
Nearly Linear Row Sampling Algorithm for Quantile Regression

A. Additional Background
A.1. Rademacher Process

We need the following classical results regarding comparison of Rademacher processes.

Lemma A.1 (Proposition 1 in (Ledoux & Talagrand, 1989)). Let F : [0,∞) → [0,∞) be convex and increasing. Let
σ1, . . . , σn be a Rademacher sequence. Then for any bounded subset T ⊂ Rn it holds that
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Lemma A.2 (Contraction Principle, Theorem 4.4 in (Ledoux & Talagrand, 1989)). Let F : [0,∞)→ [0,∞) be convex. Let
σ1, . . . , σn be a Rademacher sequence. Then for any finite sequence (xi) and any real numbers (αi) such that |αi| ≤ 1 for
every i, it holds that
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The next one is a consequence of the contraction principle (see, e.g., Theorem 4.12 in (Ledoux & Talagrand, 1991)).

Lemma A.3. Let F : [0,∞)→ [0,∞) be convex and increasing. Suppose that f(x), g(x) are nonnegative functions such
that |f(x)− f(y)| ≤ L|g(x)− g(y)| for all x, y ∈ R. Let σ1, . . . , σn be a Rademacher sequence. Then for any bounded
subset T ⊂ Rn it holds that
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A.2. Convex Optimization

We recall some results in convex optimization.

Definition A.1. A function f : Rd → R is G-Lipschitz if for any x, y ∈ Rd,

|f(x)− f(y)| ≤ G‖x− y‖2.

We need the following result in (Allen-Zhu, 2017).

Theorem A.4 (Corollary 3.7 in (Allen-Zhu, 2017)). For a given function f(x) = 1
n

∑n
i=1 fi(x), let x∗ = argminx∈Rd f(x).

If each fi : Rd → R is convex and
√
G-Lipschitz, then there is an algorithm that receives an initial solution x0 ∈ Rd, and

outputs a solution x ∈ Rd satisfying E[f(x)]− f(x∗) in

T = O

(
n log

f(x0)− f(x∗)

ε
+

√
nG‖x0 − x∗‖

ε

)

stochastic subgradient iterations.

B. Missing Proofs
B.1. Proof of Theorem 2.3

Proof. By Lemma 2.4 in (Cohen & Peng, 2015), to calculate approximate `1 Lewis weights of rows of a matrix A, it suffices
to calculate approximate leverage scores of rows of matrices of the form WA, for O(log n) different diagonal matrices
W ∈ Rn.

When A is the edge-vertex incidence matrix of a graph G, WA is the edge-vertex incidence matrix of a reweighted graph
G′. In this case, leverage scores of rows of WA are the effective resistances of G′ (cf. (Drineas & Mahoney, 2010)), which
can be computed in Õ(m) time using the algorithm in (Spielman & Srivastava, 2011).
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B.2. Proof of Theorem 3.1

Proof of Theorem 3.1. Suppose that i1, i2, . . . , iN are the indices of {e1, . . . , em} randomly chosen in the construction of
S. Since φ(αt) = αφ(t) for α > 0, for each coordinate of Ãx, we have

Eφ((Ãx)k) = Eφ
(
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=
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φ(A>j x) · pj

N
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N
φ(Ax)

and

Eφ(Ãx) =

N∑
k=1

Eφ((Ãx)k) = φ(Ax).

We just assume that pi ≥ Csε
−2wi logN for now and shall rescale ε in the end. The `1 Lewis weight sampling result

in (Cohen & Peng, 2015) implies that with probability at least 1− 1/poly(N) (over i1, . . . , iN ),

‖Ãx‖1 ≤ C1‖Ax‖1, ∀x ∈ Rd. (7)

We shall condition on this event in the rest of the proof.

Our goal is to derive a tail inequality for
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We shall look at a higher moment of the deviation and apply Markov’s inequality. To this end, we investigate
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where i = (i1, i2, . . . , iN ).

A standard symmetrization argument gives that
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where σ = (σ1, σ2, . . . , σN ) is a Rademacher sequence. It follows that
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where the penultimate inequality follows from Lemma A.1.

For now, condition on the choices of i1, i2, . . . , iN . By Lemma B.1 in (Cohen & Peng, 2015), there exists a matrix A′ of
O(d2) rows such that

‖A′x‖1 ≤ C1‖Ax‖1, ∀x ∈ Rd, (10)

and the Lewis weights of A′ are O(1/d). Append A′ to the matrix Ã, obtaining a new matrix A′′ of N ′ = N +O(d2) rows,
and it is a direct consequence of the contraction principle (Lemma A.2) that
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since the sum on the right-hand side has more terms.

Furthermore, it can be proved that the Lewis weights of A′′ are all O(ε2/ logN ′) (see (Cohen & Peng, 2015)). In this case,
for an appropriate choice of N (and thus N ′), it is implicitly shown in the proof of Theorem 2.3 in (Cohen & Peng, 2015)
that
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for some ` = Θ(logN ′). The next step is to relate the right-hand side of (11) to the left-hand side of (12). Note that

‖A′′x‖1 = ‖Ãx‖1 + ‖A′x‖1
≤ C1‖Ax‖1 + C2‖Ax‖1 (by (7) and (10))
≤ (C1 + C2)Bφ(Ax)

and thus
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Taking expectation over σ on both sides, we obtain using (12) that
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Taking expectation over i1, . . . , iN on both sides subject to the conditioning (7) and combining with (8), (9) and (11), we
obtain that

M ≤ C3(C4aB)`
ε`

poly(N)

The result follows from Markov’s inequality with a rescaling of ε by a factor of 1/(C5aB).

B.3. Proof of Theorem 1.1

Proof. Recall that ρτ (x) = −τx if x ≤ 0 and ρτ (x) = x if x ≥ 0. We can rewrite ρτ (x) = (1 + τ)|x|/2 + (1− τ)x/2.
Also ρτ (x) ≤ ‖x‖1/τ , and thus we can take B = 1/τ in Theorem 3.1. By Theorem 2.2, we can obtain {wi}ni=1, such that
with probability 1− 1/poly(d), for all i ∈ [n], wi ≤ wi ≤ 2wi, where {wi}ni=1 are the `1 Lewis weights of A. Now we
invoke the row sampling algorithm in Theorem 3.1 and the fact in Lemma 2.1 to finish the proof.

B.4. Proof of Lemma 4.1

Proof. By Theorem 1.1, with probability at least 0.9, for all x ∈ Rd,(
1− ε

9

)
ρτ (Ax− b) ≤ ρτ (Ãx− b̃) ≤

(
1 +

ε

9

)
ρτ (Ax− b).
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Let xopt = argminx∈Rd ρτ (Ax− b), we have

ρτ (Ax∗ − b) = ρτ (AR−1x− b)

≤ 1

1− ε/9
ρτ (ÃR−1x− b̃)

≤ 1 + ε/3

1− ε/9
ρτ (ÃR−1(Rxopt)− b̃) (By Equation (6))

=
1 + ε/3

1− ε/9
ρτ (Ãxopt − b̃)

≤ (1 + ε/3)(1 + ε/9)

1− ε/9
ρτ (Axopt − b)

≤ (1 + ε)ρτ (Axopt − b).

B.5. Proof of Lemma 4.2

We need the following claim in our proof.

Claim 1. For a matrix A ∈ Rn×d and a vector y ∈ Rn,

‖A>y‖2 ≤
1

τ
ρτ (y) max

1≤i≤N
‖Ai‖2.

Proof. Observe that
∑n
i=1 |yi| ≤

1
τ ρτ (y). It follows that

‖A>y‖2 =

∥∥∥∥∥
N∑
i=1

yiAi

∥∥∥∥∥
2

≤
N∑
i=1

|yi|‖Ai‖2 ≤ max
1≤i≤N

‖Ai‖2 ·
N∑
i=1

|yi| ≤
1

τ
ρτ (y) max

1≤i≤N
‖Ai‖2.

Now we are ready to prove Lemma 4.2.

Proof. By Lemma 30 in (Durfee et al., 2018), with probability at least 0.9, the leverage score of each row of [Ã, b̃] satisfies
τi([Ã, b̃]) = O(d/N). We condition on this event in the remaining part of the proof. By Lemma 2 in (Cohen et al., 2015),

τi([Ã, b̃]) = min
[Ã,̃b]>x=([Ã,̃b])i

‖x‖22,

and
τi(Ã) = min

Ã>x=Ãi

‖x‖22,

which implies τi(Ã) ≤ τi([Ã, b̃]). Thus, τi(Ã) = O(d/N). Since ÃR−1 = Q has orthonormal columns, for each row Qi
of Q,

‖Qi‖22 = τi(Ã) = O(d/N).

Here we used the standard fact of the relation between leverage scores and the QR decomposition. See Definition 2.6
in (Woodruff, 2014) for details.

Let f(x) = ρτ (ÃR−1x− b̃), we can write

f(x) =

n∑
i=1

ρτ (〈(ÃR−1)i, x〉 − bi) =
1

N

n∑
i=1

fi(x),

where fi(x) = N · ρτ (〈(ÃR−1)i, x〉 − bi). Let gi(x) = 〈(ÃR−1)i, x〉 − bi, then

‖∇gi(x)‖2 ≤ ‖(ÃR−1)i‖2 = ‖Qi‖2 = O(
√
d/N),
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which implies that each gi(x) is O(
√
d/N)-Lipschitz. Observe that ρτ (·) is 1-Lipschitz, it follows that fi(x) = Nρτ (gi(x))

is O(
√
Nd)-Lipschitz.

By Claim 1, we have

‖x0 − x̃opt‖2 = ‖(ÃR−1)>b− x̃opt‖2
= ‖(ÃR−1)>b− x̃opt‖2
= ‖(ÃR−1)>(b− (ÃR−1)x̃opt)‖2

≤
√

d

Nτ2
· ρτ ((ÃR−1)x̃opt − b).

Finally, for any vector y ∈ RN , we have

τ‖y‖2 ≤ τ‖y‖1 ≤ ρτ (y) ≤ ‖y‖1 ≤
√
N‖y‖2.

Since ÃR−1 = Q has orthonormal columns, x0 = (ÃR−1)>b is the optimal solution to minx∈Rd ‖ÃR−1x0 − b̃‖2. Thus,
we have ‖ÃR−1x0 − b̃‖2 ≤ ‖ÃR−1x̃opt − b̃‖2. Therefore,

ρτ (ÃR−1x0 − b̃) ≤
√
N‖ÃR−1x0 − b̃‖2

≤
√
N‖ÃR−1x̃opt − b̃‖2

≤
√
N

τ2
ρτ (ÃR−1x̃opt − b̃).

B.6. Proof of Lemma 4.3

Proof. The initial solution x0 = (ÃR−1)>b can be calculated in O(Nd) time. We condition on the event in Lemma 4.2.
By Theorem A.4, with probability at least 0.9, after

T = O

(
N log

f(x0)− f(x̃opt)

ε · f(x̃opt)
+

√
N2d‖x0 − x∗‖2
ε · f(x̃opt)

)
= O

(
N log

N

ετ2
+
dN1/2

ετ

)
= Õ

(
d1.5

τ2ε2

)
stochastic subgradient iterations, we can find a solution x such that

E
[
ρτ (ÃR−1x− b̃)− min

x∈Rd
ρτ (ÃR−1x− b̃)

]
≤ ε/30 · ρτ (ÃR−1x− b̃).

By Markov’s inequality, with probability at least 0.9, we have

ρτ (ÃR−1x− b̃) ≤ (1 + ε/3) · min
x∈Rd

ρτ (ÃR−1x− b̃).

Furthermore, each stochastic subgradient can be calculated in O(d) time, since

∇fi(x) =

{
sign(〈Ai, x〉 − bi) ·Ai if 〈Ai, x〉 − bi ≥ 0

τ · sign(〈Ai, x〉 − bi) ·Ai otherwise
.

where we choose a subgradient∇fi(x) = 0 at the nondifferentiable points x.

B.7. Proof of Theorem 4.4

Proof. Finding the QR decomposition of the concatenated matrix [Ã, b̃] can be done in Õ(dω/(ε2τ2)) time (see Lemma 33
in (Durfee et al., 2018)). By Lemma 4.3, we can obtain x such that ρτ (ÃR−1x− b̃) ≤ (1 + ε/3) ·minx∈Rd ρτ (ÃR−1x− b̃)
in Õ(d2.5/(τ2ε2)) time and succeeds with probability at least 0.8. By Lemma 4.1, with probability at least 0.9, the obtained
solution x∗ ∈ Rd satisfies ρτ (Ax∗ − b) ≤ (1 + ε) minx∈Rd ρτ (Ax− b). We complete the proof of the theorem by taking a
union bound over the two events mentioned above.
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B.8. Proof of Lemma 5.1

Proof. By permuting the columns we may assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ xn. Suppose that
a = x1 < xn = b, otherwise Ax = 0 and the desired inequality holds automatically.

Let I = {i ∈ [n] : (Ax)i ≥ 0}. Let u =
∑
i∈I Ai and v =

∑
i∈I Ai −

∑
i 6∈I Ai, then ρ0(Ax) = 〈u, x〉 and

ρ1(Ax) = 〈v, x〉 for all x ∈ P , where P = {x ∈ [a, b]n : a = x1 ≤ x2 ≤ · · · ≤ xn = b} is a polytope.

Observe that ρ1(Ax) 6= 0 on P and thus the function f(x) = 〈u, x〉/〈v, x〉 attains its minimum value λ on the compact set
P . Suppose that 〈u, x∗〉 = λ〈v, x∗〉 for some x∗ ∈ P . We claim that x∗ is also the minimizer of 〈u− λv, x〉 on P . Indeed,
if 〈u− λv, x′〉 < 〈u− λv, x∗〉 for some x′ ∈ P , then 〈u, x′〉/〈v, x′〉 < λ, contradicting the minimality of x′.

Now, since x∗ is a minimizer of 〈u− λv, x〉 on the polytope P , it must be some vertex of P , that is, there exists k such that
x∗1 = · · · = x∗k = a and x∗k+1 = · · · = x∗n = b. Let S = {x1, . . . , xk}, then

ρ0(Ax∗)

ρ1(Ax∗)
=

w(S, V \ S)

w(S, V \ S) + w(V \ S, S)
≥ 1

α+ 1
,

where the last step follows from the definition of the α-balanced graph. We complete the proof by noticing that

ρ0(Ax)

ρ1(Ax)
≥ ρ0(Ax∗)

ρ1(Ax∗)
≥ 1

α+ 1
.

B.9. Proof of Corollary 5.2

Proof. Observe that ρ0(x) = 1
2 |x|+

1
2x. Moreover, by Lemma 5.1, we have ‖Bx‖1 ≤ (1 +α)ρ0(Bx) for all x ∈ Rn. Now

we invoke Theorem 3.1 with a = b = 1
2 and B = α+ 1, which states that with probability at least 1− 1/poly(n), for all

x ∈ Rn, (1− ε)ρ0(Bx) ≤ ρ0(B′x) ≤ (1 + ε)ρ0(Bx). Moreover, the rows of B′ are reweighted rows of B, which implies
B′ is the edge-vertex matrix of a graph G′, whose edges are reweighted edges of G. The running time of Algorithm 2
directly follows from Theorem 2.3.

C. Proof of Theorem 6.1
Similar to the proof of Theorem 3.1 and below we shall only highlight the changes. Instead of the comparison result of
Lemma A.1, we shall use Lemma A.3.

Note that we have here that

Eφw(Ãx) = φ(Ax)

and want to upper bound

M := E
S

sup
x 6=0

∣∣∣∣∣φw(Ãx)

φ(Ax)
− 1

∣∣∣∣∣
`
 .

Again by a standard symmetrization argument,
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S
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∣∣∣∣∣
N∑
i=1
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 ≤ 2` E
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x 6=0
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N∑
k=1

σk
φ(〈Aik , x〉)
pikφ(Ax)

∣∣∣∣∣
`
 ,

where σ1, σ2, . . . is a Rademacher sequence and i1, i2, . . . are the indices of the rows chosen randomly during the
construction of S.
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Invoking Lemma A.3 we have for fixed i1, i2, . . . that
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The problem is thus reduced to the analysis of `p Lewis weight sampling and it has been proved implicitly in (Cohen &
Peng, 2015) that

E
i,σ

( sup
‖Ax‖p=1

∣∣∣∣∣
N∑
k=1

σk
|〈Aik , x〉|p

pik

∣∣∣∣∣
)` ≤ (C1ε)

`

poly(N)
.

and hence

M ≤ 22` ·
(

2L

γ

)`
· (C1ε)

`

poly(N)
≤ (C2L/γ · ε)`

poly(N)
.

The result follows from Markov’s inequality with a rescaling of ε by a factor of γ/(C2L).


