
Supplementary Material:
Boosting Deep Neural Network Efficiency with Dual-Module Inference

1. Motivation for Dual-Module Inference
As shown in Figure 1, the nonlinear activation functions
– sigmoid and tanh – have insensitive regions where the
output activations are resilient to errors introduced in pre-
activation accumulation results.

Figure 1. Insensitive (green shaded) and sensitive (white) regions
of sigmoid (left) and tanh (right) nonlinear functions.

The selection of which neurons should be in the (in)sensitive
region is dynamic and input-dependent, which can be seen
in Figure 2. Unlike the static weight sparsity that we can
prune the unused connections offline in advance, the dy-
namic region speculation requires a very lightweight crite-
rion for real-time processing. Taking all these into account,
we propose a dual-model inference method that efficiently
determines (in)sensitive region and significantly saves the
memory access and computational cost.

Figure 2. Dynamic region distribution across time-steps and inputs.
The white and black colors denote neurons in the insensitive and
sensitive regions, respectively. The upper and lower patterns are
from different inputs.

2. Experiments
Settings. Our evaluation for single-layer RNNs is adapted
from PyTorch’s word language modeling example, where

the dataset has 10K tokens. We do not use dropout when
training the LL module(s); the starting learning rate is 5,
and we decay it by four if no loss descent has been seen on
the validation dataset. The RNNs used in language model-
ing have 35 timestamps; the maximum generated sequence
length in GNMT is 80. For language modeling, we choose
1500 hidden units following the word language modeling
example, and we compare our method which dynamically
reduces 50% of weight accesses to the static case where
only 750 hidden units are used. Besides single-layer LSTM
and GRU, we also evaluate four-layer stacked LSTMs as
in GNMT. For GNMT experiments, we use the same set of
parameters when training the base model 1. We train the
four little modules in the four-layer stacked LSTM in a total
of 4 epochs.

Our experiments on ResNet-18 is adapted from the image
classification example of PyTorch.

Additional results. In addition to the results of LSTMs
using 1500 hidden units in the main text, We observe a
similar quality-performance trade-off for LSTM with 750
hidden units as shown in Table 1. Comparing the case
of base LSTM with 750 hidden units with dual-module
LSTM with 1500 hidden units and 50% insensitive ratio,
although the memory access reduction is at the same level,
our proposed dual-module approach achieves much better
model quality because we kept the expressive power of a
larger LSTM layer.

We further report the results using single-layer GRU on
word-level language modeling tasks as in Table 2. Us-
ing dual-module inference on GRUs expresses the simi-
lar quality-performance trade-off as of LSTMs. Our dual-
module method is generally applicable to both LSTMs and
GRUs. We also measured the execution time of GNMT
layer with the hidden size of 1024 and the input size of 2048
in Table 3.

Evaluation on the little module. Using one layer in
ResNet-18, we first show the histogram of feature map val-
ues of both the original module and the little module learned
and approximated from the original module. As shown in
Figure 3, the distribution of the little module exhibits the
same as the original module. We then show the visualization
of feature maps of both the original, i.e., the big module,

1From https://github.com/NVIDIA/DeepLearningExamples



Supplementary Material

Table 1. LSTM perplexity and execution time (ms).

Insensitive
ratio

hidden size: 1500 hidden size: 750
PPL Diff. Time Speedup PPL Diff. Time Speedup

Base 80.64 n/a 1.477 1.00x 84.32 n/a 0.546 1.00x
10% 80.72 -0.08 1.315 1.12x 84.42 -0.10 0.448 1.22x
30% 80.56 0.08 1.095 1.35x 84.43 -0.11 0.415 1.32x
50% 81.36 -0.72 0.885 1.67x 84.29 0.03 0.342 1.60x
70% 87.48 -6.83 0.641 2.30x 84.89 -0.57 0.287 1.90x
90% 109.37 -28.73 0.380 3.89x 88.44 -4.12 0.216 2.53x

Table 2. GRU perplexity and execution time (ms).
Insensitive
ratio

hidden size: 1500 hidden size: 750
PPL Diff. Time Speedup PPL Diff. Time Speedup

Base 85.48 n/a 1.182 1.00x 89.64 n/a 0.466 1.00x
10% 85.62 -0.14 1.024 1.15x 89.81 -0.17 0.383 1.22x
30% 86.01 -0.53 0.869 1.36x 89.63 0.01 0.334 1.40x
50% 88.73 -3.25 0.726 1.63x 89.69 -0.05 0.302 1.54x
70% 98.09 -12.61 0.545 2.17x 92.51 -2.87 0.284 1.64x
90% 122.75 -37.27 0.350 3.38x 102.37 -12.73 0.198 2.35x

Table 3. GNMT BLEU score and execution time (ms). (1024,
2048) indicates the hidden size is 1024 and the input size is 2048;
similarly for (1024, 1024).

Insensitive
ratio

Quality (1024, 1024) (1024, 2048)
BLEU Diff. Time Speedup Time Speedup

Base 24.32 n/a 0.838 1.00x 1.092 1.00x
10% 24.33 0.01 0.679 1.23x 0.962 1.14x
30% 24.18 -0.14 0.541 1.55x 0.803 1.36x
50% 23.73 -0.59 0.480 1.75x 0.642 1.70x
70% 21.92 -2.40 0.360 2.33x 0.479 2.28x
90% 11.77 -12.55 0.243 3.45x 0.307 3.56x

and of the little module in Figure 4. From the visualized
feature map comparison, we can see that the little module
approximates the orginal module well and represents the
almost same features.

3. Comparison with Weight Pruning Method
We compare our proposed dual-module inference approach
with the automated gradual pruning method (Zhu & Gupta,
2017), which is a popular pruning method with open imple-
mentation2. Firstly, compared with weight pruning, our
method achieves better quality with practical speedup –
1.54x to 1.75x reduction on wall-clock time – on commodity
CPUs while element-wise weight pruning requires special-
ized hardware to gain real speedup of computation given
irregular sparsity. Moreover, our dual-module inference
method can be further applied on top of pruned models to

2From https://github.com/NervanaSystems/distiller

reduce execution time by reducing memory access.

Table 4. Comparison of our proposed dual-module inference
(DMI), using 50% insensitive ratio, with weight pruning using
one LSTM layer with 1500 units in word language modeling task
on WikiText-2 dataset.

Method PPL w/o DMI PPL w/ DMI
Dense 85.52 86.21

80% weight sparsity 86.42 88.46
90% weight sparsity 88.75 90.96

References
Zhu, M. and Gupta, S. To prune, or not to prune: exploring

the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.



Supplementary Material

Figure 3. The distribution of the little module, on the right, exhibits the same as the original module on the left.

Figure 4. Visualization of the feature maps of the original layer, i.e., the big module on the left, and of the little module on the right. The
little module can approximate the original layer well.


