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Abstract
We consider nonconvex-concave minimax prob-
lems, minx maxy∈Y f(x,y) where f is noncon-
vex in x but concave in y and Y is a convex
and bounded set. One of the most popular algo-
rithms for solving this problem is the celebrated
gradient descent ascent (GDA) algorithm, which
has been widely used in machine learning, con-
trol theory and economics. Despite the extensive
convergence results for the convex-concave set-
ting, GDA with equal stepsize can converge to
limit cycles or even diverge in a general setting.
In this paper, we present the complexity results
on two-time-scale GDA for solving nonconvex-
concave minimax problems, showing that the al-
gorithm can find a stationary point of the function
Φ(·) := maxy∈Y f(·,y) efficiently. To the best
our knowledge, this is the first nonasymptotic
analysis for two-time-scale GDA in this setting,
shedding light on its superior practical perfor-
mance in training generative adversarial networks
(GANs) and other real applications.

1. Introduction
We consider the following smooth minimax optimization
problem:

min
x∈Rm

max
y∈Y

f(x,y), (1)

where f : Rm×Rn → R is nonconvex in x but concave in y
and where Y is a convex set. Since von Neumann’s seminal
work (Neumann, 1928), the problem of finding the solution
to problem (1) has been a major focus of research in mathe-
matics, economics and computer science (Basar & Olsder,
1999; Nisan et al., 2007; Von Neumann & Morgenstern,
2007). In recent years, minimax optimization theory has be-
gun to see applications in machine learning, with examples
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including generative adversarial networks (GANs) (Good-
fellow et al., 2014), statistics (Xu et al., 2009; Abadeh
et al., 2015), online learning (Cesa-Bianchi & Lugosi, 2006),
deep learning (Sinha et al., 2018) and distributed comput-
ing (Shamma, 2008; Mateos et al., 2010). Moreover, there is
increasing awareness that machine-learning systems are em-
bedded in real-world settings involving scarcity or competi-
tion that impose game-theoretic constraints (Jordan, 2018).

One of the simplest candidates for solving problem (1) is
the natural generalization of gradient descent (GD) known
as gradient descent ascent (GDA). At each iteration, this
algorithm performs gradient descent over the variable x
with the stepsize ηx and gradient ascent over the variable
y with the stepsize ηy. On the positive side, when the ob-
jective function f is convex in x and concave in y, there
is a vast literature establishing asymptotic and nonasymp-
totic convergence for the average iterates generated by GDA
with the equal stepsizes (ηx = ηy); (see, e.g., Korpelevich,
1976; Chen & Rockafellar, 1997; Nedić & Ozdaglar, 2009;
Nemirovski, 2004; Du & Hu, 2018). Local linear conver-
gence can also be shown under the additional assumption
that f is locally strongly convex in x and strongly concave
in y (Cherukuri et al., 2017; Adolphs et al., 2018; Liang
& Stokes, 2018). However, there has been no shortage of
research highlighting the fact that in a general setting GDA
with equal stepsizes can converge to limit cycles or even
diverge (Benaım & Hirsch, 1999; Hommes & Ochea, 2012;
Mertikopoulos et al., 2018).

Recent research has focused on alternative gradient-based
algorithms that have guarantees beyond the convex-concave
setting (Daskalakis et al., 2017; Heusel et al., 2017; Mer-
tikopoulos et al., 2019; Mazumdar et al., 2019). Two-time-
scale GDA (Heusel et al., 2017) has been particularly pop-
ular. This algorithm, which involves unequal stepsizes
(ηx 6= ηy), has been shown to empirically to alleviate the
issues of limit circles and it has theoretical support in terms
of local asymptotic convergence to Nash equilibria; (Heusel
et al., 2017, Theorem 2).

This asymptotic result stops short of providing an under-
standing of algorithmic efficiency, and it would be desirable
to provide a stronger, nonasymptotic, theoretical conver-
gence rate for two-time-scale GDA in a general setting. In
particular, the following general structure arises in many ap-
plications: f(x, ·) is concave for any x and Y is a bounded
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Table 1. The gradient complexity of all algorithms for nonconvex-(strongly)-concave minimax problems. ε is a tolerance and κ > 0 is a
condition number. The result denoted by ? refers to the complexity bound after translating from ε-stationary point of f to our optimality
measure; see Propositions 4.11 and 4.12. The result denoted by ◦ is not presented explicitly but easily derived by standard arguments.

Nonconvex-Strongly-Concave Nonconvex-Concave
Simplicity

Deterministic Stochastic Deterministic Stochastic

Jin et al. (2019) Õ
(
κ2ε−2

)◦
Õ
(
κ3ε−4

)
O(ε−6) O(ε−8)◦ Double-loop

Rafique et al. (2018) Õ(κ2ε−2) Õ(κ3ε−4) Õ(ε−6) Õ(ε−6) Double-loop

Nouiehed et al. (2019) Õ(κ4ε−2)?,◦ – O(ε−7)? – Double-loop

Thekumparampil et al. (2019) – – Õ(ε−3) – Triple-loop

Kong & Monteiro (2019) – – Õ(ε−3) – Triple-loop

Lu et al. (2019) O(κ4ε−2)? – O(ε−8)? – Single-loop

This paper O(κ2ε−2) O(κ3ε−4) O(ε−6) O(ε−8) Single-loop

set. Two typical examples are the training of a neural net-
work which is robust to adversarial examples (Madry et al.,
2017) and the learning of a robust classifier from multiple
distributions (Sinha et al., 2018). Both of these schemes can
be posed as nonconvex-concave minimax problems. Based
on this observation, it is natural to ask the question: Are
two-time-scale GDA and stochastic GDA (SGDA) provably
efficient for nonconvex-concave minimax problems?

Our results: This paper presents an affirmative answer
to this question, providing nonasymptotic complexity re-
sults for two-time scale GDA and SGDA in two settings.
In the nonconvex-strongly-concave setting, two-time scale
GDA and SGDA require O(κ2ε−2) gradient evaluations
and O(κ3ε−4) stochastic gradient evaluations, respectively,
to return an ε-stationary point of the function Φ(·) =
maxy∈Y f(·,y) where κ > 0 is a condition number. In the
nonconvex-concave setting, two-time scale GDA and SGDA
require O(ε−6) gradient evaluations and O(ε−8) stochastic
gradient evaluations.

Main techniques: To motivate the proof ideas for analyz-
ing two-time scale GDA and SGDA, it is useful to con-
trast our work with some of the strongest existing con-
vergence analyses for nonconvex-concave problems. In
particular, Jin et al. (2019) and Nouiehed et al. (2019)
have provided complexity results for algorithms that have
a nested-loop structure. Specifically, GDmax and multi-
step GDA are algorithms in which the outer loop can be
interpreted as an inexact gradient descent on a nonconvex
function Φ(·) = maxy∈Y f(·,y) while the inner loop pro-
vides an approximate solution to the maximization problem
maxy∈Y f(x,y) for a given x ∈ Rm. Strong convergence
results are obtained when accelerated gradient ascent is used
in the maximization problem.

Compared to GDmax and multistep GDA, two-time scale
GDA and SGDA are harder to analyze. Indeed, yt is not
necessarily guaranteed to be close to y?(xt) at each iteration
and thus it is unclear that ∇xf(xt,yt) might a reasonable
descent direction. To overcome this difficulty, we develop
a new technique which analyzes the concave optimization
with a slowly changing objective function. This is the main
technical contribution of this paper.

Notation. We use bold lower-case letters to denote vectors
and caligraphic upper-case letter to denote sets. We use ‖·‖
to denote the `2-norm of vectors and spectral norm of matri-
ces. For a function f : Rn → R, ∂f(z) denotes the subdif-
ferential of f at z. If f is differentiable, ∂f(z) = {∇f(z)}
where ∇f(z) denotes the gradient of f at z and ∇xf(z)
denotes the partial gradient of f with respect to x at z. For
a symmetric matrix A ∈ Rn×n, the largest and smallest
eigenvalue of A denoted by λmax(A) and λmin(A).

2. Related Work
Convex-concave setting. Historically, an early concrete
instantiation of problem (1) involved computing a pair
of probability vectors (x,y), or equivalently solving
minx∈∆m maxy∈∆n x>Ay for a matrix A ∈ Rm×n and
probability simplices ∆m and ∆n. This bilinear mini-
max problem together with von Neumann’s minimax theo-
rem (Neumann, 1928) was a cornerstone in the development
of game theory. A general algorithm scheme was developed
for solving this problem in which the min and max players
each run a simple learning procedure in tandem (Robin-
son, 1951). Sion (1958) generalized von Neumann’s re-
sult from bilinear games to general convex-concave games,
minx maxy f(x,y) = maxy minx f(x,y), and triggered
a line of algorithmic research on convex-concave mini-
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max optimization in both continuous time (Kose, 1956;
Cherukuri et al., 2017) and discrete time (Uzawa, 1958; Gol-
shtein, 1974; Korpelevich, 1976; Nemirovski, 2004; Nedić
& Ozdaglar, 2009; Mokhtari et al., 2019b;a; Azizian et al.,
2019). It is well known that GDA finds an ε-approximate sta-
tionary point within O(κ2 log(1/ε)) iterations for strongly-
convex-strongly-concave problems, and O(ε−2) iterations
with decaying stepsize for convex-concave games (Nedić &
Ozdaglar, 2009; Nemirovski, 2004).

Nonconvex-concave setting. Nonconvex-concave mini-
max problems appear to be a class of tractable problems in
the form of problem (1) and have emerged as a focus in opti-
mization and machine learning (Namkoong & Duchi, 2016;
Sinha et al., 2018; Rafique et al., 2018; Sanjabi et al., 2018;
Grnarova et al., 2018; Lu et al., 2019; Nouiehed et al., 2019;
Thekumparampil et al., 2019; Kong & Monteiro, 2019); see
Table 1 for a comprehensive overview. We also wish to
highlight the work of Grnarova et al. (2018), who proposed
a variant of GDA for nonconvex-concave problem and the
work of Sinha et al. (2018); Sanjabi et al. (2018), who stud-
ied a class of inexact nonconvex SGD algorithms that can be
categorized as variants of SGDmax for nonconvex-strongly-
concave problem. Jin et al. (2019) analyzed the GDmax
algorithm for nonconvex-concave problem and provided
nonasymptotic convergence results.

Rafique et al. (2018) proposed “proximally guided stochas-
tic mirror descent” and “variance reduced gradient” algo-
rithms (PGSMD/PGSVRG) and proved that these algo-
rithms find an approximate stationary point of Φ(·) :=
maxy∈Y f(·,y). However, PGSMD/PGSVRG are nested-
loop algorithms and convergence results were established
only in the special case where f(x, ·) is a linear func-
tion (Rafique et al., 2018, Assumption 2 D.2). Nouiehed
et al. (2019) developed a multistep GDA (MGDA) algo-
rithm by incorporating accelerated gradient ascent as the
subroutine at each iteration. This algorithm provably finds
an approximate stationary point of f(·, ·) for nonconvex-
concave problems with the fast rate of O(ε−3.5). Very re-
cently, Thekumparampil et al. (2019) proposed a proximal
dual implicit accelerated gradient (ProxDIAG) algorithm for
nonconvex-concave problems and proved that the algorithm
find an approximate stationary point of Φ(·) with the rate
of O(ε−3). This complexity result is also achieved by an
inexact proximal point algorithm (Kong & Monteiro, 2019).
All of these algorithms are, however, nested-loop algorithms
and thus relatively complicated to implement. One would
like to know whether the nested-loop structure is necessary
or whether GDA, a single-loop algorithm, can be guaranteed
to converge in the nonconvex-(strongly)-concave setting.

The most closest work to ours is Lu et al. (2019), where
a single-loop HiBSA algorithm for nonconvex-(strongly)-
concave problems is proposed with theoretical guarantees

under a different notion of optimality. However, their anal-
ysis requires some restrictive assumptions; e.g., that f(·, ·)
is lower bounded. We only require that maxy∈Y f(·,y) is
lower bounded. An example which meets our conditions and
not those of Lu et al. (2019) is minx∈R maxy∈[−1,1] x

>y.
Our less-restrictive assumptions make the problem more
challenging and our technique is accordingly fundamentally
difference from theirs.

Nonconvex-nonconcave setting. During the past decade,
the study of nonconvex-nonconcave minimax problems has
become a central topic in machine learning, inspired in part
by the advent of generative adversarial networks (Good-
fellow et al., 2014) and adversarial learning (Madry et al.,
2017; Namkoong & Duchi, 2016; Sinha et al., 2018). Most
recent work aims at defining a notion of goodness or
the development of new procedures for reducing oscilla-
tions (Daskalakis & Panageas, 2018b; Adolphs et al., 2018;
Mazumdar et al., 2019) and speeding up the convergence of
gradient dynamics (Heusel et al., 2017; Balduzzi et al., 2018;
Mertikopoulos et al., 2019; Lin et al., 2018). Daskalakis &
Panageas (2018b) study minimax optimization (or zero-
sum games) and show that the stable limit points of GDA
are not necessarily Nash equilibria. Adolphs et al. (2018)
and Mazumdar et al. (2019) propose Hessian-based algo-
rithms whose stable fixed points are exactly Nash equilibria.
On the other hand, Balduzzi et al. (2018) develop a new
symplectic gradient adjustment (SGA) algorithm for find-
ing stable fixed points in potential games and Hamiltonian
games. Heusel et al. (2017) propose two-time-scale GDA
and show that Nash equilibria are stable fixed points of
the continuous limit of two-time-scale GDA under certain
strong conditions. All of these convergence results are either
local or asymptotic and not extend to cover our results in a
nonconvex-concave setting. Very recently, Mertikopoulos
et al. (2019); Lin et al. (2018) provide nonasymptotic guar-
antees for a special class of nonconvex-nonconcave minimax
problems under variational stability and the Minty condi-
tion. However, while both of these two conditions must hold
in convex-concave setting, they do not necessarily hold in
nonconvex-(strongly)-concave problem.

Online learning setting. From the online learning per-
spective, there is difference in no-regret property of different
algorithms. For example, the extragradient algorithm (Mer-
tikopoulos et al., 2019) is not no-regret, while the optimistic
algorithm (Daskalakis & Panageas, 2018a) is a no-regret
algorithm. In comparing limit behavior of zero-sum game
dynamics, Bailey & Piliouras (2018) showed that the multi-
plicative weights update has similar property as GDA and
specified the necessity of introducing the optimistic algo-
rithms to study the last-iterate convergence.
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3. Preliminaries
We recall basic definitions for smooth functions.

Definition 3.1 A function f is L-Lipschitz if for ∀x,x′, we
have ‖f(x)− f(x′)‖ ≤ L ‖x− x′‖.

Definition 3.2 A function f is `-smooth if for ∀x,x′, we
have ‖∇f(x)−∇f(x′)‖ ≤ ` ‖x− x′‖.

Recall that the minimax problem (1) is equivalent to mini-
mizing a function Φ(·) = maxy∈Y f(·,y). For nonconvex-
concave minimax problems in which f(x, ·) is concave for
each x ∈ Rm, the maximization problem maxy∈Y f(x,y)
can be solved efficiently and provides useful information
about Φ. However, it is still NP hard to find the global
minimum of Φ in general since Φ is nonconvex.

Objectives in this paper. We start by defining local surro-
gate for the global minimum of Φ. A common surrogate in
nonconvex optimization is the notion of stationarity, which
is appropriate if Φ is differentiable.

Definition 3.3 A point x is an ε-stationary point (ε ≥ 0) of
a differentiable function Φ if ‖∇Φ(x)‖ ≤ ε. If ε = 0, then
x is a stationary point.

Definition 3.3 is sufficient for nonconvex-strongly-concave
minimax problem since Φ(·) = maxy∈Y f(·,y) is differ-
entiable in that setting. In contrast, a function Φ is not
necessarily differentiable for general nonconvex-concave
minimax problem even if f is Lipschitz and smooth. A
weaker condition that we make use of is the following.

Definition 3.4 A function Φ is `-weakly convex if a func-
tion Φ(·) + (`/2)‖ · ‖2 is convex.

For a `-weakly convex function Φ, the subdifferential ∂Φ is
uniquely determined by the subdifferential of Φ+(`/2)‖·‖2.
Thus, a naive measure of approximate stationarity can be
defined as a point x ∈ Rm such that at least one subgra-
dient is small: minξ∈∂Φ(x) ‖ξ‖ ≤ ε. However, this notion
of stationarity can be very restrictive when optimizing non-
smooth functions. For example, when Φ(·) = | · | is a
one-dimensional function, an ε-stationary point is zero for
all ε ∈ [0, 1). This means that finding an approximate sta-
tionary point under this notion is as difficult as solving the
problem exactly. To alleviate this issue, Davis & Drusvy-
atskiy (2019) propose an alternative notion of stationarity
based on the Moreau envelope. This has become recognized
as standard for optimizing a weakly convex function.

Definition 3.5 A function Φλ : Rm → R is the Moreau
envelope of Φ with a positive parameter λ > 0 if Φλ(x) =
minw Φ(w) + (1/2λ)‖w − x‖2 for each x ∈ Rm.

Algorithm 1 Two-Time-Scale GDA

Input: (x0,y0), stepsizes (ηx, ηy).
for t = 1, 2, . . . , T do
xt ← xt−1 − ηx∇xf(xt−1,yt−1),
yt ← PY (yt−1 + ηy∇yf(xt−1,yt−1)).

Randomly draw x̂ from {xt}Tt=1 at uniform.
Return: x̂.

Lemma 3.6 If a function f is `-smooth and Y is bounded,
the Moreau envelope Φ1/2` of Φ(·) = maxy∈Y f(·,y) is
differentiable, `-smooth and `-strongly convex.

Thus, an alternative measure of approximate stationarity
of a function Φ(·) = maxy∈Y f(·,y) can be defined as a
point x ∈ Rm such that the norm of the gradient of Moreau
envelope is small: ‖∇Φ1/2`‖ ≤ ε. More generally, we have

Definition 3.7 A point x is an ε-stationary point (ε ≥ 0) of
a `-weakly convex function Φ if ‖∇Φ1/2`(x)‖ ≤ ε. If ε = 0,
then x is a stationary point.

Although Definition 3.7 uses the language of Moreau en-
velopes, it also connects to the function Φ as follows.

Lemma 3.8 If x is an ε-stationary point of a `-weakly con-
vex function Φ (Definition 3.7), there exists x̂ ∈ Rm such
that minξ∈∂Φ(x̂) ‖ξ‖ ≤ ε and ‖x− x̂‖ ≤ ε/2`.

Lemma 3.8 shows that an ε-stationary point defined by Def-
inition 3.7 can be interpreted as the relaxation or surrogate
for minξ∈∂Φ(x) ‖ξ‖ ≤ ε. In particular, if a point x is an ε-
stationary point of an `-weakly convex function Φ, then x is
close to a point x̂ which has at least one small subgradient.

Remark 3.9 We remark that our notion of stationarity is
natural in real scenarios. Indeed, many applications arising
from adversarial learning can be formulated as the minimax
problem (1), and, in this setting, x is the classifier while
y is the adversarial noise for the data. Practitioners are
often interested in finding a robust classifier x instead of
recovering the adversarial noise y. Any stationary point of
the function Φ(·) = maxy∈Y f(·,y) corresponds precisely
to a robust classifier that achieves better classification error.

Remark 3.10 There are also other notions of stationarity
based on ∇f are proposed for nonconvex-concave mini-
max problems in the literature (Lu et al., 2019; Nouiehed
et al., 2019). However, as pointed by Thekumparampil et al.
(2019), these notions are weaker than that defined in Defini-
tion 3.3 and 3.7. For the sake of completeness, we specify
the relationship between our notion of stationarity and other
notions in Proposition 4.11 and 4.12.
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Algorithm 2 Two-Time-Scale SGDA

Input: (x0,y0), stepsizes (ηx, ηy), batch size M .
for t = 1, 2, . . . , T do

Draw a collection of i.i.d. data samples {ξi}Mi=1.

xt ← xt−1 − ηx
(

1
M

∑M
i=1Gx(xt−1,yt−1, ξi)

)
.

yt ← PY
(
yt−1 + ηy( 1

M

∑M
i=1Gy(xt−1,yt−1, ξi))

)
.

Randomly draw x̂ from {xt}Tt=1 at uniform.
Return: x̂.

4. Main Results
In this section, we present complexity results for two-time-
scale GDA and SGDA in the setting of nonconvex-strongly-
concave and nonconvex-concave minimax problems.

The algorithmic schemes that we study are extremely sim-
ple and are presented in Algorithm 1 and 2. In particular,
each iteration comprises one (stochastic) gradient descent
step over x with the stepsize ηx > 0 and one (stochastic)
gradient ascent step over y with the stepsize ηy > 0. The
choice of stepsizes ηx and ηy is crucial for the algorithms in
both theoretical and practical senses. In particular, classical
GDA and SGDA assume that ηx = ηy, and the last iter-
ate is only known convergent in strongly convex-concave
problems (Liang & Stokes, 2018). Even in convex-concave
settings (or bilinear settings as special cases), GDA requires
the assistance of averaging or other strategy (Daskalakis &
Panageas, 2018a) to converge, otherwise, with fixed step-
size, the last iterate will always diverge and hit the con-
straint boundary eventually (Daskalakis et al., 2017; Mer-
tikopoulos et al., 2018; Daskalakis & Panageas, 2018a). In
contrast, two-time-scale GDA and SGDA (ηx 6= ηy) were
shown to be locally convergent and practical in training
GANs (Heusel et al., 2017).

One possible reason for this phenomenon is that the choice
of ηx 6= ηy reflects the nonsymmetric nature of nonconvex-
(strongly)-concave problems. For sequential problems such
as robust learning, where the natural order of min-max is im-
portant (i.e., min-max is not equal to max-min), practitioners
often prefer faster convergence for the inner max problem.
Therefore, it is reasonable for us to choose ηx � ηy rather
than ηx = ηy.

Finally, we make the standard assumption that the oracle
G = (Gx, Gy) is unbiased and has bounded variance.

Assumption 4.1 The stochastic oracle G satisfies

E[G(x,y, ξ)−∇f(x,y] = 0,

E[‖G(x,y, ξ)−∇f(x,y)‖2] ≤ σ2.

4.1. Nonconvex-strongly-concave minimax problems

In this subsection, we present the complexity results for
two-time-scale GDA and SGDA in the setting of nonconvex-
strongly-concave minimax problems. The following as-
sumption is made throughout this subsection.

Assumption 4.2 The objective function and constraint set
(f : Rm+n → R, Y ⊆ Rn) satisfy

1. f is `-smooth and f(x, ·) is µ-strongly concave.

2. Y is a convex and bounded set with a diameter D ≥ 0.

Let κ = `/µ denote the condition number and define

Φ(·) = max
y∈Y

f(·,y), y?(·) = argmax
y∈Y

f(·,y).

We present a technical lemma on the structure of the func-
tion Φ in the nonconvex-strongly-concave setting.

Lemma 4.3 Under Assumption 4.2, Φ(·) is (`+κ`)-smooth
with∇Φ(·) = ∇xf(·,y?(·)). Also, y?(·) is κ-Lipschitz.

Since Φ is differentiable, the notion of stationarity in Defi-
nition 3.3 is our target given only access to the (stochastic)
gradient of f . Denote ∆Φ = Φ(x0)−minx Φ(x), we pro-
ceed to provide theoretical guarantees for two-time-scale
GDA and SGDA algorithms.

Theorem 4.4 (GDA) Under Assumption 4.2 and letting the
stepsizes be chosen as ηx = Θ(1/κ2`) and ηy = Θ(1/`),
the iteration complexity (also the gradient complexity) of
Algorithm 1 to return an ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
.

Theorem 4.5 (SGDA) Under Assumption 4.1 and 4.2 and
letting the stepsizes ηx, ηy be chosen as the same in Theo-
rem 4.4 with the batch size M = Θ(max{1, κσ2ε−2}), the
iteration complexity of Algorithm 2 to return an ε-stationary
point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
,

which gives the total stochastic gradient complexity:

O

(
κ2`∆Φ + κ`2D2

ε2
max

{
1,

κσ2

ε2

})
.

We make several remarks.

First, two-time-scale GDA and SGDA are guaranteed to
find an ε-stationary point of Φ(·) within O(κ2ε−2) gradient
evaluations and O(κ3ε−4) stochastic gradient evaluations,
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respectively. The ratio of stepsizes ηy/ηx is required to
be Θ(κ2) due to the nonsymmetric nature of our problem
(min-max is not equal to max-min). The quantity O(κ2)
reflects an efficiency trade-off in the algorithm.

Furthermore, both of the algorithms are only guaranteed
to visit an ε-stationary point within a certain number of
iterations and return x̂ which is drawn from {xt}Tt=1 at
uniform. This does not mean that the last iterate xT is the
ε-stationary point. Such a scheme and convergence result
are standard in nonconvex optimization for GD or SGD to
find stationary points. In practice, one usually returns the
iterate when the learning curve stops changing significantly.

Finally, the minibatch size M = Θ(ε−2) is necessary for
the convergence property of two-time-scale SGDA. Even
though our proof technique can be extended to the purely
stochastic setting (M = 1), the complexity result becomes
worse, i.e., O(κ3ε−5). It remains open whether this gap can
be closed or not and we leave it as future work.

4.2. Nonconvex-concave minimax problems

In this subsection, we present the complexity results for two-
time-scale GDA and SGDA in the nonconvex-concave mini-
max setting. The following assumption is made throughout
this subsection.

Assumption 4.6 The objective function and constraint set,
(f : Rm+n → R, Y ⊂ Rn) satisfy

1. f is `-smooth and f(·,y) isL-Lipschitz for each y ∈ Y
and f(x, ·) is concave for each x ∈ Rm.

2. Y is a convex and bounded set with a diameter D ≥ 0.

Since f(x, ·) is merely concave for each x ∈ Rm, the func-
tion Φ(·) = maxy∈Y f(·,y) is possibly not differentiable.
Fortunately, the following structural lemma shows that Φ is
`-weakly convex and L-Lipschitz.

Lemma 4.7 Under Assumption 4.6, Φ(·) is `-weakly con-
vex and L-Lipschitz with ∇xf(·,y?(·)) ∈ ∂Φ(·) where
y?(·) ∈ argmaxy∈Y f(·,y).

Since Φ is `-weakly convex, the notion of stationarity in Def-
inition 3.7 is our target given only access to the (stochastic)
gradient of f . Denote ∆̂Φ = Φ1/2`(x0) −minx Φ1/2`(x)

and ∆̂0 = Φ(x0)−f(x0,y0), we present complexity results
for two-time-scale GDA and SGDA algorithms.

Theorem 4.8 (GDA) Under Assumption 4.6 and letting
the step sizes be chosen as ηx = Θ(ε4/(`3L2D2)) and
ηy = Θ(1/`), the iteration complexity (also the gradient
complexity) of Algorithm 1 to return an ε-stationary point is

bounded by

O

(
`3L2D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
.

Theorem 4.9 (SGDA) Under Assumption 4.1 and 4.6 and
letting the step sizes be chosen as ηx = Θ(ε4/(`3D2(L2 +
σ2))) and ηy = Θ(ε2/`σ2) with the batchsize M = 1, the
iteration complexity (also the stochastic gradient complex-
ity) of Algorithm 2 to return an ε-stationary point is bounded
by

O

((
`3
(
L2 + σ2

)
D2∆̂Φ

ε6
+
`3D2∆0

ε4

)
max

{
1,

σ2

ε2

})
.

We make several additional remarks. First, two-time-scale
GDA and SGDA are guaranteed to find an ε-stationary point
in terms of Moreau envelopes within O(ε−6) gradient eval-
uations and O(ε−8) stochastic gradient evaluations, respec-
tively. The ratio of stepsizes ηy/ηx is required to be Θ(1/ε4)
and this quantity reflects an efficiency trade-off in the algo-
rithm. Furthermore, similar arguments as in Section 4.1 hold
for the output of the algorithms here. Finally, the minibatch
size M = 1 is allowed in Theorem 4.9, which is different
from the result in Theorem 4.5.

4.3. Relationship between the stationarity notions

We provide additional technical results on the relationship
between our notions of stationarity and other notions based
on ∇f in the literature (Lu et al., 2019; Nouiehed et al.,
2019). In particular, we show that two notions can be trans-
lated in both directions with extra computational cost.

Definition 4.10 A pair of points (x,y) is an ε-stationary
point (ε ≥ 0) of a differentiable function Φ if

‖∇xf(x,y)‖ ≤ ε,

‖PY(y + (1/`)∇yf(x,y))− y‖ ≤ ε/`.

We present our results in the following two propositions.

Proposition 4.11 Under Assumption 4.2, if a point x̂ is
an ε-stationary point in terms of Definition 3.3, an O(ε)-
stationary point (x′,y′) in terms of Definition 4.10 can
be obtained using additional O(κ log(1/ε)) gradients or
O(ε−2) stochastic gradients. Conversely, if a point (x̂, ŷ) is
an ε/κ-stationary point in terms of Definition 4.10, a point
x̂ is an O(ε)-stationary point in terms of Definition 3.3.

Proposition 4.12 Under Assumption 4.6, if a point x̂ is
an ε-stationary point in terms of Definition 3.7, an O(ε)-
stationary point (x′,y′) in terms of Definition 4.10 can
be obtained using additional O(ε−2) gradients or O(ε−4)
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stochastic gradients. Conversely, if a point (x̂, ŷ) is an ε2-
stationary point in terms of Definition 4.10, a point x̂ is an
O(ε)-stationary point in terms of Definition 3.3.

To translate the notion of stationarity based on ∇f to our
notion of stationarity, we need to pay an additional factor
of O(κ log(1/ε)) or O(ε−2) in the two settings. In this
sense, our notion of stationarity is stronger than the notion
based on ∇f in the literature (Lu et al., 2019; Nouiehed
et al., 2019). We defer the proofs of these propositions to
Appendix B.

4.4. Discussions

Note that the focus of this paper is to provide basic
nonasymptotic guarantees for the simple, and widely-
used, two-time-scale GDA and SGDA algorithms in the
nonconvex-(strongly)-concave settings. We do not wish to
imply that these algorithms are optimal in any sense, nor
that acceleration should necessarily be achieved by incor-
porating momentum into the update for the variable y. In
fact, the optimal rate for optimizing a nonconvex-(strongly)-
concave function remains open. The best known complex-
ity bound has been presented by Thekumparampil et al.
(2019) and Kong & Monteiro (2019). Both of the analy-
ses only require Õ(ε−3) gradient computations for solving
nonconvex-concave problems but suffer from rather com-
plicated algorithmic schemes. The general question of the
construction of optimal algorithms in nonconvex-concave
problems is beyond the scope of this paper.

Second, our complexity results are also valid in the convex-
concave setting and this does not contradict results showing
the divergence of GDA with fixed stepsize. We note a few
distinctions: (1) our results guarantee that GDA will visit ε-
stationary points at some iterates, which are not necessarily
the last iterates; (2) our results only guarantee stationarity
in terms of xt, not (xt,yt). In fact, our proof permits the
possibility of significant changes in yt even when xt is al-
ready close to stationarity. This together with our choice
ηx � ηy, makes our results valid. To this end, we highlight
that our algorithms can be used to achieve an approximate
Nash equilibrium for convex-concave functions (i.e., op-
timality for both x and y). Instead of averaging, we run
two passes of two-time-scale GDA or SGDA for min-max
problem and max-min problem separately. That is, in the
first pass we use ηx � ηy while in the second pass we use
ηx � ηy. Either pass will return an approximate stationary
point for each players, which jointly forms an approximate
Nash equilibrium.

5. Overview of Proofs
In this section, we sketch the complexity analysis for two-
time-scale GDA (Theorems 4.4 and 4.8).

5.1. Nonconvex-strongly-concave minimax problems

In the nonconvex-strongly-concave setting, our proof in-
volves setting a pair of stepsizes, (ηx, ηy), which force
{xt}t≥1 to move much more slowly than {yt}t≥1. Recall
Lemma 4.3, which guarantees that y?(·) is κ-Lipschitz:

‖y?(x1)− y?(x2)‖ ≤ κ‖x1 − x2‖.

If {xt}t≥1 moves slowly, then {y?(xt)}t≥1 also moves
slowly. This allows us to perform gradient ascent on a slowly
changing strongly-concave function f(xt, ·), guaranteeing
that ‖yt − y?(xt)‖ is small in an amortized sense. More
precisely, letting the error be δt = ‖y?(xt) − yt‖2, the
standard analysis of inexact nonconvex gradient descent
implies a descent inequality in which the sum of δt provides
control:

Φ(xT+1)− Φ(x0)

≤ −Ω(ηx)

(
T∑
t=0

‖∇Φ(xt)‖2
)

+O(ηx`
2)

(
T∑
t=0

δt

)
.

The remaining step is to show that the second term is always
small compared to the first term on the right-hand side. This
can be done via a recursion for δt as follows:

δt ≤ γδt−1 + β‖∇Φ(xt−1)‖2,

where γ < 1 and β is small. Thus, δt exhibits a linear
contraction and

∑T
t=0 δt can be controlled by the term∑T

t=0 ‖∇Φ(xt)‖2.

5.2. Nonconvex-concave minimax problems

In this setting, the main idea is again to set a pair of learning
rates (ηx, ηy) which force {xt}t≥1 to move more slowly
than {yt}t≥1. However, f(x, ·) is merely concave and y?(·)
is not unique. This means that, even if x1,x2 are extremely
close, y?(x1) can be dramatically different from y?(x2).
Thus, ‖yt − y?(xt)‖ is no longer a viable error to control.

Fortunately, Lemma 4.7 implies that Φ is Lipschitz. That
is to say, when the stepsize ηx is very small, {Φ(xt)}t≥1

moves slowly:

|Φ(xt)− Φ(xt−1)| ≤ L‖xt − xt−1‖ ≤ ηxL
2.

Again, this allows us to perform gradient ascent on a slowly
changing concave function f(xt, ·), and guarantees that
∆t = f(xt, z) − f(xt,yt) is small in an amortized sense
where z ∈ y?(xt). The analysis of inexact nonconvex
subgradient descent (Davis & Drusvyatskiy, 2019) implies
that ∆t comes into the following descent inequality:

Φ1/2`(xT+1)− Φ1/2`(x0) ≤ O(ηx`)

(
T∑
t=0

∆t

)

+O(η2
x`L

2(T + 1))−O(ηx)

(
T∑
t=0

‖∇Φ1/2`(xt)‖2
)
,
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 1. Performance of WRM with GDmA and GDA on MNIST, Fashion-MNIST and CIFAR-10 datasets. We demonstrate test
classification accuracy vs. time for different WRM models with GDmA and GDA. Note that γ = 0.4.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 2. Performance of WRM with GDmA and GDA on MNIST, Fashion-MNIST and CIFAR-10 datasets. We demonstrate test
classification accuracy vs. time for different WRM models with GDmA and GDA. Note that γ = 1.3.

where the first term on the right-hand side is the error term.
The remaining step is again to show the error term is small
compared to the sum of the first two terms on the right-hand
side. To bound the term

∑T
t=0 ∆t, we recall the follow-

ing inequalities and use a telescoping argument (where the
optimal point y? does not change):

∆t ≤
‖yt − y?‖2 − ‖yt+1 − y?‖2

ηy
. (2)

The major challenge here is that the optimal solution y?(xt)
can change dramatically and the telescoping argument does
not go through. An important observation is, however,
that (2) can be proved if we replace the y? by any y ∈ Y ,
while paying an additional cost that depends on the differ-
ence in function value between y? and y. More specifically,
we pick a block of size B = O(ε2/ηx) and show that the
following statement holds for any s ≤ ∀t < s+B,

∆t−1 ≤ O(`)
(
‖yt − y?(xs)‖2 − ‖yt+1 − y?(xs)‖2

)
+O(ηxL

2)(t− 1− s).

We perform an analysis on the blocks where the concave
problems are similar so the telescoping argument can now

work. By carefully choosing ηx, the term
∑T
t=0 ∆t can also

be well controlled.

6. Experiments
In this section, we present several empirical results to
show that two-time-scale GDA outperforms GDmax. The
task is to train the empirical Wasserstein robustness model
(WRM) (Sinha et al., 2018) over a collection of data sam-
ples {ξi}Ni=1 with `2-norm attack and a penalty parameter
γ > 0. Formally, we have

min
x

max
{yi}Ni=1⊆Y

1

N

[
N∑
i=1

(
`(x,yi)− γ‖yi − ξi‖2

)]
. (3)

As demonstrated in Sinha et al. (2018), we often choose
γ > 0 sufficiently large such that `(x,yi)− γ‖yi − ξi‖2 is
strongly concave. To this end, problem (3) is a nonconvex-
strongly-concave minimax problem.

We mainly follow the setting of Sinha et al. (2018) and con-
sider training a neural network classifier on three datasets1:

1https://keras.io/datasets/
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MNIST, Fashion-MNIST, and CIFAR-10, with the default
cross validation. The architecture consists of 8×8, 6×6 and
5 × 5 convolutional filter layers with ELU activations fol-
lowed by a fully connected layer and softmax output. Small
and large adversarial perturbation is set with γ ∈ {0.4, 1.3}
as the same as Sinha et al. (2018). The baseline approach is
denoted as GDmA in which ηx = ηy = 10−3 and each inner
loop contains 20 gradient ascent. Two-time-scale GDA is
denoted as GDA in which ηx = 5× 10−5 and ηy = 10−3.
Figure 1 and 2 show that GDA consistently outperforms
GDmA on all datasets. Compared to MNIST and Fashion-
MNIST, the improvement on CIFAR-10 is more significant
which is worthy further exploration in the future.

7. Conclusion
In this paper, we have shown that two-time-scale GDA and
SGDA return an ε-stationary point in O(κ2ε−2) gradient
evaluations andO(κ3ε−4) stochastic gradient evaluations in
the nonconvex-strongly-concave case, and O(ε−6) gradient
evaluations and O(ε−8) stochastic gradient evaluations in
the nonconvex-concave case. Thus, these two algorithms
are provably efficient in these settings. In future work we
aim to derive a lower bound for the complexity first-order
algorithms in nonconvex-concave minimax problems.
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