A. Convergence under Imperfect Feedback with Absolute Random Noise

In this section, we analyze the convergence of OGD-based learning on λ -cocercive games under imperfect feedback with absolute random noise (4). We first establish that OGD under noisy feedback converges almost surely in last-iterate to the set of Nash equilibria of a co-coercive game if $\sigma_t^2 \in (0, \sigma^2)$ for some $\sigma^2 < +\infty$ and the finite-time $O(1/\sqrt{T})$ convergence rate on $(1/T)\mathbb{E}[\sum_{t=0}^T \epsilon(\mathbf{x}_t)]$ under properly diminishing step-size sequences. We also present a finite-time convergence rate on $\mathbb{E}[\epsilon(\mathbf{x}_T)]$ if σ_t^2 satisfies certain conditions.

A.1. Almost Sure Last-Iterate Convergence

We start by developing a key iterative formula for $\mathbb{E}[\epsilon(\mathbf{x}_t)]$ in the following lemma.

Lemma A.1 Fix a λ -cocoercive game \mathcal{G} with a continuous action space, $\mathcal{G} = (\mathcal{N}, \mathcal{X} = \prod_{i=1}^{N} \mathbb{R}^{n_i}, \{u_i\}_{i=1}^{N})$, and let the set of Nash equilibria, \mathcal{X}^* , be nonempty. Under the noisy model (2) with absolute random noise (4) and letting the OGD-based learning run with a step-size sequence $\eta_t \in (0, \lambda)$, the noisy OGD iterate \mathbf{x}_t satisfies

$$\mathbb{E}[\epsilon(\mathbf{x}_{t+1})] \leq \mathbb{E}[\epsilon(\mathbf{x}_t)] + \frac{\sigma_t^2}{\lambda \eta_{t+1}}.$$

We are now ready to establish last-iterate convergence in a strong, almost sure sense. Note that the conditions imposed on σ_t^2 and η_t are minimal.

Theorem A.2 Fix a λ -cocoercive game \mathcal{G} with a continuous action space, $\mathcal{G} = (\mathcal{N}, \mathcal{X} = \prod_{i=1}^{N} \mathbb{R}^{n_i}, \{u_i\}_{i=1}^{N})$, and let the set of Nash equilibria, \mathcal{X}^* , be nonempty. Consider the noisy model (2) with absolute random noise (4) satisfying $\sigma_t^2 \in (0, \sigma^2]$ for some $\sigma^2 < +\infty$ and letting the OGD-based learning run with a step-size sequence satisfying

$$\sum_{t=1}^{\infty} \eta_t = +\infty, \qquad \sum_{t=1}^{\infty} \eta_t^2 < +\infty.$$

Then the noisy OGD iterate \mathbf{x}_t converges to \mathcal{X}^* almost surely.

A.2. Finite-Time Convergence Rate: Time-Average and Last-Iterate

For completeness, we characterize two types of rates: the time-average and last-iterate convergence rate, as formalized by the following theorems.

Theorem A.3 Fix a λ -cocoercive game \mathcal{G} with a continuous action space, $\mathcal{G} = (\mathcal{N}, \mathcal{X} = \prod_{i=1}^{N} \mathbb{R}^{n_i}, \{u_i\}_{i=1}^{N})$, and let the set of Nash equilibria, \mathcal{X}^* , be nonempty. Under the noisy model (2) with absolute random noise (4) satisfying $\sigma_t^2 \in (0, \sigma^2]$ for some $\sigma^2 < +\infty$ and letting the OGD-based learning run with a step-size sequence $\eta_t = c/\sqrt{t}$ for some constant $c \in (0, \lambda)$, the noisy OGD iterate \mathbf{x}_t satisfies

$$\frac{1}{T+1}\left(\mathbb{E}\left[\sum_{t=0}^{T}\epsilon(\mathbf{x}_{t})\right]\right) = O\left(\frac{\log(T)}{\sqrt{T}}\right).$$

Inspired by Lemma A.1, we impose an intuitive condition on the variance of noisy process $\{\sigma_t^2\}_{t\geq 0}$. More specifically, there exists a function $\alpha : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying a(t) = o(1) and $a(t) = \Omega(1/t)$ such that

$$\frac{1}{T+1} \left(\sum_{t=0}^{T-1} (t+1)\sigma_t^2 \right) = O(a(T)).$$
(15)

Under this condition, the noisy iterate generated by the OGD-based learning achieves the finite-time last-iterate convergence rate regardless of a sequence of possibly constant step-sizes η_t satisfying $0 < \eta \leq \eta_t \leq \overline{\eta} < \lambda$ for all $t \geq 1$.

Theorem A.4 Fix a λ -cocoercive game \mathcal{G} with a continuous action space, $\mathcal{G} = (\mathcal{N}, \mathcal{X} = \prod_{i=1}^{N} \mathbb{R}^{n_i}, \{u_i\}_{i=1}^{N})$, and let the set of Nash equilibria, \mathcal{X}^* , be nonempty. Under the noisy model (2) with absolute random noise (4) satisfying Eq. (15) and letting the OGD-based learning run with an nonincreasing step-size sequence satisfying $0 < \underline{\eta} \leq \eta_t \leq \overline{\eta} < \lambda$ for all $t \geq 1$, the noisy OGD iterate \mathbf{x}_t satisfies

$$\mathbb{E}[\epsilon(\mathbf{x}_T)] = O(a(T)).$$

B. Proof of Lemma 3.1

Since $\mathcal{X}_i = \mathbb{R}^{n_i}$, we have

$$\begin{aligned} &\|x_{i,t+2} - x_{i,t+1}\|^2 \\ &= \|x_{i,t+1} - x_{i,t} + \eta(v_i(\mathbf{x}_{t+1}) - v_i(\mathbf{x}_t))\|^2 \\ &= \|x_{i,t+1} - x_{i,t}\|^2 + 2\eta(x_{i,t+1} - x_{i,t})^\top (v_i(\mathbf{x}_{t+1}) - v_i(\mathbf{x}_t)) + \eta^2 \|v_i(\mathbf{x}_{t+1}) - v_i(\mathbf{x}_t)\|^2. \end{aligned}$$

Expanding the right-hand side of the above inequality and summing up the resulting inequality over $i \in \mathcal{N}$ yields that

$$\|\mathbf{x}_{t+2} - \mathbf{x}_{t+1}\|^{2} = \sum_{i \in \mathcal{N}} \|x_{i,t+2} - x_{i,t+1}\|^{2}$$

$$\leq \sum_{i \in \mathcal{N}} \left(\|x_{i,t+1} - x_{i,t}\|^{2} + \eta^{2} \|v_{i}(\mathbf{x}_{t+1}) - v_{i}(\mathbf{x}_{t})\|^{2} + 2\eta (x_{i,t+1} - x_{i,t})^{\top} (v_{i}(\mathbf{x}_{t+1}) - v_{i}(\mathbf{x}_{t})) \right)$$

$$= \|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|^{2} + 2\eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} (\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_{t})) + \eta^{2} \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_{t})\|^{2}.$$
(16)

Since \mathcal{G} is a λ -cocoercive game, we have

$$(\mathbf{x}_{t+1} - \mathbf{x}_t)^{\top} (\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)) \le -\lambda \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2$$

Plugging the above equation into Eq. (16) together with the condition $\eta \in (0, \lambda]$ yields that

$$\|\mathbf{x}_{t+2} - \mathbf{x}_{t+1}\|^2 \leq \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2$$

Using the update formula in Eq. (1), we have $\|\mathbf{v}(\mathbf{x}_{t+1})\| \leq \|\mathbf{v}(\mathbf{x}_t)\|$ for all $t \geq 0$.

Then we proceed to bound $\sum_{t=0}^{+\infty} \|\mathbf{v}(\mathbf{x}_t)\|^2$. Indeed, for any $x_i \in \mathcal{X}_i$, we have

$$(x_i - x_{i,t+1})^{\top} (x_{i,t+1} - x_{i,t} - \eta v_i(\mathbf{x}_t)) = 0$$

Applying the equality $a^\top b = (\|a+b\|^2 - \|a\|^2 - \|b\|^2)/2$ yields that

$$(x_{i,t+1} - x_i)^{\top} v_i(\mathbf{x}_t) = \frac{1}{2\eta} \left(\|x_{i,t} - x_{i,t+1}\|^2 + \|x_i - x_{i,t+1}\|^2 - \|x_i - x_{i,t}\|^2 \right).$$

Summing up the resulting inequality over $i \in \mathcal{N}$ yields that

$$(\mathbf{x}_{t+1} - \mathbf{x})^{\top} \mathbf{v}(\mathbf{x}_t) = \frac{1}{2\eta} \left(\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x} - \mathbf{x}_{t+1}\|^2 - \|\mathbf{x} - \mathbf{x}_t\|^2 \right), \quad \forall \mathbf{x} \in \mathcal{X}.$$

Letting $\mathbf{x} = \mathbf{x}^* \in \mathcal{X}^*$, we have

$$(\mathbf{x}_{t+1} - \mathbf{x}^*)^{\top} \mathbf{v}(\mathbf{x}_t) = \frac{1}{2\eta} \left(\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}^* - \mathbf{x}_{t+1}\|^2 - \|\mathbf{x}^* - \mathbf{x}_t\|^2 \right).$$
(17)

Furthermore, we have

$$(\mathbf{x}_{t+1} - \mathbf{x}^*)^\top \mathbf{v}(\mathbf{x}_t) = (\mathbf{x}_t - \mathbf{x}^*)^\top \mathbf{v}(\mathbf{x}_t) + (\mathbf{x}_{t+1} - \mathbf{x}_t)^\top \mathbf{v}(\mathbf{x}_t)$$

Since \mathcal{G} is a λ -cocoercive game and $\mathbf{v}(\mathbf{x}^*) = 0$, we have

$$(\mathbf{x}_t - \mathbf{x}^*)^\top \mathbf{v}(\mathbf{x}_t) = (\mathbf{x}_t - \mathbf{x}^*)^\top (\mathbf{v}(\mathbf{x}_t) - \mathbf{v}(\mathbf{x}^*)) \le -\lambda \|\mathbf{v}(\mathbf{x}_t) - \mathbf{v}(\mathbf{x}^*)\|^2 = -\lambda \|\mathbf{v}(\mathbf{x}_t)\|^2.$$

By Young's inequality we have

$$(\mathbf{x}_{t+1} - \mathbf{x}_t)^{\top} \mathbf{v}(\mathbf{x}_t) \leq \frac{\lambda \|\mathbf{v}(\mathbf{x}_t)\|^2}{2} + \frac{\|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2}{2\lambda}$$

Putting these pieces together yields that

$$(\mathbf{x}_{t+1} - \mathbf{x}^*)^{\top} \mathbf{v}(\mathbf{x}_t) \leq \frac{\|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2}{2\lambda} - \frac{\lambda \|\mathbf{v}(\mathbf{x}_t)\|^2}{2}.$$
(18)

Plugging Eq. (18) into Eq. (17) together with the condition $\eta \in (0, \lambda]$ yields that

$$\lambda \|\mathbf{v}(\mathbf{x}_t)\|^2 \leq \frac{\|\mathbf{x}^* - \mathbf{x}_t\|^2 - \|\mathbf{x}^* - \mathbf{x}_{t+1}\|^2}{\eta}.$$

Summing up the above inequality over t = 0, 1, 2, ... and using the boundedness of \mathcal{X} yields that

$$\sum_{t=0}^{+\infty} \|\mathbf{v}(\mathbf{x}_t)\|^2 \le rac{\|\mathbf{x}^* - \mathbf{x}_0\|^2}{\eta \lambda}.$$

Note that $\mathbf{x}^* \in \mathcal{X}^*$ is chosen arbitrarily, we let $\mathbf{x}^* = \prod_{\mathcal{X}^*} (\mathbf{x}_0)$ and conclude the desired inequality.

C. Postponed Proofs in Section 4

In this section, we present the missing proofs in Section 4.

C.1. Proof of Lemma 4.1

Using the update formula of $x_{i,t+1}$ in Eq. (1), we have the following for any $x_i^* \in \mathcal{X}_i^*$:

$$||x_{i,t+1} - x_i^*||^2 = ||x_{i,t} + \eta_{t+1}\hat{v}_{i,t+1} - x_i^*||^2.$$

which implies that

$$\|x_{i,t+1} - x_i^*\|^2 = \|x_{i,t} - x_i^*\|^2 + \eta_{t+1}^2 \|\hat{v}_{i,t+1}\|^2 + 2\eta_{t+1} (x_{i,t} - x_i^*)^\top \hat{v}_{i,t+1}.$$

Summing up the above inequality over $i \in \mathcal{N}$ and rearranging yields that

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}_t - \mathbf{x}^*\|^2 + 2\eta_{t+1}(\mathbf{x}_t - \mathbf{x}^*)^\top \hat{v}_{t+1} + \eta_{t+1}^2 \|\hat{v}_{t+1}\|^2.$$
(19)

Using Young's inequality, we have

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 + 2\eta_{t+1}^2 \|\xi_{t+1}\|^2 + 2\eta_{t+1}^2 \|\mathbf{v}(\mathbf{x}_t)\|^2 + 2\eta_{t+1} (\mathbf{x}_t - \mathbf{x}^*)^\top (\mathbf{v}(\mathbf{x}_t) + \xi_{t+1}).$$

Since $\mathbf{x}^* \in \mathcal{X}^*$ and \mathcal{G} is a λ -cocoercive game, we have $\mathbf{v}(\mathbf{x}^*) = 0$ and

$$(\mathbf{x}_t - \mathbf{x}^*)^\top \mathbf{v}(\mathbf{x}_t) = (\mathbf{x}_t - \mathbf{x}^*)^\top (\mathbf{v}(\mathbf{x}_t) - \mathbf{v}(\mathbf{x}^*)) \le -\lambda \|\mathbf{v}(\mathbf{x}_t) - \mathbf{v}(\mathbf{x}^*)\|^2 = -\lambda \|\mathbf{v}(\mathbf{x}_t)\|^2.$$

Putting these pieces yields the desired inequality.

C.2. Proof of Lemma 4.2

Using the same argument as in Lemma 4.1, we have

$$\mathbb{E}[\epsilon(\mathbf{x}_{t+1}) \mid \mathcal{F}_t] - \epsilon(\mathbf{x}_t) \leq \frac{\mathbb{E}[\|\xi_{t+1}\|^2 \mid \mathcal{F}_t]}{\lambda \eta_{t+1}} + \left(1 - \frac{\lambda}{\eta_{t+1}}\right) \mathbb{E}\left[\|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2 \mid \mathcal{F}_t\right].$$

Since the noisy model (2) is with relative random noise (4), we have $\mathbb{E}[\|\xi_{t+1}\|^2 \mid \mathcal{F}_t] \leq \tau_t \|\mathbf{v}(\mathbf{x}_t)\|^2$. Also, $\eta_t \in (0, \lambda)$ for all $t \geq 1$. Therefore, we conclude that

$$\mathbb{E}[\epsilon(\mathbf{x}_{t+1}) \mid \mathcal{F}_t] - \epsilon(\mathbf{x}_t) \leq \frac{\tau_t \|\mathbf{v}(\mathbf{x}_t)\|^2}{\lambda \eta_{t+1}}.$$

Taking an expectation of both sides yields the desired inequality.

C.3. Proof of Theorem 4.4

Using the same argument as in Theorem 4.3, we obtain that

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \mid \mathcal{F}_t] \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2(\lambda - \overline{\eta} - \tau\overline{\eta})\eta_{t+1}\|\mathbf{v}(\mathbf{x}_t)\|^2.$$
(20)

Taking an expectation of both sides of Eq. (20) and rearranging yields that

$$\mathbb{E}[\epsilon(\mathbf{x}_t)] \leq \frac{1}{2(\lambda - \overline{\eta} - \tau \overline{\eta})\eta_{t+1}} \left(\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] - \mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2] \right).$$
(21)

Summing up the above inequality over t = 0, 1, ..., T yields that

$$\mathbb{E}\left[\sum_{t=0}^{T} \epsilon(\mathbf{x}_{t})\right] \leq \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) \frac{\mathbb{E}[\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2}]}{2(\lambda - \overline{\eta} - \tau\overline{\eta})} + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta} - \tau\overline{\eta})\eta_{1}}$$

On the other hand, we have $\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2] \leq \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2]$. This implies that $\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] \leq \|\mathbf{x}_0 - \mathbf{x}^*\|^2$ for all $t \geq 1$. Therefore, we conclude that

$$\mathbb{E}\left[\sum_{t=0}^{T} \epsilon(\mathbf{x}_{t})\right] \leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta} - \tau\overline{\eta})\eta_{1}} + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta} - \tau\overline{\eta})}\sum_{t=1}^{T}\left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) \\
= \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta} - \tau\overline{\eta})\eta_{1}} + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta} - \tau\overline{\eta})\eta_{T+1}} \\
\leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{(\lambda - \overline{\eta} - \tau\overline{\eta})\underline{\eta}} = O(1).$$

This completes the proof.

C.4. Proof of Theorem 4.7

Since the step-size sequence $\{\eta_t\}_{t\geq 1}$ is decreasing and converges to zero, we define the first iconic time in our analysis as follows,

$$t^* = \max\left\{t \ge 0 \mid \eta_{t+1} > \frac{\lambda}{2(1+\tau)}\right\} < +\infty.$$

First, we claim that $\mathbb{E}[\|\mathbf{x}_t - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\|] \leq D$ where $D = \max_{1 \leq t \leq t^*} \mathbb{E}[\|\mathbf{x}_t - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\|]$. Indeed, it suffices to show that $\mathbb{E}[\|\mathbf{x}_t - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\|] \leq \mathbb{E}[\|\mathbf{x}_{t^*} - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\|]$ holds for $t > t^*$. By the definition of t^* , we have $\eta_{t+1} < \lambda/(1+\tau)$ for all $t > t^*$. The desired inequality follows from Eq. (21) and the fact that $\mathbb{E}[\epsilon(\mathbf{x}_t)] \geq 0$ for all $t > t^*$.

Furthermore, we derive an upper bound for the term $\sum_{t=0}^{T} \|\mathbf{v}(\mathbf{x}_t)\|^2$. Using the update formula (cf. Eq. (1)) to obtain that

$$(\mathbf{x}_{t+1} - \mathbf{x}^*)^{\top} (\mathbf{v}(\mathbf{x}_t) + \xi_{t+1}) = \frac{1}{2\eta_{t+1}} \left(\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}^* - \mathbf{x}_{t+1}\|^2 - \|\mathbf{x}^* - \mathbf{x}_t\|^2 \right).$$

Recall that \mathcal{G} is λ -cocoercive and the noisy model is defined with relative random noise, we have

$$\mathbb{E}[(\mathbf{x}_t - \mathbf{x}^*)^{\top}(\mathbf{v}(\mathbf{x}_t) + \xi_{t+1}) \mid \mathcal{F}_t] \geq \lambda \|\mathbf{v}(\mathbf{x}_t)\|^2.$$

Using Young's inequality, we have

$$\mathbb{E}[(\mathbf{x}_{t+1} - \mathbf{x}_t)^{\top}(\mathbf{v}(\mathbf{x}_t) + \xi_{t+1}) \mid \mathcal{F}_t] \geq -\frac{\lambda \|\mathbf{v}(\mathbf{x}_t)\|^2}{2} - \frac{(1+\tau)\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \mid \mathcal{F}_t]}{\lambda}.$$

Putting these pieces together and taking an expectation yields that

$$\lambda \mathbb{E}[\|\mathbf{v}(\mathbf{x}_{t})\|^{2}] \leq \mathbb{E}\left[\frac{\|\mathbf{x}^{*}-\mathbf{x}_{t}\|^{2}-\|\mathbf{x}^{*}-\mathbf{x}_{t+1}\|^{2}}{\eta_{t+1}}\right] + \mathbb{E}\left[\left(\frac{2(1+\tau)}{\lambda}-\frac{1}{\eta_{t+1}}\right)\|\mathbf{x}_{t}-\mathbf{x}_{t+1}\|^{2}\right].$$
 (22)

Recall that the step-size sequence $\{\eta_t\}_{t\geq 1}$ is nonincreasing and $\|\mathbf{x}_t - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\| \leq D$, we let $\mathbf{x}^* = \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})$ in Eq. (22) and obtain that

$$\sum_{t=0}^{T} \lambda \mathbb{E}[\|\mathbf{v}(\mathbf{x}_t)\|^2] \leq \mathbb{E}\left[\frac{D^2}{\eta_{T+1}}\right] + \sum_{t=0}^{T} \mathbb{E}\left[\left(\frac{2(1+\tau)}{\lambda} - \frac{1}{\eta_{t+1}}\right) \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2\right].$$

To proceed, we define the second iconic time as

$$t_1^* = \max\left\{t \ge 0 \mid \eta_{t+1} > \frac{\lambda}{4(1+\tau)D^2 + 2(1+\tau)}\right\} > t^*.$$

It is clear that $t_1^* < +\infty$ and $\eta_{t+1} \le \lambda/(2+2\tau)$ for all $t > t_1^*$ which implies that $(2+2\tau)/\lambda - 1/\eta_{t+1} \le 0$. Assume T sufficiently large without loss of generality, we have

$$\sum_{t=0}^{T} \lambda \mathbb{E}[\|\mathbf{v}(\mathbf{x}_t)\|^2] \leq \mathbb{E}\left[\frac{D^2}{\eta_{T+1}}\right] + \frac{2(1+\tau)}{\lambda} \left(\sum_{t=0}^{t_1^*} \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2]\right) = \mathbf{I} + \mathbf{II}.$$

We also use Lemmas A.1 and A.2 from Bach & Levy (2019) to bound terms I and II. For convenience, we present these two lemmas here:

Lemma C.1 For a sequence of numbers $a_0, a_1, \ldots, a_n \in [0, a]$ and $b \ge 0$, the following inequality holds:

$$\sqrt{b + \sum_{i=0}^{n-1} a_i - \sqrt{b}} \le \sum_{i=0}^n \frac{a_i}{\sqrt{b + \sum_{j=0}^{i-1} a_j}} \le \frac{2a}{\sqrt{b}} + 3\sqrt{a} + 3\sqrt{b} + \sum_{i=0}^{n-1} a_i.$$

Bounding I: We derive from the definition of η_t and Jensen's inequality that

$$\mathbf{I} \leq D^2 \sqrt{\beta + \log(T+1) + \sum_{j=0}^{T-1} \mathbb{E}\left[\frac{\|\mathbf{x}_j - \mathbf{x}_{j+1}\|^2}{\eta_{j+1}^2}\right]}$$

Since $\mathbb{E}[\|\mathbf{x}_t - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\|] \le D$ for all $t \ge 0$ and the notion of λ -cocercivity implies the notion of $(1/\lambda)$ -Lipschiz continuity, we have

$$\mathbb{E}\left[\frac{\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2}{\eta_{t+1}^2}\right] \le (2+2\tau)\mathbb{E}[\|\mathbf{v}(\mathbf{x}_t)\|^2] \le \frac{(2+2\tau)\|\mathbf{x}_t - \Pi_{\mathcal{X}^*}(\mathbf{x}_{t^*})\|^2}{\lambda^2} \le \frac{(2+2\tau)D^2}{\lambda^2}$$

Using the first inequality in Lemma C.1, we have

$$\mathbf{I} \leq D^{2}\sqrt{\beta + \log(T+1)} + \sum_{t=0}^{T} \frac{D^{2}\mathbb{E}[\|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}/\eta_{t+1}^{2}]}{\sqrt{\beta + \log(T+1) + \sum_{j=0}^{t-1}\mathbb{E}[\|\mathbf{x}_{j} - \mathbf{x}_{j+1}\|^{2}/\eta_{j+1}^{2}]}} \\
\leq D^{2}\sqrt{\beta + \log(T+1)} + \sum_{t=0}^{t_{1}^{*}} \frac{D^{2}\mathbb{E}[\|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}/\eta_{t+1}^{2}]}{\sqrt{\beta + \log(T+1) + \sum_{j=0}^{t-1}\mathbb{E}[\|\mathbf{x}_{j} - \mathbf{x}_{j+1}\|^{2}/\eta_{j+1}^{2}]}} \\
+ \sum_{t=t_{1}^{*}+1}^{T} D^{2}\eta_{t+1}\mathbb{E}\left[\frac{\|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}}{\eta_{t+1}^{2}}\right] \\
\leq D^{2}\sqrt{\beta + \log(T+1)} + \sum_{t=0}^{t_{1}^{*}} \frac{D^{2}\mathbb{E}[\|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}/\eta_{t+1}^{2}]}{\sqrt{\beta + \log(T+1) + \sum_{j=0}^{t-1}\mathbb{E}[\|\mathbf{x}_{j} - \mathbf{x}_{j+1}\|^{2}/\eta_{j+1}^{2}]}} \\
+ \sum_{t=t_{1}^{*}+1}^{T} (2+2\tau)D^{2}\eta_{t+1}\mathbb{E}[\|\mathbf{v}(\mathbf{x}_{t})\|^{2}].$$
(23)

Since $\eta_{t+1} \leq \lambda/[4(1+\tau)D^2]$ for all $t > t_1^*$, we have

$$\sum_{t=t_1^*+1}^T (2+2\tau) D^2 \eta_{t+1} \mathbb{E}[\|\mathbf{v}(\mathbf{x}_t)\|^2] \le \sum_{t=t_1^*+1}^T \frac{\lambda \mathbb{E}[\|\mathbf{v}(\mathbf{x}_t)\|^2]}{2}.$$
(24)

Using the second inequality in Lemma 3.5, we have

$$\sum_{t=0}^{t_1^*} \frac{D^2 \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 / \eta_{t+1}^2]}{\sqrt{\beta + \log(T+1) + \sum_{j=0}^{t-1} \mathbb{E}[\|\mathbf{x}_j - \mathbf{x}_{j+1}\|^2 / \eta_{j+1}^2]}}$$

$$\leq \frac{(4+4\tau)D^2}{\lambda^2 \sqrt{\beta + \log(T+1)}} + \frac{3D\sqrt{2+2\tau}}{\lambda} + 3\sqrt{\beta + \log(T+1) + \sum_{j=0}^{t_1^*-1} \mathbb{E}\left[\frac{\|\mathbf{x}_j - \mathbf{x}_{j+1}\|^2}{\eta_{j+1}^2}\right]}.$$
(25)

By the definition of η_t , we have

$$\sqrt{\beta + \log(T+1) + \sum_{j=0}^{t_1^* - 1} \mathbb{E}\left[\frac{\|\mathbf{x}_j - \mathbf{x}_{j+1}\|^2}{\eta_{j+1}^2}\right]} \leq \frac{1}{\eta_{t_1^* + 1}} + \sqrt{\log(T+1)} < \frac{4(1+\tau)D^2 + 2(1+\tau)}{\lambda} + \sqrt{\log(T+1)}.$$
(26)

Putting Eq. (24)-(26) together yields that

$$I \leq D^{2}\sqrt{\beta + \log(T+1)} + \frac{(4+4\tau)D^{2}}{\lambda^{2}\sqrt{\beta + \log(T+1)}} + \frac{3D\sqrt{2+2\tau}}{\lambda} + \frac{12(1+\tau)D^{2} + 6(1+\tau)}{\lambda} + \sqrt{\log(T+1)} + \sum_{t=t_{1}^{*}+1}^{T} \frac{\lambda \mathbb{E}[\|\mathbf{v}(\mathbf{x}_{t})\|^{2}]}{2}.$$

Bounding II: Recalling that

$$\mathbb{E}\left[\frac{\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2}{\eta_{t+1}^2}\right] \leq \frac{(2+2\tau)D^2}{\lambda^2}$$

and $\eta_t \leq 1/\beta$ for all $t \geq 1$, we have

$$\mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2\right] \leq \frac{(2+2\tau)D^2}{\lambda^2\beta^2},$$

Putting these pieces together yields that

II =
$$\frac{2(1+\tau)}{\lambda} \left(\sum_{t=0}^{t_1^*} \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2] \right) \leq \frac{4(1+\tau)^2 D^2 t_1^*}{\lambda^3 \beta^2}.$$

Therefore, we have

$$\begin{split} \sum_{t=0}^{T} \frac{\lambda \mathbb{E}[\|\mathbf{v}(\mathbf{x}_{t})\|^{2}]}{2} &\leq D^{2} \sqrt{\beta + \log(T+1)} + \sqrt{\log(T+1)} + \frac{(4+4\tau)D^{2}}{\lambda^{2}\sqrt{\beta + \log(T+1)}} \\ &+ \frac{3D\sqrt{2+2\tau}}{\lambda} + \frac{12(1+\tau)D^{2} + 6(1+\tau)}{\lambda} + \frac{4(1+\tau)^{2}D^{2}t_{1}^{*}}{\lambda^{3}\beta^{2}}. \end{split}$$

By the definition, we have $t_1^* < +\infty$ is uniformly bounded. To this end, we conclude that $\sum_{t=0}^T \mathbb{E}[\|\mathbf{v}(\mathbf{x}_t)\|^2] \le C_1 + C_2 \sqrt{\log(T+1)}$, where $C_1 > 0$ and $C_2 > 0$ are universal constants.

Finally, we proceed to bound the term $\epsilon(\mathbf{x}_T)$. Without loss of generality, we can start the sequence at a later index t_1^* since $t_1^* < +\infty$. This implies that $\eta_{t+1} \leq \lambda/2(1+\tau)$. Using the last equation in the proof of Lemma 4.2, we have

$$\mathbb{E}[\epsilon(\mathbf{x}_T)] \leq \mathbb{E}[\epsilon(\mathbf{x}_t)] + \sum_{j=t}^{T-1} \frac{\tau_j}{\lambda} \mathbb{E}\left[\frac{\|\mathbf{v}(\mathbf{x}_j)\|^2}{\eta_{j+1}}\right]$$

Summing up the above inequality over $t = t_1^*, \ldots, T + y$ ields

$$(T-t_1^*+1)\mathbb{E}[\epsilon(\mathbf{x}_T)] \leq \sum_{t=t_1^*}^T \mathbb{E}[\epsilon(\mathbf{x}_t)] + \frac{1}{\lambda} \left(\sum_{t=t_1^*}^{T-1} \sum_{j=t}^{T-1} \tau_j \mathbb{E}\left[\frac{\|\mathbf{v}(\mathbf{x}_j)\|^2}{\eta_{j+1}} \right] \right).$$

Since $\{\tau_t\}_{t\geq 0}$ is an nonincreasing sequence, we have

$$\sum_{t=t_1^*}^{T-1} \sum_{j=t}^{T-1} \tau_j \mathbb{E}\left[\frac{\|\mathbf{v}(\mathbf{x}_j)\|^2}{\eta_{j+1}}\right] \leq \left(\sum_{t=0}^{T-1} \tau_j\right) \left(\sum_{t=t_1^*}^{T-1} \mathbb{E}\left[\frac{\|\mathbf{v}(\mathbf{x}_j)\|^2}{\eta_{j+1}}\right]\right)$$

Using Eq. (20) and $\eta_{t+1} \leq \lambda/2(1+\tau)$ for all $t > t_1^*$, we have

$$\mathbb{E}\left[\frac{\|\mathbf{v}(\mathbf{x}_j)\|^2}{\eta_{j+1}}\right] \leq \mathbb{E}\left[\frac{\|\mathbf{x}_j - \mathbf{x}^*\|^2 - \|\mathbf{x}_{j+1} - \mathbf{x}^*\|^2}{\eta_{j+1}^2}\right].$$

Note that $\{\eta_t\}_{t\geq 0}$ is an nonnegative and nonincreasing sequence and $\mathbb{E}[\|\mathbf{x}_{j+1} - \mathbf{x}^*\|^2] \leq D^2$. Putting these pieces together yields that

$$\begin{split} \sum_{t=t_1^*}^{T-1} \mathbb{E}\left[\frac{\|\mathbf{v}(\mathbf{x}_j)\|^2}{\eta_{j+1}}\right] &\leq \mathbb{E}\left[\frac{D^2}{\eta_T^2}\right] \leq D^2 \left(\beta + \log(T) + \sum_{t=0}^T \mathbb{E}\left[\frac{\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2}{\eta_{t+1}^2}\right]\right) \\ &\leq D^2 \left(\beta + \log(T) + 2(1+\tau)\sum_{t=0}^T \mathbb{E}\left[\|\mathbf{v}(\mathbf{x}_t)\|^2\right]\right) \\ &= O(\log(T)). \end{split}$$

Therefore, we conclude that

$$\mathbb{E}[\epsilon(\mathbf{x}_{T})] \leq \frac{\sum_{t=t_{1}^{*}}^{T} \mathbb{E}[\epsilon(\mathbf{x}_{t})]}{T-t_{1}^{*}+1} + \frac{C\log(T+1)}{\lambda(T-t_{1}^{*}+1)} \left(\sum_{t=0}^{T-1} \tau_{t}\right) \text{ for some } C > 0.$$

This completes the proof.

D. Postponed Proofs in Section A

In this section, we present the missing proofs in Section A.

D.1. Proof of Lemma A.1

By the definition of $\epsilon(\mathbf{x})$, we have

$$\begin{aligned} \epsilon(\mathbf{x}_{t+1}) - \epsilon(\mathbf{x}_t) &= \|\mathbf{v}(\mathbf{x}_{t+1})\|^2 - \|\mathbf{v}(\mathbf{x}_t)\|^2 = (\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t))^\top (\mathbf{v}(\mathbf{x}_{t+1}) + \mathbf{v}(\mathbf{x}_t)) \\ &= 2(\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t))^\top \mathbf{v}(\mathbf{x}_t) + \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2. \end{aligned}$$

Using the update formula in Eq. (1), it holds that $\mathbf{v}(\mathbf{x}_t) = \eta_{t+1}^{-1}(\mathbf{x}_{t+1} - \mathbf{x}_t) - \xi_{t+1}$. Therefore, we have

$$\epsilon(\mathbf{x}_{t+1}) - \epsilon(\mathbf{x}_t) = \frac{2}{\eta_{t+1}} \left((\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t))^\top (\mathbf{x}_{t+1} - \mathbf{x}_t) - (\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t))^\top \xi_{t+1} \right) + \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2.$$

Since \mathcal{G} is a λ -cocoercive game, we have

$$(\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t))^{\top}(\mathbf{x}_{t+1} - \mathbf{x}_t) \leq -\lambda \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2$$

Using Young's inequality, we have

$$-(\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t))^{\top} \xi_{t+1} \leq \frac{\lambda \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2}{2} + \frac{\|\xi_{t+1}\|^2}{2\lambda}$$

Putting these pieces together yields that

$$\epsilon(\mathbf{x}_{t+1}) - \epsilon(\mathbf{x}_t) \leq \frac{\|\xi_{t+1}\|^2}{\lambda\eta_{t+1}} + \left(1 - \frac{\lambda}{\eta_{t+1}}\right) \|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2.$$
(27)

Taking an expectation of Eq. (27) conditioned on \mathcal{F}_t yields that

$$\mathbb{E}[\epsilon(\mathbf{x}_{t+1}) \mid \mathcal{F}_t] - \epsilon(\mathbf{x}_t) \leq \frac{\mathbb{E}[\|\xi_{t+1}\|^2 \mid \mathcal{F}_t]}{\lambda \eta_{t+1}} + \left(1 - \frac{\lambda}{\eta_{t+1}}\right) \mathbb{E}\left[\|\mathbf{v}(\mathbf{x}_{t+1}) - \mathbf{v}(\mathbf{x}_t)\|^2 \mid \mathcal{F}_t\right].$$

Since the noisy model (2) is with absolute random noise (4), we have $\mathbb{E}[\|\xi_{t+1}\|^2 \mid \mathcal{F}_t] \leq \sigma_t^2$. Also, $\eta_t \in (0, \lambda)$ for all $t \geq 1$. Therefore, we conclude that

$$\mathbb{E}[\epsilon(\mathbf{x}_{t+1}) \mid \mathcal{F}_t] - \epsilon(\mathbf{x}_t) \leq \frac{\sigma_t^2}{\lambda \eta_{t+1}}$$

Taking the expectation of both sides yields the desired inequality.

D.2. Proof of Theorem A.2

Recalling Eq. (11) (cf. Lemma 4.1), we take the expectation of both sides conditioned on \mathcal{F}_t to obtain

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \mid \mathcal{F}_t] \le \|\mathbf{x}_t - \mathbf{x}^*\|^2 - (2\lambda - 2\eta_{t+1})\eta_{t+1}\|\mathbf{v}(\mathbf{x}_t)\|^2 + 2\eta_{t+1}^2 \mathbb{E}[\|\xi_{t+1}\|^2 \mid \mathcal{F}_t] + 2\eta_{t+1}\mathbb{E}[(\mathbf{x}_t - \mathbf{x}^*)^\top \xi_{t+1} \mid \mathcal{F}_t].$$

Since the noisy model (2) is with absolute random noise (4) satisfying $\sigma_t^2 \in (0, \sigma^2]$ for some $\sigma^2 < +\infty$, we have $\mathbb{E}[(\mathbf{x}_t - \mathbf{x}^*)^\top \xi_{t+1} | \mathcal{F}_t] = 0$ and $\mathbb{E}[\|\xi_{t+1}\|^2 | \mathcal{F}_t] \le \sigma^2$. Therefore, we have

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \mid \mathcal{F}_t] \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - (2\lambda - 2\eta_{t+1})\eta_{t+1}\|\mathbf{v}(\mathbf{x}_t)\|^2 + 2\eta_{t+1}^2\sigma^2$$

Since $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, we have $\eta_t \to 0$ as $t \to +\infty$. Without loss of generality, we assume $\eta_t \le \lambda$ for all t. Then we have

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \mid \mathcal{F}_t] \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 + 2\eta_{t+1}^2 \sigma^2.$$
(28)

We let $M_t = \|\mathbf{x}_t - \mathbf{x}^*\|^2 + 2\sigma^2(\sum_{j>t} \eta_j^2)$ and obtain that M_t is an nonnegative supermartingale. Then Doob's martingale convergence theorem shows that M_n converges to an nonnegative and integrable random variable almost surely. Let $M_{\infty} = \lim_{t \to +\infty} M_t$, it suffices to show that $M_{\infty} = 0$ almost surely.

We first claim that every neighborhood U of \mathcal{X}^* is recurrent: there exists a subsequence \mathbf{x}_{t_k} of \mathbf{x}_t such that $\mathbf{x}_{t_k} \to \mathcal{X}^*$ almost surely. Equivalently, there exists a Nash equilibria $\mathbf{x}^* \in \mathcal{X}^*$ such that $\|\mathbf{x}_{t_k} - \mathbf{x}^*\|^2 \to 0$ almost surely. To this end, we can define M_t with such Nash equilibria. Since $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, we have $\sum_{j>t} \eta_j^2 \to 0$ as $t \to +\infty$ and the following statement holds almost surely:

$$\lim_{k \to +\infty} M_{t_k} = \lim_{k \to +\infty} \|\mathbf{x}_{t_k} - \mathbf{x}^*\|^2 = 0$$

Since the whole sequence converges to M_{∞} almost surely, we conclude that $M_{\infty} = 0$ almost surely.

Proof of the recurrence claim: Let U be a neighborhood of \mathcal{X}^* and assume to the contrary that, $\mathbf{x}_t \notin U$ for sufficiently large t with positive probability. By starting the sequence at a later index if necessary and noting that $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, we may assume that $\mathbf{x}_t \notin U$ and $\eta_t \leq \lambda/2$ for all t without loss of generality. Thus, there exists some c > 0 such that $\|\mathbf{v}(\mathbf{x}_t)\|^2 \geq c$ for all t. As a result, for all $\mathbf{x}^* \in \mathcal{X}^*$, we let $\psi_{t+1} = (\mathbf{x}_t - \mathbf{x}^*)^{\mathsf{T}} \xi_{t+1}$ and have

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \lambda c\eta_{t+1} + 2\eta_{t+1}\psi_{t+1} + 2\eta_{t+1}^2 \|\xi_{t+1}\|^2.$$

Summing up the above inequality over t = 0, 1, ..., T together with $\theta_t = \sum_{j=1}^t \eta_j$ yields that

$$\|\mathbf{x}_{T+1} - \mathbf{x}^*\|^2 \leq \|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \lambda c \theta_{T+1} + 2\theta_{T+1} \left[\frac{\sum_{t=1}^{T+1} \eta_t \psi_t}{\theta_{T+1}} + \frac{\sum_{t=1}^{T+1} \eta_t^2 \|\xi_t\|^2}{\theta_{T+1}} \right].$$
(29)

Since the noisy model (2) is with absolute random noise (4) satisfying $\sigma_t^2 \in (0, \sigma^2]$ for some $\sigma^2 < +\infty$, we have $\mathbb{E}[\psi_{t+1} | \mathcal{F}_t] = 0$. Furthermore, we obtain by taking the expectation of both sides of Eq. (28) that

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2] \leq \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] + 2\eta_{t+1}^2 \sigma^2,$$

and the following inequality holds true for all $t \ge 1$:

$$\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] \le \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + 2\sigma^2 \sum_{j=1}^{\infty} \eta_j^2 < +\infty.$$

Since $\|\mathbf{x}_t - \mathbf{x}^*\|^2 \ge 0$, we have $\|\mathbf{x}_t - \mathbf{x}^*\|^2 < +\infty$ almost surely. Therefore, $\mathbb{E}[\|\psi_{t+1}\|^2 | \mathcal{F}_t] \le \sigma^2 \|\mathbf{x}_t - \mathbf{x}^*\|^2 < +\infty$. Then the law of large numbers for martingale differences yields that $\theta_{T+1}^{-1}(\sum_{t=1}^{T+1} \eta_t \psi_t) \to 0$ almost surely (Hall & Heyde, 2014, Theorem 2.18). Furthermore, let $R_t = \sum_{j=1}^t \eta_j^2 \|\xi_j\|^2$, then R_t is a submartingale and

$$\mathbb{E}[R_t] \leq \sigma^2 \sum_{j=1}^t \eta_j^2 < \sigma^2 \sum_{j=1}^\infty \eta_j^2 < +\infty.$$

From Doob's martingale convergence theorem, R_t converges to some random, finite value almost surely (Hall & Heyde, 2014, Theorem 2.5). Putting these pieces together with Eq. (29) yields that $\|\mathbf{x}_t - \mathbf{x}^*\|^2 \sim -\lambda c\tau_t \to -\infty$ almost surely, a contradiction. Therefore, we conclude that every neighborhood of \mathcal{X}^* is recurrent.

D.3. Proof of Theorem A.3

Since $\eta_t = c/\sqrt{t}$ for all $t \ge 1$, we have $\eta_t \to 0$ and $\eta_t \le c$ for all $t \ge 1$. This implies that

$$\lambda \eta_{t+1} - \eta_{t+1}^2 \ge (\lambda - c)\eta_{t+1}.$$
 (30)

Plugging Eq. (30) into Eq. (11) (cf. Lemma 4.1) yields that

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2(\lambda - c)\eta_{t+1}\|\mathbf{v}(\mathbf{x}_t)\|^2 + 2\eta_{t+1}(\mathbf{x}_t - \mathbf{x}^*)^\top \xi_{t+1} + 2\eta_{t+1}^2 \|\xi_{t+1}\|^2.$$

Using the same argument as in Theorem A.2, we have

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \mid \mathcal{F}_t] \leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2(\lambda - c)\eta_{t+1}\|\mathbf{v}(\mathbf{x}_t)\|^2 + 2\eta_{t+1}^2\sigma^2.$$
(31)

Taking the expectation of both sides of Eq. (31) and rearranging yields that

$$\mathbb{E}[\epsilon(\mathbf{x}_t)] \leq \frac{1}{2(\lambda - c)\eta_{t+1}} \left(\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] - \mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2] \right) + \frac{\eta_{t+1}\sigma^2}{\lambda - c}.$$

Summing up the above inequality over t = 0, 1, ..., T and using $\eta_t = c/\sqrt{T+1}$ yields that

$$\mathbb{E}\left[\sum_{t=0}^{T} \epsilon(\mathbf{x}_t)\right] \leq \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2(\lambda - c)\eta_1} + \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t}\right) \frac{\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2]}{2(\lambda - c)} + \frac{\sigma^2}{\lambda - c} \left(\sum_{t=1}^{T+1} \eta_t\right).$$

On the other hand, we have

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2] \leq \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] + 2\eta_{t+1}^2 \sigma^2.$$

This implies that the following inequality holds for all $t \ge 1$:

$$\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] \leq \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + 2\sigma^2 \left(\sum_{j=1}^t \eta_j^2\right) \leq \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + 2\sigma^2 c^2 \log(t+1).$$

Therefore, we conclude that

$$\mathbb{E}\left[\sum_{t=0}^{T} \epsilon(\mathbf{x}_{t})\right] \leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} + 2\sigma^{2}c^{2}\log(T+1)}{2(\lambda-c)} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda-c)\eta_{1}} + \frac{\sigma^{2}}{\lambda-c} \left(\sum_{t=1}^{T+1} \eta_{t}\right) \\ \leq \frac{\sqrt{T+1}(\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} + 2\sigma^{2}c^{2}\log(T+1))}{2c(\lambda-c)} + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2c(\lambda-c)} + \frac{\sigma^{2}c\sqrt{T+1}}{\lambda-c} \\ = O\left(\sqrt{T+1}\log(T+1)\right).$$

This completes the proof.

D.4. Proof of Theorem A.4

Using Lemma A.1, we have

$$\mathbb{E}[\epsilon(\mathbf{x}_T)] \leq \mathbb{E}[\epsilon(\mathbf{x}_t)] + \frac{1}{\lambda} \left(\sum_{j=t}^{T-1} \frac{\sigma_j^2}{\eta_{j+1}} \right) \leq \mathbb{E}[\epsilon(\mathbf{x}_t)] + \frac{1}{\lambda \underline{\eta}} \left(\sum_{j=t}^{T-1} \sigma_j^2 \right).$$

Summing up the above inequality over t = 0, 1, ..., T yields that

$$(T+1)\mathbb{E}[\epsilon(\mathbf{x}_T)] \leq \sum_{t=0}^T \mathbb{E}[\epsilon(\mathbf{x}_t)] + \frac{1}{\lambda} \left(\sum_{t=0}^{T-1} \sum_{j=t}^{T-1} \frac{\sigma_j^2}{\eta_{j+1}} \right) \leq \sum_{t=0}^T \mathbb{E}[\epsilon(\mathbf{x}_t)] + \frac{1}{\lambda \underline{\eta}} \left(\sum_{t=0}^{T-1} (t+1)\sigma_t^2 \right).$$

On the other hand, the derivation in Theorem A.3 implies that

$$\mathbb{E}\left[\sum_{t=0}^{T} \epsilon(\mathbf{x}_{t})\right] \leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta})\eta_{1}} + \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) \frac{\mathbb{E}[\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2}]}{2(\lambda - \overline{\eta})} + \frac{1}{\lambda - \overline{\eta}} \left(\sum_{t=1}^{T+1} \eta_{t} \sigma_{t}^{2}\right) \\ \leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta})\eta_{1}} + \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) \frac{\mathbb{E}[\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2}]}{2(\lambda - \overline{\eta})} + \frac{\overline{\eta}}{\lambda - \overline{\eta}} \left(\sum_{t=1}^{T+1} \sigma_{t}^{2}\right).$$

On the other hand, we have

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2] \leq \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] + 2\eta_{t+1}^2 \sigma_t^2$$

This implies that the following inequality holds for all $t \ge 1$:

$$\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] \leq \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + 2\overline{\eta}^2 \left(\sum_{j=1}^t \sigma_j^2\right).$$

Therefore, we conclude that

$$\begin{split} \mathbb{E}\left[\sum_{t=0}^{T} \epsilon(\mathbf{x}_{t})\right] &\leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} + 2\overline{\eta}^{2}(\sum_{t=1}^{T} \sigma_{t}^{2})}{2(\lambda - \overline{\eta})} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta})\eta_{1}} + \frac{\overline{\eta}}{\lambda - \overline{\eta}} \left(\sum_{t=1}^{T+1} \sigma_{t}^{2}\right) \\ &\leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} + 2\overline{\eta}^{2}(\sum_{t=1}^{T} \sigma_{t}^{2})}{2(\lambda - \overline{\eta})\underline{\eta}} + \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{2(\lambda - \overline{\eta})\underline{\eta}} + \frac{\overline{\eta}}{\lambda - \overline{\eta}} \left(\sum_{t=1}^{T+1} \sigma_{t}^{2}\right) \\ &\leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{(\lambda - \overline{\eta})\underline{\eta}} + \left(1 + \frac{\overline{\eta}}{\underline{\eta}}\right) \frac{\overline{\eta}}{\lambda - \overline{\eta}} \left(\sum_{t=1}^{T+1} \sigma_{t}^{2}\right) \\ &\leq \frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{(\lambda - \overline{\eta})\underline{\eta}} + \left(1 + \frac{\overline{\eta}}{\underline{\eta}}\right) \frac{\overline{\eta}}{\lambda - \overline{\eta}} \left(\sum_{t=1}^{T+1} (t+1)\sigma_{t}^{2}\right). \end{split}$$

Putting these pieces together yields that

$$\mathbb{E}[\epsilon(\mathbf{x}_{T})] \leq \frac{1}{T+1} \left[\sum_{t=0}^{T} \mathbb{E}[\epsilon(\mathbf{x}_{t})] + \frac{1}{\lambda \underline{\eta}} \left(\sum_{t=0}^{T-1} (t+1)\sigma_{t}^{2} \right) \right] \\
\leq \frac{1}{T+1} \left(\frac{\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{(\lambda - \overline{\eta})\underline{\eta}} + \left(\frac{1}{\lambda \underline{\eta}} + \left(1 + \frac{\overline{\eta}}{\underline{\eta}} \right) \frac{\overline{\eta}}{\lambda - \overline{\eta}} \right) \left(\sum_{t=1}^{T+1} (t+1)\sigma_{t}^{2} \right) \right) \\
\stackrel{\text{Eq.}(15)}{=} O(a(T)).$$

This completes the proof.