/(µθκ)). In fact,
choosing m = O(κ) for ηs = O(1/L) is good enough,
as suggested by Corollaries 1 and 2. These observations
motivate us to design an ms that changes dynamically per
outer loop s.

Reflecting on the convergence of SARAH, it is sufficient
to set the inner loop length ms according to the ηs used.
To highlight the rationale behind our choice of ms, let us
consider BB-SARAH with U-Avg as an example that fea-
tures convergence rate λs = 1

µηsms + ηsL
2−ηsL (Nguyen et al.,

2017). Set θκ > κ as in Proposition 2 so that the second
term of λs is always less than 1. With a large step size
ηs = O(1/L), and by simply choosing ms = O

(
1/(µηs)

)
,

one can ensure a convergent iteration having e.g., λs < 1.
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Figure 5. Tests of BB-SVRG and BB-SARAH on different datasets.

With a small step size ηs = O
(
1/(κL)

)
though, choosing

ms = O
(
1/(µηs)

)
also leads to λs < 1. These considera-

tions prompt us to adopt a time-varying inner loop length
adjusted by ηs in (7) as

ms =
c

µηs
. (9)

Such choices of ηs and ms at first glance do not lead to
a tune-free algorithm directly, because one has to find an
optimal θκ and c through tuning. Fortunately, there are
simple choices for both c and θκ. In Propositions 1 and
2, the smallest selected θκ for SVRG and SARAH with
different types of averaging turns out to be a reliable choice;
while choosing c = 1 has been good enough throughout
our numerical experiments. Although the selection of these
parameters violates slightly the theoretical guarantee, its
merits lie in the simplicity. And in our experiments, no
divergence has been observed by these parameter selections.

Averaging schemes. As discussed in subsection 3.4, W-
Avg gains in performance when either ms or ηs is large.
Since ms and ηs are inversely proportional (cf. (9)), it is
clear that one of the two suffices to be large; and for this
reason, we will rely on W-Avg for BB-SARAH.

Extensions regarding almost tune-free variance reduction
for (non)convex problems can be found in our technical note
(Li and Giannakis, 2019).

5. Numerical Tests
To assess performance, the proposed tune-free BB-SVRG
and BB-SARAH are applied to binary classification via reg-
ularized logistic regression (cf. (6)) using the datasets a9a,
rcv1.binary, and real-sim from LIBSVM3. Details regarding
the datasets, the µ values used, and implementation details
are deferred to Appendix D.2.

For comparison, the selected benchmarks are SGD, SVRG
with U-Avg, and SARAH with U-Avg. The step size for

3Online available at https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/binary.html.

SGD is η = 0.05/(L(ne + 1)), where ne is the index of
epochs. For SVRG and SARAH, we fix m = 5κ, and tune
for the best step sizes. For BB-SVRG, we choose ηs and
ms as (9) with θκ = 4κ (as in Proposition 1) and c = 1.
While we choose θκ = κ (as in Proposition 2) and c = 1
for BB-SARAH. W-Avg is adopted for both BB-SVRG and
BB-SARAH.

The results are showcased in Fig. 5. We also tested BB-
SVRG with parameters chosen as (Tan et al., 2016, Thm.
3.8). However it only slightly outperforms SGD and hence
is not plotted here (see the blue line in Fig. 4(a) as a ref-
erence). On dataset a9a, BB-SARAH outperforms tuned
SARAH. BB-SVRG is worse than SVRG initially, but has
similar performance around the 40th sample pass on the x-
axis. On dataset rcv1 however, BB-SARAH, BB-SVRG and
SARAH have similar performance, improving over SVRG.
On dataset real-sim, BB-SARAH performs almost identical
to SARAH. BB-SVRG exhibits comparable performance
with SVRG.

6. Conclusions
Almost tune-free SVRG and SARAH were developed in
this work. Besides the BB step size for eliminating the tun-
ing for step size, the key insights are that both i) averaging,
as well as ii) the number of inner loop iterations should
be adjusted according to the BB step size. Specific major
findings include: i) estimate sequence based provably linear
convergence of SVRG and SARAH, which enabled new
types of averaging for efficient variance reduction; ii) theo-
retical guarantees of BB-SVRG and BB-SARAH with dif-
ferent types of averaging; and, iii) implementable tune-free
variance reduction algorithms. The efficacy of the tune-free
BB-SVRG and BB-SARAH were corroborated numerically.
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A. Properties of ES
A.1. Proof of Lemma 2

i) By definition Φ0(x) is µ0-strongly convex; and by checking Hession one can find that Φk(x) is µk-strongly convex with
µk = (1− δk)µk−1 + δkµ.

ii) Clearly, x0 minimizes Φ0(x), and Φk(x) is quadratic. Arguing by induction, suppose that xk−1 minimizes Φk−1(x), to
obtain

Φk−1(x) = Φ∗k−1 +
µk−1

2
‖x− xk−1‖2 ⇒ ∇Φk−1(x) = µk−1(x− xk−1).

By definition of Φk(x), we also have

∇Φk(x) = (1− δk)∇Φk−1(x) + δkvk−1 + µδk(x− xk−1)

= (1− δk)µk−1(x− xk−1) + δkvk−1 + µδk(x− xk−1). (10)

Using µk = (1− δk)µk−1 + δkµ and setting∇Φk(x) = 0, we find that xk minimizes Φk(x) when δk = ηµk.

iii) Since xk−1 minimizes Φk−1(x), using the definition of Φk(x) we can write

Φk(xk−1) = (1− δk)Φ∗k−1 + δkf(xk−1). (11)

On the other hand, we also have Φk(xk−1) = Φ∗k + µk
2 ‖xk−1 − xk‖2. Comparing this with (11) and using that xk =

xk−1 − ηvk−1, completes the proof of this property.

A.2. Derivations of (4) and (5)

To verify (4), proceed as follows

E
[
Φk(x)

]
= (1− δ)E

[
Φk−1(x)

]
+ δE

[
f(xk−1) + 〈vk−1,x− xk−1〉+

µ

2
‖x− xk−1‖2

]
= (1− δ)E

[
Φk−1(x)

]
+ δE

[
f(xk−1) + 〈∇f(xk−1),x− xk−1〉+

µ

2
‖x− xk−1‖2

]
≤ (1− δ)E

[
Φk−1(x)

]
+ δf(x) ≤ (1− δ)k

[
Φ0(x)− f(x)

]
+ f(x) ≤ (1− δ)k

[
Φ0(x)− f(x∗)

]
+ f(x). (12)

And in order to derive (5), follow the next steps

E
[
Φk(x)

]
= (1− δ)E

[
Φk−1(x)

]
+ δE

[
f(xk−1) + 〈vk−1,x− xk−1〉+

µ

2
‖x− xk−1‖2

]
≤ (1− δ)E

[
Φk−1(x)

]
+ δf(x) + δE

[
〈vk−1 −∇f(xk−1),x− xk−1〉

]
≤ (1− δ)k

[
Φ0(x)− f(x)

]
+ f(x) + δ

k−1∑
τ=0

(1− δ)τE
[
〈vk−1−τ −∇f(xk−1−τ ),x− xk−1−τ 〉

]
︸ ︷︷ ︸

:=C; C 6=0, an extra term compared with SVRG

.

A.3. A Key Lemma

The next lemma plays a major role in our analysis.

Lemma 4. If we choose µ0 = µ, δk = µkη, and Φ∗0 = f(x0) in the ES defined in (3), we then find that: i) µk = µ,∀k; ii)
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δ := δk = µη; and iii) the following inequality holds

δ

k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1

[
f(x0)− f(x∗)

]
≤ (1− δ)k

[
Φ0(x∗)− f(x∗)

]
+
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2 + δ

k∑
τ=1

(1− δ)k−τζτ−1

where ζk−1 := 〈vk−1 −∇f(xk−1),x∗ − xk−1〉.

Proof. Since i) and ii) are straightforward to verify, we will prove iii). Using property iii) in Lemma 2, we find

f(xk)− Φ∗k = f(xk)− (1− δk)Φ∗k−1 − δkf(xk−1) +
µkη

2

2
‖vk−1‖2

= f(xk)− Φ∗k−1 + δk
(
Φ∗k−1 − f(xk−1)

)
+
µkη

2

2
‖vk−1‖2

= f(xk)− f(xk−1) + f(xk−1)− Φ∗k−1 + δk
(
Φ∗k−1 − f(xk−1)

)
+
µkη

2

2
‖vk−1‖2

= (1− δk)
[
f(xk−1)− Φ∗k−1

]
+ ξk (13)

where ξk is defined as

ξk := f(xk)− f(xk−1) +
µkη

2

2
‖vk−1‖2.

Upon expanding f(xk−1)− Φ∗k−1 in (13), we have

f(xk)− Φ∗k = (1− δk)
[
f(xk−1)− Φ∗k−1

]
+ ξk

=
[ k∏
τ=1

(1− δτ )
]
[f(x0)− Φ∗0] +

k∑
τ=1

ξτ

[ k∏
j=τ+1

(1− δj)
]

(14)

from which we deduce that

Φ∗k ≤ Φk(x∗) = (1− δk)Φk−1(x∗) + δk

[
f(xk−1) + 〈vk−1,x∗ − xk−1〉+

µ

2
‖x∗ − xk−1‖2

]
(a)
= (1− δk)Φk−1(x∗) + δk

[
f(xk−1) + 〈∇f(xk−1),x∗ − xk−1〉+

µ

2
‖x∗ − xk−1‖2 + ζk−1

]
(b)

≤ (1− δk)Φk−1(x∗) + δkf(x∗) + δkζk−1

≤
[ k∏
τ=1

(1− δτ )
]
Φ0(x∗) +

k∑
τ=1

δτf(x∗)
[ k∏
j=τ+1

(1− δj)
]

+

k∑
τ=1

δτζτ−1

[ k∏
j=τ+1

(1− δj)
]

(15)

where in (a) the ζk−1 is defined as

ζk−1 := 〈vk−1 −∇f(xk−1),x∗ − xk−1〉;

and (b) follows from the strongly convexity of f . Then, using (14), we have

f(xk)− f(x∗) = Φ∗k − f(x∗) +
[ k∏
τ=1

(1− δτ )
]
[f(x0)− Φ∗0] +

k∑
τ=1

ξτ

[ k∏
j=τ+1

(1− δj)
]

(c)

≤
[ k∏
τ=1

(1− δτ )
]
Φ0(x∗) +

k∑
τ=1

δτf(x∗)
[ k∏
j=τ+1

(1− δj)
]

+

k∑
τ=1

δτζτ−1

[ k∏
j=τ+1

(1− δj)
]

− f(x∗) +
[ k∏
τ=1

(1− δτ )
]
[f(x0)− Φ∗0] +

k∑
τ=1

ξτ

[ k∏
j=τ+1

(1− δj)
]
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where (c) is due to (15). Choosing µ0 = µ (hence µk = µ, δk = µη := δ, ∀k) and Φ∗0 = f(x0), we arrive at

f(xk)− f(x∗) ≤ (1− δ)k
[
Φ0(x∗)− f(x∗)

]
+

k∑
τ=1

(1− δ)k−τ
(
ξτ + δζτ−1

)
. (16)

Now consider that

k∑
τ=1

(1− δ)k−τξτ =

k∑
τ=1

(1− δ)k−τ
[
f(xτ )− f(xτ−1) +

µη2

2
‖vτ−1‖2

]
= f(xk) +

k−1∑
τ=1

(1− δ)k−τf(xτ )−
k−1∑
τ=1

(1− δ)k−τ−1f(xτ )− (1− δ)k−1f(x0) +
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2

= −δ
k−1∑
τ=1

(1− δ)k−τ−1f(xτ ) + f(xk)− (1− δ)k−1f(x0) +
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2. (17)

Because δ
∑k−1
τ=1(1− δ)k−τ−1 + (1− δ)k−1 = 1, we can write f(x∗) = [δ

∑k−1
τ=1(1− δ)k−τ−1 + (1− δ)k−1]f(x∗). Using

the latter, plugging (17) into (16), and eliminating f(xk), we obtain

δ

k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1

[
f(x0)− f(x∗)

]
≤ (1− δ)k

[
Φ0(x∗)− f(x∗)

]
+
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2 + δ

k∑
τ=1

(1− δ)k−τζτ−1 (18)

which completes the proof.

B. Proofs for SVRG and SARAH
B.1. Proof for SVRG (Theorem 1 and Corollary 1)

Proof of Theorem 1

Proof. Since the choices of µ0, Φ∗0 and δk coincide with those in Lemma 4, we can directly apply Lemma 4 to find

δ

k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1

[
f(x0)− f(x∗)

]
≤ (1− δ)k

[
Φ0(x∗)− f(x∗)

]
+
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2 + δ

k∑
τ=1

(1− δ)k−τζτ−1 (19)

where ζk−1 := 〈vk−1 −∇f(xk−1),x∗ − xk−1〉. Upon defining the σ-algebra Fk−1 = σ(i0, i1, . . . , ik−1), and using that
vk is an unbiased estimate of∇f(xk), it follows readily that

E[ζk|Fk−1] = E
[
vk −∇f(xk),x∗ − xk〉|Fk−1

]
= 0

which further implies

E[ζk] = 0. (20)
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Now taking expectation on both sides of (19) and using (20), we have

δ

k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1E

[
f(x0)− f(x∗)

]
(21)

≤ (1− δ)kE
[
Φ0(x∗)− f(x∗)

]
+
µη2

2

k∑
τ=1

(1− δ)k−τE
[
‖vτ−1‖2

]
(a)

≤ (1− δ)kE
[
Φ0(x∗)− f(x∗)

]
+ 2µLη2

k−1∑
τ=0

(1− δ)k−τ−1E
[
f(xτ )− f(x∗) + f(x0)− f(x∗)

]
(b)

≤ (1− δ)kE
[
Φ0(x∗)− f(x∗)

]
+ 2µLη2

k−1∑
τ=0

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
+

2µLη2

δ
E
[
f(x0)− f(x∗)

]
where in (a) we used Lemma 1 to E[‖vτ−1‖2]; and (b) holds because

∑k−1
τ=0(1 − δ)k−τ−1 ≤ 1/δ. Note that we can use

Φ0(x∗) = f(x0) + µ
2 ‖x0 − x∗‖2 together with (1− δ)k−1 > (1− δ)k, to eliminate (1− δ)k−1E[f(x0)− f(x∗)] on the

LHS of (21). Rearranging the terms, we arrive at

(δ − 2µLη2)

k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
≤ µ

2
(1− δ)kE

[
‖x0 − x∗‖2

]
+ 2µLη2(1− δ)k−1E

[
f(x0)− f(x∗)

]
+

2µLη2

δ
E
[
f(x0)− f(x∗)

]
≤
[
(1− δ)k + 2µLη2(1− δ)k−1 +

2µLη2

δ

]
E
[
f(x0)− f(x∗)

]
(22)

where the last inequality is due to µ
2 ‖x− x∗‖ ≤ f(x)− f(x∗). Now choosing η < 1/2L so that δ − 2µLη2 > 0, we have

k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
≤
[

(1− δ)k

δ − 2µLη2
+

2µLη2(1− δ)k−1

δ − 2µLη2
+

2µLη2

δ(δ − 2µLη2)

]
E
[
f(x0)− f(x∗)

]
.

With p0 = pm = 0, and pk = (1− δ)m−k−1/q, k = 1, 2, . . . ,m− 1, where q = [1− (1− δ)m−1]/δ (with δ = µη), we
find

E
[
f(x̃s)− f(x∗)

]
=

m−1∑
τ=1

(1− δ)m−τ−1

q
E
[
f(xτ )− f(x∗)

]
≤ 1

q

[
(1− δ)m

δ − 2µLη2
+

2µLη2(1− δ)m−1

δ − 2µLη2
+

2µLη2

δ(δ − 2µLη2)

]
E
[
f(x̃s−1)− f(x∗)

]
=

1

1− (1− µη)m−1

[
(1− µη)m

1− 2ηL
+

2µLη2(1− µη)m−1

1− 2Lη
+

2Lη

1− 2Lη

]
︸ ︷︷ ︸

:=λSVRG

E
[
f(x̃s−1)− f(x∗)

]
. (23)

Thus, so long as we choose a large enough m and η < 1/(4L), we have λSVRG < 1, that is, SVRG converges linearly.

Proof of Corollary 1

Proof. Choose η = 1/(8L) and m = 3
µη + 1 = 24κ+ 1 ≥ 25. We have that

(1− µη)
1
µη ≤ 0.4 ⇒ (1− µη)m ≤ (0.4)3

(Actually (1− µη)
1
µη ≈ 1/e when µη is small enough). Using the value of η and m, it can be verified that λSVRG ≤ 0.5.

This implies that O
(

ln 1
ε

)
outer loops are needed for an ε-accurate solution. And since m = O(κ), the overall complexity

is O
(
(n+ κ) ln 1

ε

)
.
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B.2. Proofs for SARAH (Lemma 3, Theorem 2 and Corollary 2)

Proof of Lemma 3

Proof. Let Fk−1 = σ(i1, i2, . . . , ik−1), then for any x we have

E
[
〈vk −∇f(xk), x− xk〉|Fk−1

]
= E

[
〈∇fik(xk)−∇fik(xk−1) + vk−1 −∇f(xk), x− xk〉|Fk−1

]
= 〈vk−1 −∇f(xk−1), x− xk〉 = 〈vk−1 −∇f(xk−1), x− xk−1 + xk−1 − xk〉
= 〈vk−1 −∇f(xk−1), x− xk−1〉+ η〈vk−1 −∇f(xk−1), vk−1〉

= 〈vk−1 −∇f(xk−1), x− xk−1〉+
η

2

[
‖vk−1‖2 + ‖vk−1 −∇f(xk−1)‖2 − ‖∇f(xk−1)‖2

]
where the last equation is because 2〈a,b〉 = ‖a‖2+‖b‖2−‖a−b‖2. Since v0 = ∇f(x0), we have 〈v0−∇f(x0),x−x0〉 =
0. And the proof is completed, after taking expectation and unrolling 〈vk−1 −∇f(xk−1),x− xk−1〉.

In order to prove Theorem 2, we need to borrow the following result from (Nguyen et al., 2017).

Lemma 5. (Nguyen et al., 2017, Theorem 1b) If Assumptions 1 and 4 hold, with η ≤ 2/(µ+ L), SARAH guarantees

E
[
‖vk‖2

]
≤
(

1− 2ηL

1 + κ

)k
E
[
‖∇f(x0)‖2

]
.

Proof of Theorem 2.

Proof. With the choices of µ0, Φ∗0, and δk as in Lemma 4, we can directly apply Lemma 4 to confirm that

(1− δ)k−1
[
f(x0)− f(x∗)

]
+ δ

k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
≤ (1− δ)k

[
Φ0(x∗)− f(x∗)

]
+
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2 +

k∑
τ=1

δ(1− δ)k−τ 〈vτ−1 −∇f(xτ−1),x∗ − xτ−1〉

= (1− δ)k
[
Φ0(x∗)− f(x∗)

]
+
µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2 +

k∑
τ=2

δ(1− δ)k−τ 〈vτ−1 −∇f(xτ−1),x∗ − xτ−1〉

where the last equation holds because v0 = ∇f(x0). Since Φ0(x∗) = f(x0) + µ
2 ‖x0 − x∗‖2 ≤ f(x0) + 1

2µ‖∇f(x0)‖2

and (1− δ)k−1 > (1− δ)k, we can eliminate (1− δ)k−1E[f(x0)− f(x∗)] on the LHS, to obtain the inequality

δ

k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
≤ (1− δ)k

2µ
‖∇f(x0)‖2 +

µη2

2

k∑
τ=1

(1− δ)k−τ‖vτ−1‖2 +

k∑
τ=2

δ(1− δ)k−τ 〈vτ−1 −∇f(xτ−1),x∗ − xτ−1〉.
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Taking expectation on both sides, we arrive at

0 ≤ δ
k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
(24)

≤ (1− δ)k

2µ
E
[
‖∇f(x0)‖2

]
+
µη2

2

k∑
τ=1

(1− δ)k−τE
[
‖vτ−1‖2

]
+

k∑
τ=2

δ(1− δ)k−τE
[
〈vτ−1 −∇f(xτ−1),x∗ − xτ−1〉

]
=

(1−δ)k

2µ
E
[
‖∇f(x0)‖2

]
+
µη2

2

k∑
τ=1

(1−δ)k−τE
[
‖vτ−1‖2

]
+

k−1∑
τ=1

δ(1−δ)k−1−τE
[
〈vτ −∇f(xτ ),x∗ − xτ 〉

]
≤ (1−δ)k

2µ
E
[
‖∇f(x0)‖2

]
+
µη2

2

k∑
τ=1

(1−δ)k−τE
[
‖vτ−1‖2

]
+
δη

2

k−1∑
τ=1

(1−δ)k−1−τ
τ−1∑
j=0

E
[
‖vj −∇f(xj)‖2 + ‖vj‖2 − ‖∇f(xj)‖2

]
where for the last inequality we used Lemma 3. Changing the summation order in the last term of the RHS of (24), yields

δη

2

k−1∑
τ=1

(1− δ)k−1−τ
τ−1∑
j=0

E
[
‖vj −∇f(xj)‖2 + ‖vj‖2 − ‖∇f(xj)‖2

]

=
δη

2

k−2∑
τ=0

E
[
‖vτ −∇f(xτ )‖2 + ‖vτ‖2 − ‖∇f(xτ )‖2

][ k−τ−2∑
j=0

(1− δ)τ
]

≤ η

2

k−2∑
τ=0

(
E
[
‖vτ −∇f(xτ )‖2

]
+ E

[
‖vτ‖2

])
− η

2

k−2∑
τ=0

(
1− (1− δ)k−τ−1

)
E
[
‖∇f(xτ )‖2

]
. (25)

Now plugging (25) into (24), and rearranging the terms, we find

η

2

k−2∑
τ=0

(
1− (1− δ)k−1−τ

)
E
[
‖∇f(xτ )‖2

]
≤ (1−δ)k

2µ
E
[
‖∇f(x0)‖2

]
+
µη2

2

k∑
τ=1

(1− δ)k−τE
[
‖vτ−1‖2

]
+
η

2

k−2∑
τ=0

(
E
[
‖vτ −∇f(xτ )‖2

]
+ E

[
‖vτ‖2

])
.

Dividing both sides by η/2 (and recalling that δ = µη), we arrive at

k−2∑
τ=0

(
1− (1− δ)k−τ−1

)
E
[
‖∇f(xτ )‖2

]
(26)

≤ (1−δ)k

µη
E
[
‖∇f(x0)‖2

]
+ δ

k∑
τ=1

(1− δ)k−τE
[
‖vτ−1‖2

]
+

k−2∑
τ=0

(
E
[
‖vτ −∇f(xτ )‖2

]
+ E

[
‖vτ‖2

])
(a)

≤ (1−δ)k

µη
E
[
‖∇f(x0)‖2

]
+ δ

k∑
τ=1

(1−δ)k−τE
[
‖vτ−1‖2

]
+
ηL(k−1)

2− ηL
E
[
‖∇f(x0)‖2

]
+

2−2ηL

2−ηL

k−2∑
τ=0

E
[
‖vτ‖2

]
(b)

≤ (1−δ)k

µη
E
[
‖∇f(x0)‖2

]
+δ

k∑
τ=1

(1−δ)k−τE
[
‖vτ−1‖2

]
+
ηL(k−1)

2− ηL
E
[
‖∇f(x0)‖2

]
+

2−2ηL

2−ηL
1+κ

2ηL
E
[
‖∇f(x0)‖2

]
(c)

≤ (1− δ)k

µη
E
[
‖∇f(x0)‖2

]
+

[
(1− δ)k −

(
1− 2ηL

1 + κ

)k]L+ µ

L− µ
E
[
‖∇f(x0)‖2

]
+
ηL(k − 1)

2− ηL
E
[
‖∇f(x0)‖2

]
+

2− 2ηL

2− ηL
1 + κ

2Lη
E
[
‖∇f(x0)‖2

]
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where in (a) we applied Lemma 1 to deal with E[‖∇f(xτ )− vτ‖2]; in (b) we chose η < 1/L and used Lemma 5 to handle
E[‖vτ‖2] in the last term; and the derivation of (c) is as follows. First, notice that 2ηL/(1 + κ) > µη = δ, which implies
that 1− δ > 1− [2ηL/(1 + κ)]. Then, leveraging Lemma 5, we have

δ

k∑
τ=1

(1− δ)k−τE
[
‖vτ−1‖2

]
≤ δ

k∑
τ=1

(1− δ)k−τ
(

1− 2ηL

1 + κ

)τ−1
E
[
‖∇f(x0)‖2

]
=

[
(1− δ)k −

(
1− 2ηL

1 + κ

)k]L+ µ

L− µ
E
[
‖∇f(x0)‖2

]
.

To proceed, define

c :=

m−2∑
τ=0

(
1− (1− δ)m−τ−1

)
= (m− 1)− (1− δ)− (1− δ)m

δ
= m− 1

δ
+

(1− δ)m

δ
.

and select m large enough so that c > 0. Upon setting pk = (1 − (1 − δ)m−k−1)/c,∀k = 0, 1, . . . ,m − 2, and
pm−1 = pm = 0, we have

E
[
‖∇f(x̃s)‖

]
=

1

c

m−2∑
τ=0

(
1− (1− δ)m−τ−1

)
E
[
‖∇f(xτ )‖2

]
≤
[

(1−δ)m

cµη
+

(
(1−δ)m −

(
1− 2ηL

1+κ

)m) L+µ

c(L−µ)
+
ηL(m−1)

c(2−ηL)
+

2−2ηL

2−ηL
1 + κ

2cηL

]
︸ ︷︷ ︸

:=λSARAH

E
[
‖∇f(x̃s−1)‖2

]
.

Selecting η < 1/L and m large enough to let λSARAH < 1 establishes SARAH’s linear convergence. For example, choosing
η = 1/(2L) and m = 5κ, we have λSARAH ≈ 0.8.

Proof of Corollary 2

Proof. If we choose η = 1/(2L) and m = 6κ = 3/(µη), we have δ = 1/(2κ) and c ≥ 4κ, which implies that

(1− µη)
1
µη ≤ 0.4

(Actually (1−µη)
1
µη ≈ 1/e when µη small enough). Using the value of η and m, it can be verified that λSVRG ≤ 0.75. This

implies that O
(

ln 1
ε

)
outer loops are needed for an ε-accurate solution. And since m = O(κ), the overall complexity is

O
(
(n+ κ) ln 1

ε

)
.

C. Proofs for BB-SVRG and BB-SARAH
Derivation of (8): It is clear that

ηs =
1

θκ

‖x̃s−1 − x̃s−2‖2〈
x̃s−1 − x̃s−2,∇f(x̃s−1)−∇f(x̃s−2)

〉 ≤ 1

θκ

‖x̃s−1 − x̃s−2‖2

µ‖x̃s−1 − x̃s−2‖2
=

1

θκµ

where the inequality follows since under Assumption 3 (or 4) 〈∇f(x)−∇f(y),x− y〉 ≥ µ‖x− y‖2 (Nesterov, 2004,
Theorem 2.1.9). On the other hand, we have

ηs ≥ 1

θκ

‖x̃s−1 − x̃s−2‖2

‖x̃s−1 − x̃s−2‖‖∇f(x̃s−1)−∇f(x̃s−2)
∥∥ ≥ 1

θκL

where the first inequality follows from the Cauchy-Schwarz inequality; and the second inequality is due to Assumption 1.
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C.1. Proof for Proposition 1

For BB-SVRG, the step size ηs changes across different inner loops. Since ηs influences convergence, we will use λs to
denote the convergence rate of the inner loop s, that is, E[f(x̃s)− f(x∗)] ≤ λsE[f(x̃s−1)− f(x∗)].

BB-SVRG with U-Avg:

Proof. From (Johnson and Zhang, 2013), we have the convergence rate is

λs =
1

µηs(1− 2ηsL)m
+

2ηsL

1− 2ηsL

(a)

≤ κθκ
m(1− 2κ/θκ)

+
2κ/θκ

1− 2κ/θκ

where (a) is due to (8). Hence, by choosing θκ > 4κ with θκ = O(κ) and m = O(κ2) such that λs < 1, and using similar
arguments as in the proof of Corollary 1, one can readily verify that the complexity is O

(
(n+ κ2) ln 1

ε

)
.

BB-SVRG with W-Avg:

Proof. It follows from Theorem 1 and (8) that the convergence rate satisfies

λs =
1

1− (1− µηs)m−1

[
(1− µηs)m

1− 2ηsL
+

2µL(ηs)2(1− µη)m−1

1− 2Lηs
+

2Lηs

1− 2Lηs

]

≤ 1

1−
(
1− 1

κθκ

)m−1 [
(
1− 1

κθκ

)m
1− 2κ/θκ

+

2κ
(θκ)2

(
1− 1

κθκ

)m−1
1− 2κ/θκ

+
2κ/θκ

1− 2κ/θκ

]
where the inequality is due to (8). Hence, by choosing θκ > 4κ with θκ = O(κ) and m = O(κ2) so that λs < 1, and using
similar arguments as in the proof of Corollary 1, one can establish that the complexity is O

(
(n+ κ2) ln 1

ε

)
.

C.2. Proof for Proposition 2

Also for BB-SARAH, the step size ηs changes across different inner loops. Since here too ηs affects convergence, we will
use λs to denote the convergence rate of the inner loop s, that is, E[‖f(x̃s)‖2] ≤ λsE[‖f(x̃s−1)‖2].

BB-SARAH with U-Avg:

Proof. We have from (Nguyen et al., 2017) that the convergence rate is

λs =
1

µηsm
+

ηsL

2− ηsL
(a)

≤ κθκ
m

+
κ/θκ

2− κ/θκ

where (a) is due to (8). Hence, by choosing θκ > κ with θκ = O(κ) and m = O(κ2) so that λs < 1, and using arguments
similar to those in the proof of Corollary 2, one can establish that the complexity is O

(
(n+ κ2) ln 1

ε

)
.

BB-SARAH with L-Avg:

Proof. Since the derivation in (Li et al., 2020) relies on Assumption 3, we will first establish the convergence rate under
Assumption 4. The proof proceeds along the lines of (Li et al., 2020), except for the use of Lemma 5 to bound E[‖vst‖]2.
After a simple derivation, one can have the convergence rate

λs =
2ηsL

2− ηsL
+ 2(1 + ηsL)

(
1− 2ηsL

1 + κ

)m
.

Then using (8) to upper bound λs, we have

λs ≤ 2κ/θκ
2− κ/θκ

+ 2(1 + κ/θκ)

(
1− 2

(1 + κ)θκ

)m
.

Hence, by choosing θκ > 3κ/2 with θκ = O(κ) and m = O(κ2) so that λs < 1, and using arguments similar to those in
the proof of Corollary 2, one can verify that the complexity is O

(
(n+ κ2) ln 1

ε

)
.
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(a) η = 0.9/L (b) η = 0.6/L (c) η = 0.06/L
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Figure 6. Comparing SARAH with different types of averaging on datasets a9a and diabetes. In all tests, we set µ = 0.002 with m = 5κ.

Table 1. Parameters of datasets used in numerical tests
Dataset d n (train) density n (test) µ

a9a 122 3, 185 11.37% 29, 376 0.001
rcv1 47, 236 20, 242 0.157% 677, 399 0.00025

real-sim 20, 958 50, 617 0.24% 21, 692 0.00025

BB-SARAH with W-Avg:

Proof. From Theorem 2, the convergence rate is

λs =
(1−µηs)m

cµηs
+

[
(1−µηs)m −

(
1− 2ηsL

1+κ

)m] L+µ

c(L−µ)
+
ηsL(m−1)

c(2−ηsL)
+

2−2ηsL

2−ηsL
1 + κ

2cηsL

≤
κθκ
(
1− 1

κθκ

)m
c

+
(
1− 1

κθκ

)m L+ µ

c(L− µ)
+

(m− 1)κ/θκ
c(2− κ/θκ)

+
2

2− κ/θκ
(1 + κ)θκ

2c

where c = m− 1
µηs + (1−µηs)m

µηs ≥ m− 1
µηs ≥ m−κθκ. With θκ = O(κ) and m = O(κ2) so that c = O(κ2), we find that

λs < 1. In addition, since ηs < 1/L is still needed to guarantee convergence (cf. Theorem 2), one must have θκ > κ.

D. More on Numerical Experiments
D.1. More Numerical Tests of Section 3.4

This subsection presents additional numerical tests to support that averaging is not merely a ‘proof trick.’ Specifically,
experiments with SARAH under different types of averaging on datasets a9a and diabetes are showcased in Fig. 6. Similar
to the performance of SARAH on dataset w7a, W-Avg is better when the step size is chosen large, while a smaller step size
favors L-Avg.

D.2. Details of Datasets Used in Section 5

The dimension d, number of training data n, the weight used for regularization, and other details of datasets used in Section
5, are listed in Table 1.


