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Abstract

We use alphanumeric numbering to avoid confusion with numbering in
the main paper. Section A contains proof of Theorem 1. We present the
proof of Theorem 2 in Section B and the proof of Theorem 3 in Section C.
In Section D we present the proof of Proposition 1. Finally we present
proof of Proposition 2 in Section 3.4 and additional theoretical results in
Section F. We conclude with additional experimental results in Section G.

A Proof of Theorem 1

In what follows, let ξn = (ξi)1≤i≤n and ηn = (ηij)1≤i<j≤n. Furthermore, we
will let ξn,i denote the vector formed by removing node i and ηn,i denote the
(concatenated) vector formed by removing all elements containing row or column
index i.

Proof. Let Zn,i = g(ξn,i,ηn,i) denote the functional calculated on an induced
subgraph of n−1 nodes excluding node i. As before, let Zn−1 = Zn,n. Construct
the following martingale difference sequence:

di = E(Zn−1|Σi)− E(Zn−1|Σi−1) (A.1)

Here, we consider a filtration introduced by Borgs et al. (2008), which was
originally used to establish exponential concentration for certain subgraph fre-
quencies in the dense regime.

Let Σ0 = {∅,Ω}, Σ1 = σ(ξ1), Σ2 = σ(ξ1, ξ2, η12), Σ3 = σ(ξ1, ξ2, ξ3, η12, η13, η23)
and so forth up to n. The filtration we consider has the following interpretation:
for each time 1 ≤ t ≤ n, suppose that we observe a t × t adjacency matrix in-
duced by the nodes {1, 2, . . . , t}. Then, Σt captures all of the randomness in the
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corresponding induced subgraph. We may visualize Σi as a σ-field generated by
a triangular array so that:

Σi = σ


ξ1 η12 ... η1,i−1 η1i

ξ2 ... η2,i−1 η2i
... ..
ξi−2 ηi−2,i−1, ηi−2,i

ξi−1 ηi−1,i

ξi

 ; Σi−1 = σ


ξ1 η12 ... η1,i−1

ξ2 ... η2,i−1

... ..
ξi−2 ηi−2,i−1

ξi−1


Observe that Zn−1−E(Zn−1) =

∑n
i=1 di, di is Σi measurable, and E(di|Σi−1) =

0. Therefore, the variance of Zn can be written as:

Var Zn−1 = E

(
n∑

i=1

di

)2

=

n∑
i=1

E(d2i ) + 2
∑
i<j

E(didj)

Now, for i 6= j, observe that:

E(didj) = E(E(didj |Σi)) = E(di)E(dj |Σi)

= E(di)(E[E(Sn|Σj)|Σi]− E[E(Sn|Σj−1)|Σi]) = 0

For the jackknife estimate, we have that:

E

(
n∑

i=1

(Zn,i − Z̄n)2

)
=
∑
i<j

E(Zn,i − Zn,j)
2

n
=

(n− 1) · E(Zn,1 − Zn,2)2

2

We also denote by Σi:j , the sigma field containing all information of random
variables ξi, . . . , ξj , and ηk`, i ≤ k < ` ≤ j. Now define A as Σ3:i+1. Since
Zn−1 is invariant to node-permutation, A is independent of σ(ξ2, η23, . . . , η2n)
and σ(ξ1, η13, . . . , η1n),

E(Zn,1|A) = E(Zn,2|A)

Define:

U = E(Zn,1|Σi+1)− E(Zn,1|A), V = E(Zn,2|Σi+1)− E(Zn,2|A) (A.2)

Then, using the fact that E[X2|Σi+1] ≥ E[X|Σi+1]2 for some Σi+1 measurable
r.v. X, we have:

E(Zn,1 − Zn,2)2 ≥ E[E(Zn,1|Σi+1)− E(Zn,2|Σi+1)]2 = E(U − V )2 (A.3)

Notice that conditional on A, U is a function of {ξ2, η23, . . . , η2,i+1}, while V
is a function of {ξ1, η13, . . . , η1,i+1}. Thus, U and V are conditionally indepen-
dent. Then, since A ⊂ Σi+1, by the tower property of conditional expectations,
we have that:

E(U − V )2 = E(U2)− 2E(UV ) + E(V 2) = E(U2) + E(V 2)− 2E(E(U |A)E(V |A))
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= E(U2) + E(V 2),

Now, we expand E(U2) as follows:

E(U2) = E((E(Zn,1|Σ(i+1))− E(Zn,1|A))2]

(i)
= E((E(Zn,1|Σ2:i+1)− E(Zn,1|Σ3:i+1))2]

(ii)
= E[(E(Zn,n|Σ1:i)− E(Zn,n|Σ1:i−1))2]

= E[(E(Zn−1|Σi)− E(Zn−1|Σi−1))2] = E(d2i )

Step (i) holds because the random variables associated with node 1 are not
present in Zn,1. Step (ii) holds because ξ1, . . . ξn and ηij , 1 ≤ i < j ≤ n are
i.i.d random variables, and E[Zn,1|Σ2:i+1] ( E[Zn,1|Σ3:i+1] ) and E[Zn,n|Σ1:i]
(E[Zn,n|Σ1:i−1]) are equal in distribution.

Similarly, EV 2 = Ed2i , E(U − V )2 = 2Ed2i . Thus,

E(Zn,1 − Zn,2)2 ≥ E(U − V )2 = 2Ed2i (A.4)

E

(
n∑

i=1

(Zn,i − Z̄n)2

)
=
n− 1

2
E(Zn,1−Zn,2)2 ≥ (n−1)Ed2i = Var Zn−1 (A.5)

B Proof of Theorem 2

For notational convenience, let Zn = P̂ (R) and let Zn,i denote the subgraph
frequency defined in Eq 15 with node i removed:

Zn,i = ρ−en

1(
n−1
p

)
|Iso(R)|

∑
S∼R, i 6∈V (S)

1(S = Gn) (A.6)

We first present a lemma that will be used in the proof. An identity relating the
mean of leave-one-out jackknife estimates to a U-statistic plays an important role
in the proof of jackknife consistency for U-statistics. Using a novel combinatorial
argument, we show that a similar identity holds for normalized subgraph counts:

Lemma B.1. Letting Zn,i and Zn be defined as above, we have that:

Z̄n :=
1

n

n∑
i=1

Zn,i = Zn

Proof. For a subgraph with p nodes and e edges, denote the number of this
subgraph in Gn as Q. Denote the number of subgraphs node i is involved in as
Qi. We now analyze

∑n
i=1Qi. For each vertex set with cardinality p, a given

subgraph is counted once from each vertex. Therefore,
∑n

i=1Qi = pQ.
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Observe that Zn,i + Qi = Q since the set of subgraphs that do not contain
node i and the set of subgraphs that contain node i are disjoint and their union
gives the set of subgraphs counted in Q. It follows that:

1

n

∑
i

Zn,i =
1
n

∑
i(Q−Qi)(
n−1
p

)
ρen

=
(n− p)Q
n
(
n−1
p

)
ρen

=
Q(

n
p

)
ρen

= Zn.

Now, we introduce the limiting value of the scaled variance, which represents
the value we are aiming for with the jackknife. Bickel et al. (2011) show that
the asymptotic behavior of P̂ (R) is driven by a U-statistic corresponding to
the edge structure of the subgraph. For a subgraph R with V (R) = {1, . . . , p},
define the kernel:

h(x1, . . . , xp) =
1

|Iso(R)|
∑

S∼R, V (S)={1,...,p}

∏
(i,j)∈E(R)

w(xi, xj) (A.7)

Theorem 1 of Bickel et al. (2011) establishes that:

n ·Var P̂ (R)→ σ2

where σ2 = p2ζ is the variance of the U-statistic with kernel h (see for example,
Serfling (1980), page 192) and ζ = Var(E(h(ξ1, . . . , ξp)|ξ1)). We will now scale
the jackknife variance by n to study its asymptotics. Let:

αi = Zn,i − E(Zn,i|ξn), βi = E(Zn,i|ξn) (A.8)

For simplicity we will use ᾱn (or β̄n) to denote the average of αi (or βi). Now,
consider the following signal-noise decomposition:

n ·
n∑

i=1

(Zn,i − Z̄n)2 = n ·
n∑

i=1

(αi − ᾱn + βi − β̄n)2

= n ·
n∑

i=1

(αi − ᾱn)2 + 2n ·
n∑

i=1

(αi − ᾱn)(βi − β̄n)

+ n ·
n∑

i=1

(βi − β̄n)2. (A.9)

We start by bounding the third sum, which is the signal in our decomposi-
tion. Observe that βi is a U-statistic with the kernel h defined in (A.7); therefore,
by Theorem 1 and its following discussions of Chapter 5 in Lee (1990), we have
that:

n ·
n∑

i=1

(βi − β̄n)2
P−→ σ2 (A.10)
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The result will follow if we show that the remaining two sums in the de-
composition are negligible. If the first sum is negligible, the Cauchy-Schwarz
inequality would imply that:

n ·
n∑

i=1

(αi − ᾱn)(βi − β̄n) ≤ n ·

√√√√ n∑
i=1

(αi − ᾱn)2 ·
n∑

i=1

(βi − β̄n)2
P−→ 0

It remains to show that: n ·
∑n

i=1(αi − ᾱn)2
P−→ 0. Now, observe that:

n∑
i=1

(αi − ᾱn)2 =

n∑
i=1

α2
i − nᾱ2

n

Expanding the square for
∑n

i=1 α
2
i we have that:

n∑
i=1

α2
i =

n∑
i=1

(Zn,i − E(Zn,i|ξn))2

=

n∑
i=1

(
n− 1
k

)−2 ∑
S∼R, i 6∈V (S)

(ρ−en ψ(S)−W (S))
∑

T∼R, i 6∈V (T )

(ρ−en ψ(T )−W (T ))

where ψ(S) and W (S) are given by:

ψ(S) =
1

|Iso(R)|
∏

(i,j)∈E(S), S∼R

Aij ×
∏

(i,j)∈E(S), S∼R

1−Aij ,

W (S) =
1

|Iso(R)|
∏

(i,j)∈E(S), S∼R

w(ξi, ξj) ×
∏

(i,j)∈E(S), S∼R

1− ρnw(ξi, ξj)

and E(S) are (i, j) ∈ V (S)×V (S) that are not contained in E(S). Now, similar
to Lee (1990), we group elements in the sum based on the number of elements
in V (S)∩V (T ). For each |V (S)∩V (T )| = c, there are n−2p+ c terms in total.
It follows that:

n∑
i=1

α2
i =

(
n− 1
p

)−2 p∑
c=0

(n− 2p+ c)
∑

|V (S)∩V (T )|=c

(ρ−en ψ(S)−W (S))(ρ−en ψ(T )−W (T ))

=

(
n− 1
p

)−2 p∑
c=0

(n− 2p+ c)
∑

|V (S)∩V (T )|=c

γ(S, T ), say.

Now we turn to nᾱ2
n;

ᾱn =
1

n

∑
i

Zn,i −
1

n

∑
i

E(Zn,i|ξn)
(i)
= Zn − E(Zn|ξn)
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Equality (i) follows from Lemma B.1. Now expanding ᾱ2
n in a similar manner,

we have that

ᾱ2
n =

(n− p)2

n

(
n− 1
p

)−2 p∑
c=0

∑
|V (S)∩V (T )|=c

γ(S, T ),

Then,

n∑
i=1

(αi − ᾱn)2 =

(
n− 1
p

)−2 p∑
c=0

(
n− 2p+ c− (n− p)2

n

) ∑
|V (S)∩V (T )|=c

γ(S, T )

=

p∑
c=0

∑
|V (S)∩V (T )|=c

(
c− p2

n

)
·
(
n− 1
p

)−2
γ(S, T )

Now, taking expectations, we have that:

E

(n− 1
p

)−2 p∑
c=0

∑
|V (S)∩V (T )|=c

γ(S, T )


= E

(n− 1
p

)−2 p∑
c=0

∑
|V (S)∩V (T )|=c

(
ρ−en ψ(S)−W (S)

)(
ρ−en ψ(T )−W (T )

)
=
(
1− o(1)

)
· E
[
Var(P̂ (R) | ξn)

]
= o

(
1

n

)
where the last line follows from the proof of Theorem 1 of Bickel et al. (2011).

Now, by Markov inequality, we have that

n ·
n∑

i=1

(αi − ᾱn)2
P−→ 0 (A.11)

and the result follows.

C Proof of Theorem 3

Proof. Let Zn,i = (Zn,i(1), . . . Zn,i(d)), where d is a constant w.r.t n and each
entry corresponds to a count functional with node i removed. Each count func-
tional may involve subgraphs of different sizes. We will use a Taylor expansion
around Z̄n.

f(Zn,i) = f
(
Z̄n) +∇f(ζi)

T (Zn,i − Z̄n)

= f
(
Z̄n) +∇f(µ)T (Zn,i − Z̄n) + (∇f(ζi)−∇f(µ))T (Zn,i − Z̄n)︸ ︷︷ ︸

Ei

,
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where ζi = (ζi1, . . . , ζid) = ciZn,i + (1− ci)Z̄n for some c ∈ [0, 1]. Thus, we also
have:

f(Zn,i)− f(Zn,i) = ∇f(µ)T (Zn,i − Z̄n)︸ ︷︷ ︸
Ii

+Ei −
1

n

∑
i

Ei︸ ︷︷ ︸
IIi

(A.12)

For the first part we see that,

n
∑
i

(Ii)
2 = n∇f(µ)T

(∑
i

(Zn,i − Z̄n)(Zn,i − Z̄n)T

)
∇f(µ) (A.13)

We will first show that the inner average of the above expression converges to the
covariance matrix of Zn,i (recall that here we are considering a finite dimensional
vector). Extending the same argument in Eq A.9 to finite dimensional Zn,i’s
(and αi and βi’s defined in Eq A.8),

n
∑
i

(Zn,i − Z̄n)(Zn,i − Z̄n)T

= n
∑
i

(
(αi − ᾱn)(αi − ᾱn)T + (αi − ᾱn)(βi − β̄n)T + (βi − β̄n)(αi − ᾱn)T

+(βi − β̄n)(βi − β̄n)T
)

By Theorem 9 of Arvesen (1969) we have that:

n
∑
i

(βi − β̄n)(βi − β̄n)T
P→ Σ (A.14)

Above, Σ is the covariance matrix of a multivariate U-statistic with kernels
(h1, . . . , hd), where each hj is the kernel corresponding to the count functional
in the jth coordinate of the vector Zn (see Eq A.7). Now combining Eq A.14
with Eq A.13 we see that,∣∣∣∣∣n∑

i

(Ii)
2 − f(µ)T Σf(µ)

∣∣∣∣∣ ≤ ‖∇f(µ)‖2n
∑
i

‖αi − ᾱn‖2

+ 2n‖∇f(µ)‖2
∑
i

|(αi − ᾱn)T (βi − β̄n)| (A.15)

The first part is op(1) by an analogous argument leading to Eq A.11. For
the second part, we see that an application of Cauchy Schwarz inequality gives:

n
∑
i

|(αi − ᾱn)T (βi − β̄n)| ≤
d∑

j=1

√√√√(∑
i

n(αi(j)− ᾱn(j))2

)(
n
∑
i

(βi(j)− β̄n(j))2

)

The first part inside the square root is op(1) due to Eq A.11, and the second
part is Op(1) by Eq A.10. Using this in conjunction with Eq A.15 and since
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‖∇f(µ)‖ is bounded, we see that:∣∣∣∣∣n∑
i

(Ii)
2 −∇f(µ)T Σ∇f(µ)

∣∣∣∣∣ = op(1)

All that remains now is to show that part IIi in Eq A.12 is negligible even when
summed and multiplied by n. First note that (IIi)

2 ≤ E2
i .

n
∑
i

(IIi)
2 ≤ n

∑
i

|(∇f(ζi)−∇f(µ))T (Zn,i − Z̄n)|2

≤ max
i
‖∇f(ζi)−∇f(µ)‖2

(
n
∑
i

(Zn,i − Z̄n)T (Zn,i − Z̄n)

)
(A.16)

Theorem 2 shows that the second part in the RHS of Eq A.16 is Op(1). We will
now show that the first part is asymptotically negligible.

Observe that:

max
i
‖ζi − µ‖ ≤ max

i
ci‖Zn,i − µ‖+ max

i
(1− ci)‖Z̄n − µ‖

≤
√
d ·max

i,j
|Zn,i(j)− Z̄n(j)|+ 2‖Z̄n − µ‖

≤
√
d ·max

j

√√√√ n∑
i=1

(
Zn,i(j)− Z̄n(j)

)2
+ 2‖Zn − µ‖

Above, Z̄n = Zn by Lemma B.1. The first term on the RHS converges in
probability to 0 from our Theorem 2. By Theorem 1 of Bickel et al. (2011),
‖Zn − µ‖ is also negligible. Since maxi ‖ζi − µ‖ = op(1) and ∇f is continuous
at µ, by continuity, we have that maxi ‖∇f(ζi) − ∇f(µ)‖2 = op(1). Since the
second term on the RHS of Eq A.16 is Op(1) from our previous argument and
the first term is op(1), it follows that the LHS of Eq A.16 is op(1).

Let µn = E[Zn]. Note that if one counts subgraphs by an exact match as
in Bickel et al. (2011) µn → µ. If one counts subgraphs via edge matching,
µn = µ. Thus, both these types of subgraph densities, which asymptotically
have the same limit, can be handled by our theoretical results. By Theorem 3.8
in Van der Vaart (2000),

√
n(f(Zn)− f(µn)) N(0,∇f(µ)T Σ∇f(µ))

This shows that the jackknife estimate of variance converges to the asymptotic
variance of f(Zn).
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D Proof of Proposition 1

Throughout this section, we will use the notation xn � yn to denote xn =
yn(1+o(1)). Before presenting the proof, we present two accompanying lemmas
which will be used in the proof of Proposition 1.

Lemma D.1. Denote D
(n)
i the degree of node i in the size n graph.

n−1∑
i=1

Var

(
D

(n)
i(

n−1
2

)
ρn

)
� 4

n3
E(Var

∑
k,k 6=i

w(ξi, ξk)|ξi)

+
4

n
Var[E(w(ξi, ξk)|ξi)] +O(n−2ρ−1n ).

Lemma D.2. Denote D
(n)
i the degree of node i in the size n graph.

∑
i,j,i 6=j

cov

(
D

(n)
i(

n−1
2

)
ρn
,
D

(n)
j(

n−1
2

)
ρn

)
� 4

n
× 3Var(E[w(ξi, ξj)|ξi]) +O(n−2ρ−1n )

We will use the above to lemmas to prove Proposition 1, which we now
present.

Proof. Denote Dn as the total number of edges in graph Gn. By definition,

Zn =
Dn(
n
2

)
ρn

Denote D
(n)
i the degree of node i in the size n graph. We have that ED

(n)
i =

ED
(n)
j for any node pair. Thus the jackknife estimate of edges for a graph with

node i removed is Dn minus the degree of node i. Define

γn =

(
n− 1

2

)
ρn; γ′n =

(
n− 1

2

)
ρn−1 (A.17)

Then by definition, we have

Zn,i =
Dn −D(n)

i(
n−1
2

)
ρn

=
Dn −D(n)

i

γn

Then, the jackknife estimate is

E

n∑
i=1

(Zn,i − Z̄n)2 =
1

2n

∑
i 6=j

E(Zn,i − Zn,j)
2 =

1

2n

∑
i6=j

E

(
D

(n)
i −D(n)

j

γn

)2

=

n−1∑
i=1

Var

(
D

(n)
i

γn

)
− 1

n

∑
i6=j

cov

(
D

(n)
i

γn
,
D

(n)
j

γn

)
(A.18)
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whereas the total number of degrees in a (n−1) graph isDn−1 =
∑n−1

i=1 D
(n−1)
i /2

as each edge is counted 2 times from each node. We first obtain an expression
for Var Zn−1.

Var Zn−1 = Var

(∑n−1
i=1 D

(n−1)
i /2(

n−1
2

)
ρn−1

)
=

1

4
(n− 1)Var

(
D

(n−1)
i

γ′n

)
(A.19)

+
1

4

∑
i,j,i 6=j

cov

(
D

(n−1)
i

γ′n
,
D

(n−1)
j

γ′n

)
(A.20)

For the second term in the R.H.S of Eq A.18, from Lemma D.2, it is easy
to check that it is O(n−2). Thus scaling Eq A.18 by n− 1 we have,

(n− 1)E

n∑
i=1

(Zn,i − Z̄n)2 = (n− 1)

n∑
i=1

Var

(
D

(n)
i

γn

)
+O

(
1

n

)
=

4

n2
E[Var

∑
k,k 6=i

w(ξi, ξk)|ξi] + 4Var[E(w(ξi, ξk)|ξi)] +O

(
1

nρn

)
+O

(
1

n

)
(A.21)

Plugging in Lemma D.2 into the second term of R.H.S of Eq A.19 and scaling
Eq A.19 by n− 1, we have

(n− 1)Var Zn−1

=
1

n2
E[Var

∑
k,k 6=i

w(ξi, ξk)|ξi] + Var[E(w(ξi, ξk)|ξi)]

+ 3Var[E(w(ξi, ξk)|ξi)] +O

(
1

nρn

)
=

1

n2
E[Var

∑
k 6=i

w(ξi, ξk)|ξi] + 4Var[E(w(ξi, ξk)|ξi)] +O

(
1

nρn

)
(A.22)

The difference between Eqs A.21 and A.22 is:

(n−1)E(Zn,i−Z̄n)2−(n−1)Var Zn−1 =
3

n2
E[Var

∑
k,k 6=i

w(ξi, ξk)|ξi]+O
(

1

nρn

)
.

(A.23)
Note that, we also have:

1

n2
E[Var

∑
k,k 6=i

w(ξi, ξk)|ξi] =
1

n
E[Var(w(ξi, ξk)|ξi)] = O (1/n) (A.24)

Eq A.24 establishes Eq ??. Furthermore, in conjunction with Eqs A.19
and A.18, it also shows that both (n−1)E

∑n
i=1(Zn,i−Zn)2 and (n−1)Var Zn−1

converge to positive constants. This concludes our proof.
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We now present the proofs of Lemmas D.1 and D.2.

Proof of Lemma D.1. Applying law of total variance,

n−1∑
i=1

Var

(
D

(n)
i

γn

)
=

n−1∑
i=1

Var

[
E

(
D

(n)
i

γn

∣∣∣∣ξ
)]

+

n−1∑
i=1

E

[
Var

(
D

(n)
i

γn

∣∣∣∣ξ
)]

. (A.25)

We now show that the second term on the RHS of the above equation is small.

n−1∑
i=1

E

[
Var

(
D

(n)
i

γn

∣∣∣∣ξ
)]

=

n−1∑
i=1

E

[
Var

(∑
j 6=iAij(
n
2

)
ρn

∣∣∣∣ξ
)]

=

n−1∑
i=1

E

(∑
j 6=i ρnw(ξi, ξj)(1− ρnw(ξi, ξj))(

n
2

)2
ρ2n

)

�
∑

i,j,i 6=j

ρnE[w(ξi, ξj)]

n4ρ2n
= O(n−2ρ−1n ) (A.26)

For the first term on the RHS of Eq A.25, for any fixed i, we have:

Var

(
E

[
D

(n)
i

γn

∣∣∣∣ξ
])

= VarE

( ∑
k,k 6=iAik

(n−1)(n−2)
2 ρn

∣∣∣∣ξ
)
� 4

n4
Var

∑
k,k 6=i

w(ξi, ξk)


� 4

n4
E

Var
∑
k,k 6=i

w(ξi, ξk)|ξi

+
4

n4
Var

E ∑
k,k 6=i

w(ξi, ξk)|ξi

 .

(A.27)

Exchanging the sum and expectation in the second term, we can also write,

4

n4
Var

E ∑
k,k 6=i

w(ξi, ξk)|ξi

 =
4

n2
Var[E(w(ξi, ξk)|ξi)]. (A.28)

Since Eq A.25 involves a sum over n− 1 identical terms, owing to the fact that
{ξi} are i.i.d, we get the result by multiplying Eq A.27 and A.28 by n− 1.

Proof of Lemma D.2. We decompose the covariance into

∑
i,j,i 6=j

cov

(
D

(n)
i

γn
,
D

(n)
j

γn

)
=
∑

i,j,i 6=j

cov

(
E

[
D

(n)
i

γn

∣∣∣∣ξ
]
, E

[
D

(n)
i

γn

∣∣∣∣ξ
])

+
∑

i,j,i 6=j

E

[
cov

(
D

(n)
i

γn
,
D

(n)
j

γn

∣∣∣∣ξ
)]

. (A.29)
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The second term on the RHS of the above equation is small as shown before.

∑
i,j,i 6=j

E

[
cov

(
D

(n)
i

γn
,
D

(n)
j

γn

∣∣∣∣ξ
)]

=
∑

i,j,i 6=j

E

[
cov

(∑
k,k 6=iAik

γn
,

∑
s,s6=j Ajs

γn

∣∣∣∣ξ)]
� 1

n4ρ2n

∑
i,j

E[Var(Aij |ξ)]

� 1

n2ρ2n
ρnE[w(ξi, ξj)] = O(n−2ρ−1n )

For the first term in Eq A.29, for any fixed i and j, we have

cov

(
E

[
D

(n)
i

γn

∣∣∣∣ξ
]
, E

[
D

(n)
j

γn

∣∣∣∣ξ
])

= cov

(∑k 6=i
k w(ξi, ξk)ρn
(n−1)(n−2)

2 ρn
,

∑s6=j
s w(ξj , ξs)ρn
(n−1)(n−2)

2 ρn

)

� 4

n4
cov

∑
k,k 6=i

w(ξi, ξk),
∑
s,s6=j

w(ξj , ξs)


=

4

n4

∑
k,k 6=i

∑
s,s6=j

cov(w(ξi, ξk), w(ξj , ξs)).

(A.30)

Let Si = {i, k}, and Sj = {j, s} be two pairs containing i and j respectively.
Some algebraic manipulation yields,∑

k,k 6=i

∑
s,s 6=j

cov(w(ξi, ξk), w(ξj , ξs)) =
∑

|Si∩Sj |=1

cov(w(ξi, ξk), w(ξj , ξs))

+
∑

|Si∩Sj |=2

cov(w(ξi, ξk), w(ξj , ξs)).
(A.31)

In the R.H.S of the above expression, the second summation has n(n−1) terms,
whereas the first has n(n− 1)(n− 2) terms. Furthermore, for |Si ∩Sj | = 2, it is
easy to see that cov(w(ξi, ξk), w(ξj , ξs)) is simply the variance of Var(w(ξi, ξk))
which is positive. For |Si ∩ Sj | = 1, W.L.O.G. let Si = {i, u} and Sj = {j, u}.
Conditioned on the shared node ξu,

cov(w(ξi, ξu), w(ξj , ξu)) = cov[E(w(ξi, ξu)|ξu), E(w(ξj , ξu)|ξu)]

= Var(Ew(ξi, ξu)|ξu) (A.32)

which is also positive. Hence the contribution of the first sum is of a larger
order.
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Now we enumerate all the ways in which Si and Sj can have a node in
common, with the constraint of i 6= j. For any fixed i and j, s.t. i 6= j,
|Si ∩Sj | = 1 means that there is 1 common node in Si = {i, k} and Sj = {j, s}.
There are three possible cases, i = s, k = j, k = s. Thus, Eq A.30 can be
expanded as (W.L.O.G, suppose i = s),

cov

(
E

[
D

(n)
i

γn

∣∣∣∣ξ
]
, E

[
D

(n)
j

γn

∣∣∣∣ξ
])
� 4

n4
[3(n− 2)cov(w(ξi, ξk), w(ξj , ξi))]

=
4

n3
× 3cov(w(ξi, ξk), w(ξj , ξi))

(i)
=

4

n3
× 3Var(E(w(ξi, ξk))|ξi) (A.33)

Step (i) uses an analogous argument from Eq A.32, and conditions on ξi.
Eq A.29 involves a sum over all (i, j) pairs, i 6= j, , owing to the fact that

{ξi} are i.i.d, we get the result by multiplying Eq A.33 by n(n− 1).

E Proof of Proposition 2

Before we state the proof of our result, recall the following well-known rela-
tionship between uniform integrability and convergence of moments. See for
example, Theorem 25.12 of Billingsley (1995).

Proposition E.1. Suppose that Xn  X and {Xn}n≥1 is uniformly integrable.
Then, E(Xn)→ E(X).

Now we will prove our proposition below:

Proof. In what follows let Xn := τn[θ̂n − E(θ̂n)] and Vn = τn · Un. Recall that

Un = θ̂n − θ. While our result here is more general, in a jackknife context,
θ̂n = Zn following the notation that we use elsewhere. Consider the following
decomposition:

τn[θ̂n − E(θ̂n)] = τn[θ̂n − θ] + E(τn[θ − θ̂n])

Since {V 2
n }n≥1 is uniformly integrable, it follows that {Vn}n≥1 is also uniformly

integrable. Therefore, by Proposition E.1, E(τn[θ − θ̂n]) → 0. By Slutsky’s

Theorem, it follows that τn[θ̂n − E(θ̂n)] U .
To show that the variances converge to the same value, observe that E(X2

n)
is given by:

E(X2
n) = E(V 2

n )− (E(Vn))2

First, V 2
n  U2 by continuous mapping theorem. Since {V 2

n }n≥1 is uniformly
integrable, E(V 2

n )→ E(U2) by Proposition E.1 again. Finally, (EVn)2 → 0 and
the result follows.
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F Additional theory

It should be noted that a similar inequality for a closely related procedure has an
even simpler proof. This alternative procedure does not require the functional
to be invariant to node permutation and allows flexibility with the leave-one-out
estimates. However, the resulting estimate is often not sharp. More concretely,
let Zn denote a function of A(n) and let Z̃n,i be an arbitrary functional calculated
on a graph with node i removed. Consider the following estimator:

V̂arJACK Zn =

n∑
i=1

(Zn − Z̃n,i)
2 (A.34)

Combining the aforementioned filtration with arguments in Boucheron et al.
(2004) leads to the following inequality:

Proposition F.1 (Network Efron-Stein, alternative version).

Var Zn ≤ E(V̂arJACK Zn) (A.35)

G Additional data analysis results

We first present Tables A.1 and A.2 with details of the networks we used in our
real data experiments in Section 4 of the main paper.

Table A.1: Details of college networks for first real data experiment (see Figure 3
of main paper)

Caltech Williams Wellesley

Nodes 769 2790 2970

Edges 16656 112986 94899

Average Degree 43.375 63.927 81.023

Table A.2: Details of college networks for second real data experiment (see
Figure 4 of main paper)

Berkeley Stanford Yale Princeton Harvard MIT

Nodes 22937 11621 8578 6596 15126 6440

Edges 852444 568330 405450 293320 824617 251252

Average Degree 74.332 97.819 94.544 88.952 109.040 78.040
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For our real data experiments, (Section 4 of main paper) we compared sub-
sampling with jackknife on the three colleges (see Figure 3). For simplicity,
for the second experiment comparing three pairs of college networks (see Fig-
ure 4), we only showed the confidence intervals obtained using jackknife. Here,
in Figure A.1, for completeness, we present confidence intervals for test sets
constructed from the six college networks using both jackknife and subsampling
with different choices of b. This again shows that jackknife CI’s mostly are in
agreement with those obtained from subsampling.
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Figure A.1: Confidence intervals of subsampling and jackknife in calculating
triangle, two-star densities and normalized transitivity in the example of six
college Facebook networks test sets. The four CIs for each college are in the
order of jackknife, subsampling with b=0.05n, b=0.1n, and b=0.2n respectively.
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Figure A.2: Computation time of jackknife compared to subsampling in calcu-
lating triangle, two-star densities and normalized transitivity in the example of
three college Facebook networks.

In addition, we show the timing results our real data experiments. Figure A.2
shows computation time of the three college example of Facebook network data
(see Figure 3). We demonstrate the triangle, two-star densities and normalized
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Figure A.3: Computation time of jackknife compared to subsampling in calcu-
lating triangle, two-star densities and normalized transitivity in the example of
six college Facebook networks test sets.

transitivity variance computation time using jackknife and subsampling with
b = 0.05n, b = 0.1n and b = 0.2n, B = 1000 in each college network.

In Figure A.3, we show the computation time of variance estimation for the
same statistics on the test sets for the same set of algorithms. Since we split
training and test set in half, the training sets have approximately the same time.

These figures show that, it is possible to implement jackknife in a computa-
tionally efficient manner when there is nested structure in the subgraph counts.
In all these cases, we see that for the larger networks, subsampling with large b
is often considerably slower than jackknife.
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