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S-1 Proof of Theorem 1 (Noiseless Upper Bound)

For fixed δ > 0 and a positive integer l, let M = M0 ⊆M1 ⊆ . . . ⊆Ml be a chain of nets of Bk2 (r) such that
Mi is a δi

L -net with δi = δ
2i . There exists such a chain of nets with [1, Lemma 5.2]

log |Mi| ≤ k log
4Lr

δi
. (S-1)

By the L-Lipschitz assumption on G, we have for any i ∈ [l] that G(Mi) is a δi-net of G(Bk2 (r)).
For any pair of points x, s ∈ G(Bk2 (r)) with ‖x− s‖2 > ε, we write

x = (x− xl) + (xl − xl−1) + . . .+ (x1 − x0) + x0, (S-2)

s = (s− sl) + (sl − sl−1) + . . .+ (s1 − s0) + s0, (S-3)

where xi, si ∈ G(Mi) for all i ∈ [l], and ‖x−xl‖ ≤ δ
2l

, ‖s− sl‖ ≤ δ
2l

, ‖xi−xi−1‖2 ≤ δ
2i−1 , and ‖si− si−1‖2 ≤

δ
2i−1 for all i ∈ [l]. Therefore, the triangle inequality gives

‖x− x0‖2 < 2δ, ‖s− s0‖2 < 2δ. (S-4)

Let δ = c1ε
2 with c1 > 0 being a sufficiently small constant. From (S-4), the triangle inequality, and

‖x− s‖2 > ε, we obtain

‖x0 − s0‖2 >
ε

2
. (S-5)

This separation between x0 and s0 permits the application of Lemma 1. Specifically, letting ai ∈ Rn be the
i-th row of A, Lemma 1 (with ε

2 in place of ε) implies for each i ∈ [m] that

P
(
〈ai,x0〉 >

ε

24
, 〈ai, s0〉 < −

ε

24

)
≥ ε

24
. (S-6)

In accordance with the event inside the probability, and adopting the generic notation (x′, s′) ∈ G(M)×G(M)
for an arbitrary pair in the net with ‖x′ − s′‖2 > ε

2 , we define

Ĩ(x′, s′) :=

{
i ∈ [m] : 〈ai,x′〉 >

ε

24
, 〈ai, s′〉 < −

ε

24

}
. (S-7)

By (S-6) and a standard concentration inequality for binomial random variables [2, Theorem. A.1.13], we
have

P
(
|Ĩ(x′, s′)| < εm

48

)
≤ e− εm

192 . (S-8)
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Recall from (S-1) that log |M | ≤ k log 4Lr
δ . By the union bound, for m = Ω

(
k
ε log Lr

δ

)
, we have with

probability at least 1− exp(−Ω(εm)) that for all (x′, s′) ∈ G(M)×G(M) with ‖x′ − s′‖2 > ε
2 , the following

holds:
|Ĩ(x′, s′)| ≥ εm

48
. (S-9)

We now turn to bounding the following normalized summation:

1

m

m∑
i=1

|〈ai,x− x0〉| ≤
(

1

m

m∑
i=1

〈ai,x− x0〉2
)1/2

(S-10)

=
∥∥∥ 1√

m
A(x− x0)

∥∥∥
2

(S-11)

=
∥∥∥ 1√

m
A

(
l∑
i=1

(xi − xi−1)

)
+

1√
m
A(x− xl)

∥∥∥
2

(S-12)

≤
l∑
i=1

∥∥∥ 1√
m
A(xi − xi−1)

∥∥∥
2

+
∥∥∥ 1√

m
A(x− xl)

∥∥∥
2
. (S-13)

Using
√

1 + ε ≤ 1 + ε
2 (for ε ≥ −1), Lemma 2, and the union bound, we have that for any ε1, . . . , εl ∈ (0, 1),

with probability at least 1−∑l
i=1 |Mi| × |Mi−1| × e−Ω(ε2im), the following holds for all i ∈ [l]:∥∥∥ 1√
m
A(xi − xi−1)

∥∥∥
2
≤
(

1 +
εi
2

)
‖xi − xi−1‖2. (S-14)

uniformly in xi ∈ G(Mi) and xi−1 ∈ G(Mi−1). In addition, (S-1) gives log (|Mi| × |Mi−1|) ≤ 2ik+2k log 4Lr
δ .

As a result, if we choose the εi to satisfy ε2i = Θ(ε+ ik
m ), then we have

l∑
i=1

|Mi| × |Mi−1| × e−Ω(ε2im) ≤ e−Ω(εm)
l∑
i=1

e−c2ik (S-15)

= e−Ω(εm), (S-16)

where c2 is a positive constant.
Recall that m = Ω

(
k
ε log Lr

δ

)
, and that we assume L = Ω

(
1
r

)
with a sufficiently large implied constant;

these together imply m = Ω
(
k
ε

)
. Hence, we have

l∑
i=1

∥∥∥ 1√
m
A(xi − xi−1)

∥∥∥
2
≤

l∑
i=1

(
1 +

εi
2

)
‖xi − xi−1‖2 (S-17)

≤
l∑
i=1

(
1 +

εi
2

) δ

2i−1
(S-18)

≤ δ
l∑
i=1

√
ε

2i−1
×O

(√
1 +

ik

mε

)
(S-19)

= O(
√
εδ) (S-20)

= O(δ), (S-21)

where (S-17) follows from (S-14), (S-18) uses the definition of xi, (S-19) follows from the above choice of εi,
and (S-20) from the above-established fact m = Ω

(
k
ε

)
, and (S-21) since we selected δ = c1ε

2.

Recall that ‖ · ‖2→2 is the spectral norm. By [1, Corollary 5.35], we have
∥∥ 1√

m
A
∥∥

2→2
≤ 2 +

√
n
m with

probability at least 1 − e−m/2. Hence, choosing l = dlog2 ne, we have with probability at least 1 − e−m/2
that ∥∥∥ 1√

m
A(x− xl)

∥∥∥
2→2
≤
(

2 +

√
n

m

)
δ

2l
= O(δ), (S-22)
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where we used the fact that ‖x− xl‖ ≤ δ
2i .

Substituting (S-21) and (S-22) into (S-13), we deduce that with probability at least 1− e−Ω(εm),

1

m

m∑
i=1

|〈ai,x− x0〉| ≤ c3δ, (S-23)

where c3 > 0 is a constant. Note that this holds uniformly in x ∈ G(Bk2 (r)), since all preceding high-
probability events only concerned signals in the chain M0, . . . ,Ml of nets, and were proved uniformly with
respect to those nets. Taking the inequality for both x and s and adding the two together, we obtain

1

m

m∑
i=1

|〈ai,x− x0〉|+
1

m

m∑
i=1

|〈ai, s− s0〉| ≤ 2c3δ. (S-24)

To combine the preceding findings, let I1 = Ĩ(x0, s0) (cf., (S-7)), and

I2 =

{
i ∈ [m] : |〈ai,x− x0〉|+ |〈ai, s− s0〉| ≤

192c3δ

ε

}
. (S-25)

By (S-9) and (S-24), we have that when m = Ω
(
k
ε log Lr

δ

)
= Ω

(
k
ε log Lr

ε2

)
(recalling the choice δ = c1ε

2),
with probability at least 1− exp(−Ω(εm)),

|I1| ≥
εm

48
, |Ic2 | ≤

εm

96
. (S-26)

Defining I := I1 ∩ I2, it follows that

|I| ≥ |I1| − |Ic2 | ≥
εm

96
. (S-27)

In addition, for any i ∈ I, we have

〈ai,x〉 = 〈ai,x0〉+ 〈ai,x− x0〉 (S-28)

>
ε

24
− 192c3δ

ε
(S-29)

=
ε

24
− 192c1c3ε (S-30)

>
ε

25
, (S-31)

where (S-30) holds because δ = c1ε
2, and (S-31) follows by choosing c1 sufficiently small. By a similar

argument, we have for i ∈ I that 〈ai, s〉 < − ε
25 . Therefore, for any i ∈ I, we have 1 = sign(〈ai,x〉) 6=

sign(〈ai, s〉) = −1, and (S-27) gives

dH(Φ(x),Φ(s)) ≥ |I|
m
≥ ε

96
, (S-32)

which leads to the desired result in Theorem 1.

S-2 Proof of Corollary 2 (Supplementary Guarantee to Theorem
1)

Similar to Lemma 1, we have the following lemma.

Lemma S-1 Let x, s ∈ Sn−1 and assume that ‖x − s‖2 ≤ ε for some ε > 0. If a ∼ N (0, In), then for
ε0 = ε

12 , we have

P
(

(〈a,x〉 > ε0, 〈a, s〉 > ε0) ∪ (〈a,x〉 < −ε0, 〈a, s〉 < −ε0)
)
≥ 1− 2ε

3
. (S-33)
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Proof We have

P
(

(〈a,x〉 > ε0, 〈a, s〉 > ε0) ∪ (〈a,x〉 < −ε0, 〈a, s〉 < −ε0)
)

= P(〈a,x〉 > ε0, 〈a, s〉 > ε0) + P(〈a,x〉 < −ε0, 〈a, s〉 < −ε0) (S-34)

≥ P(〈a,x〉 > 0, 〈a, s〉 > 0)− P(|〈a,x〉| ≤ ε0) + P(〈a,x〉 < 0, 〈a, s〉 < 0)− P(|〈a, s〉| ≤ ε0). (S-35)

Note that by successively applying Lemmas 3 and 5, we have P(〈a,x〉 > 0, 〈a, s〉 > 0) +P(〈a,x〉 < 0, 〈a, s〉 <
0) = 1− dS(x, s) ≥ 1− ε

2 . In addition, because that 〈a,x〉 ∼ N (0, 1), we have

P(|〈a,x〉| ≤ ε0) ≤ ε0
√

2

π
, (S-36)

which is seen by trivially upper bounding the standard Gaussian density by 1√
2π

. Substituting ε0 = ε
12 , we

obtain the desired inequality. �

Using Lemma S-1 and following similar ideas to those in the proof of Theorem 1, we deduce Corollary 2.
To avoid repetition, we provide only an outline below.

We again construct a chain of nets and select x0,x1, . . . ,xl and s0, s1, . . . , sl in the nets such that (S-4)
is satisfied. Let δ = c1ε

2 with c1 > 0 being a sufficiently small constant. From the triangle inequality, we
obtain

‖x0 − s0‖2 ≤
3ε

2
. (S-37)

Then, let

J̃(x′, s′) :=
{
i ∈ [m] :

(
〈ai,x′〉 >

ε

8
, 〈ai, s′〉 >

ε

8

)
∪
(
〈ai,x′〉 < −

ε

8
, 〈ai, s′〉 < −

ε

8

)}
. (S-38)

Similar to (S-9), we can show that when m = Ω
(
k
ε log Lr

δ

)
, with probability at least 1 − e−Ω(εm), for all

(x′, s′) pairs in G(M)×G(M) with ‖x′ − s′‖2 ≤ 3ε
2 , we have

|J̃(x′, s′)| ≥
(

1− 3ε

2

)
m. (S-39)

Combining (S-39) with (S-25) and a suitable analog of (S-26), we obtain the desired result.

S-3 Proof of Theorem 2 (Noiseless Lower Bound)

The proof proceeds in several steps, given in the following subsections.

S-3.1 Choice of Generative Model

Recall that Theorem 2 only states the existence of some generative model for which m = Ω
(
k log(Lr) + k

ε

)
measurements are necessary. Here we formally introduce the generative model, building on the approach
from [3] of generating group-sparse signals. We say that a signal in Rn is k-group-sparse if, when divided
into k blocks of size n

k ,1 each block contains at most one non-zero entry.2

We construct an auxiliary generative model G̃ : Bk2 (r) → Rn, and then normalize it to obtain the final
model G : Bk2 (r)→ Sn−1. Noting that Bk∞

(
r√
k

)
⊆ Bk2 (r) ⊆ Bk∞(r), we fix xc, xmax > 0 and construct G̃ as

follows:

• The output vector x ∈ Rn is divided into k blocks of length n
k , denoted by x(1), . . . ,x(k) ∈ Rn

k .

• A given block x(i) is only a function of the corresponding input zi, for i = 1, . . . , k.

1To simplify the notation, we assume that n is an integer multiple of k. For general values of n, the same analysis goes
through by letting the final n− kbn

k
c entries of x always equal zero.

2More general notions of group sparsity exist, but for compactness we simply refer to this specific notion as k-group-sparse.

4



x1

z1

z1

x2

xn/k

z1

...

xmax

xmax

xmax

2rk
n

n/k

�xmax

rp
k

rp
k

rp
k

� rp
k

� rp
k

� rp
k

Figure S-1: Generative model that produces sparse signals. This figure shows the mapping from
z1 → (x1, . . . , xnk ), and the same relation holds for z2 → (xn

k+1, . . . , x 2n
k

) and so on up to zk−1 →
(xn−k+1−n/k, . . . , xn−n/k).

• The mapping from zi to x(i), i ∈ [k − 1] is as shown in Figure S-1. The interval
[
− r√

k
, r√

k

]
is divided

into n
k intervals of length 2r

√
k

n , and the j-th entry of x(i) can only be non-zero if zi takes a value in the
j-th interval. Within that interval, the mapping takes a “double-triangular” shape with extremal values
−xmax and xmax.

• To handle the values of zi (with i ∈ [k − 1]) outside
[
− r√

k
, r√

k

]
, we extend the functions in Figure S-1

to take values on the whole real line: For all values outside the indicated interval, each function value
simply remains zero.

• Different from [3], we let the map corresponding to zk always produce xn−n/k+1 = xn−n/k+2 = . . . =
xn−1 = 0 and xn = xc > 0, where the subscript ‘c’ is used to signify “constant”. We allow xc > xmax, as
xmax only bounds the first k − 1 non-zero entries.

• The preceding dot point leads to a Lipschitz-continuous function defined on all of Rk, and we simply take
G̃ to be that function restricted to Bk2 (r).

To attain the final generative model used to prove Theorem 2, we take the output of G̃ and normalize it

to be a unit vector: G(z) = G̃(z)

‖G̃(z)‖2
. We define

Xk :=
{
x ∈ Sn−1 : x is k-group-sparse

}
. (S-40)

We observe the range G(Bk2 (r)) of G is3

X̃k :=

{
x ∈ Xk : xn ≥

xc√
(k − 1)x2

max + x2
c

}
. (S-41)

Furthermore, we have the following lemma regarding the Lipschitz continuity of G.

Lemma S-2 The generative model G : Bk2 (r)→ Sn−1 defined above, with parameters n, k, r, xc, and xmax,
has a Lipschitz constant given by

L =
2nxmax√
krxc

. (S-42)

3For the extreme case that xc = 0, it is easy to see that G(Bk2 (r)) = Xk (ignoring the zero vector generated by G̃). It follows

that for general xc > 0, the range of the generative model is as given in (S-41). Indeed, xc gets divided by ‖G̃(z)‖2, which in

turn can take any value between xc and
√

(k − 1)x2max + x2c .
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Proof From [3, Lemma 1], we know that G̃ is L̃-Lipschitz with L̃ = 2nxmax√
kr

. It is straightforward to show

that for any x,x′ 6= 0,
∥∥ x
‖x‖2 −

x′

‖x′‖2
∥∥ ≤ max

{
1
‖x‖2 ,

1
‖x′‖2

}
‖x − x′‖2. Due to the choice of xn in our

construction, we have ‖G̃(z)‖2 ≥ xc for any z ∈ Bk2 (r); hence, for any z1, z2 ∈ Bk2 (r), we have

‖G(z1)−G(z2)‖2 =

∥∥∥∥∥ G̃(z1)

‖G̃(z1)‖2
− G̃(z2)

‖G̃(z2)‖2

∥∥∥∥∥
2

(S-43)

≤ 1

xc
‖G̃(z1)− G̃(z2)‖2 (S-44)

≤ L̃

xc
‖z1 − z2‖2, (S-45)

meaning that G is L-Lipschitz with L = 2nxmax√
krxc

. �

S-3.2 Proof of Ω
(
k
ε

)
Lower Bound

With the generative model in place that produces group-sparse signals, we proceed by following ideas from
the 1-bit sparse recovery literature [4, 5]. The following lemma is a simple modification of a lower bound for
the packing number of the unit sphere. The proof is deferred to Section S-3.4.

Lemma S-3 For λ ∈ (0, 1), define

Zk(λ) := {z ∈ Sk−1 : zk ≥ λ}. (S-46)

Then, for any k and ε ∈
(
0, 1

2

)
, there exists a subset C ⊆ Zk( 1

2 ) of size |C| ≥
(
c
ε

)k
(with c being an absolute

constant) such that for all z, z′ ∈ C, it holds that ‖z− z′‖2 > 2ε.

The following lemma allows us to bound the number of distinct b vectors (observed vectors) that can be
produced by sparse signals.

Lemma S-4 [4, Lemma. 8] For m ≥ 2k, the number of orthants intersected by a single k-dimensional
subspace in an m-dimensional space is upper bounded by 2k

(
m
k

)
.

With the above lemmas in place, we proceed by deriving a lower bound on the minimal worst-case
reconstruction error, defined as follows (and implicitly depending on a fixed but arbitrary measurement
matrix A):

εopt := inf
ψ(·)

sup
x∈G(Bk2 (r))

‖x− ψ(x)‖2, (S-47)

where ψ(·) is the overall mapping from x to its estimate x̂, and is therefore implicitly constrained to depend
only on (A,Φ(x)) with Φ(x) = sign(Ax). Note that our definition of εopt differs from that in [4], since we
adopt a refined strategy more similar to [5] to arrive at εopt = Ω

(
k
m

)
instead of the weaker εopt = Ω

(
k

m+k3/2

)
.

Lemma S-5 For the generative model G described above with xc and xmax chosen to satisfy (k − 1)x2
max =

3x2
c , we have

εopt = Ω

(
k

m

)
. (S-48)

Proof Note that G(Bk2 (r)) corresponds to a union of Nsupp =
(
n
k

)k−1
subsets ∪i∈[Nsupp]Si, with

Si :=

{
x ∈ Xk : supp(x) ⊆ Ti, xn ≥

xc√
(k − 1)x2

max + x2
c

}
, (S-49)
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where the sets Ti ⊆ [n] equal the Nsupp possible supports of size k for group sparse vectors. Substituting the
assumption (k − 1)x2

max = 3x2
c gives xc√

(k−1)x2
max+x2

c

= 1
2 , and it follows that for any i∗ ∈ [Nsupp], we have

εopt = inf
ψ(·)

sup
x∈G(Bk2 (r))

‖x− ψ(x)‖2 (S-50)

≥ inf
ψ(·)

sup
x∈Si∗ ( 1

2 )

‖x− ψ(x)‖2, (S-51)

where we write (S-49) as Si∗(
1
2 ) := {x ∈ Sn−1 ∩ Xk : supp(x) ⊆ Ti∗ , xn ≥ 1

2} to highlight the fact that
xc√

(k−1)x2
max+x2

c

= 1
2 . Hence, it suffices to derive the lower bound for ε∗opt := infψ(·) supx∈Si∗ ( 1

2 ) ‖x− ψ(x)‖2.

To simplify notation, we assume in the following that the preceding infimum over ψ(·) is attained by

some ψ∗(·).4 By Lemma S-3, there exists a set C ⊆ Si∗( 1
2 ), and a constant c > 0 such that |C| ≥

(
c
ε∗opt

)k
, and

for all x, s ∈ C, ‖x− s‖2 > 2ε∗opt. In addition, from Lemma S-4, the cardinality of the set X̂ ∗ := {x̂ ∈ Rn :

x̂ = ψ∗(x) for some x ∈ Si∗( 1
2 )} satisfies |X̂ ∗| ≤ 2k

(
m
k

)
, since each distinct outcome b ∈ {−1, 1}m produces

at most one additional estimated vector.
For any x 6= s ∈ C, we must have ψ∗(x) 6= ψ∗(s). To see this, suppose by contradiction that there exist

x 6= s ∈ C such that ψ∗(x) = ψ∗(s). Because ‖(x − ψ∗(x)) − (s − ψ∗(s))‖2 = ‖x − s‖2 > 2ε∗opt, we have
that at least one of ‖x− ψ∗(x)‖2 and ‖s− ψ∗(s)‖2 is larger than ε∗opt, which contradicts the condition that
supx∈Si∗ ( 1

2 ) ‖x− ψ∗(x)‖2 ≤ ε∗opt.
Hence, combining the above cardinality bounds, we find

2k
(
m

k

)
≥ |X̂ ∗| ≥ |C| ≥

(
c

ε∗opt

)k
, (S-52)

and applying the inequality
(
m
k

)
≤
(
em
k

)k
, it follows that ε∗opt ≥ ck

2em as desired. �

Lemma S-5 implies that for any ε ∈
(
0, 1

2

)
, to ensure that there exists a reconstruction function ψ(·) such

that supx∈G(Bk2 (r)) ‖x− ψ(x)‖2 ≤ ε, we require that the number of samples m satisfies m = Ω
(
k
ε

)
.

S-3.3 Proof of Ω (k log(Lr)) Lower Bound

The proof of the m = Ω (k log(Lr)) lower bound follows a similar high-level approach to that of m = Ω
(
k
ε

)
.

We first state the lower bound in terms of n as follows.

Lemma S-6 For any ε ≤
√

3
4
√

2
and any reconstruction function φ(·), in order to attain the recovery guarantee

supx∈G(Bk2 (r)) ‖x− φ(x)‖2 ≤ ε, the number of samples m must satisfy m = Ω
(
k log n

k

)
.

Proof Recall from (S-40) that Xk contains the k-group sparse signals on the unit sphere. For any λ ∈ (0, 1),
let

S(λ) := {x ∈ Xk : xn ≥ λ}. (S-53)

We claim that for some constant c > 0 and any ε ≤
√

3
4
√

2
, there exists a subset C ⊆ S( 1

2 ) such that

log |C| ≥ ck log
(
n
k

)
, and for all x, s ∈ C, it holds that ‖x− s‖2 > 2ε. To see this, consider the set

U :=

{
x ∈ Xk : xn =

1

2
, xi ∈

{
0,

√
3

4(k − 1)

}
∀i ≤ n− 1, ‖x‖0 = k

}
(S-54)

of group-sparse signals with exactly k non-zero entries, k − 1 of which take the value
√

3
4(k−1) . By a simple

counting argument, we have |U| =
(
n
k

)k−1
.

4If not, a similar argument applies with ψ∗ζ (·) satisfying supx∈Si∗ ( 1
2
) ‖x− ψ

∗(x)‖2 ≤ ε∗opt + ζ for an arbitrarily small ζ.
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Let k′ = k − 1 for convenience, and for each x ∈ U , let v ∈
{

1, . . . , nk
}k′

be a length-k′ vector indicating
which index in each block of the group-sparse signal (except the k-th one) is non-zero. Then, for x,x′ ∈ U
and the corresponding v,v′, we have

‖x− x′‖22 =
3

4k′
d′H(v,v′), (S-55)

where d′H(v,v′) =
∑n
i=1 1{vi 6= v′i} is the unnormalized Hamming distance. By the Gilbert-Varshamov

bound, we know that there exists a set V of signals in
{

1, . . . , nk
}k′

whose pairwise unnormalized Hamming
distance is at least d, and with the number of elements satisfying

|V| ≥ ( nk′ )
k′∑d−1

j=0(n/k − 1)j
(S-56)

≥ ( nk′ )
k′

d( nk′ )
d
. (S-57)

Setting d = k′

2 , we find that log |V| = Ω
(
k log n

k

)
, and by (S-55), we have that the corresponding x sequences

are pairwise separated by at least a squared distance of 3
8 . This gives us the desired set C stated following

(S-53).
By the triangle inequality, every x ∈ C must have a different outcome Φ(x), since if two have the same

outcome then their 2ε-separation (along with the triangle inequality) implies that the decoder’s output
cannot be ε-close to both. Since m binary measurements can result in 2m possible outcomes, it follows that
2m ≥ |C|, and hence m ≥ log2 |C| = Ω

(
k log n

k

)
. �

Combining the preceding two lower bounds, we readily deduce Theorem 2: From Lemma S-2, the gener-
ative model G that we used above has a Lipschitz constant given by

L =
2nxmax√
krxc

=
n

k

2
√
kxmax

rxc
, (S-58)

which implies that when (k−1)x2
max = 3x2

c , the condition m = Ω
(
k log n

k

)
is equivalent to m = Ω (k log(Lr)).

Combining with the lower bound Ω
(
k
ε

)
derived in Section S-3.2, we complete the proof of Theorem 2.

S-3.4 Proof of Lemma S-3 (Lower Bound on the Packing Number)

We first recall the following well-known lower bound on the packing number of the unit sphere.

Lemma S-7 [6, Ch. 13] For any k and ε ∈
(
0, 1

2

)
, there exists a subset C ⊆ Sk−1 of size |C| ≥

(
c
ε

)k
(with c

being an absolute constant) such that for all z, z′ ∈ C, it holds that ‖z− z′‖2 > 2ε.

Recall that Lemma S-3 is stated for λ = 1
2 . Fix λ̃ ∈ [ 1

2 ,
3
4 ], and consider the set T (λ̃) := {z ∈ Sk−1 : zk =

λ̃}. Applying Lemma S-7 to
√

1− λ̃2Sk−2, we obtain that for any ε > 0, there exists a subset C′(λ̃) ⊆ T (λ̃),

and a constant c′(λ̃) > 0, such that |C′(λ̃)| ≥
( c′(λ̃)

ε

)k−1
, and for all z, z′ ∈ C′(λ̃), it holds that ‖z−z′‖2 > 2ε.

In addition, since we consider λ̃ ∈ [ 1
2 ,

3
4 ], we have minλ̃∈[ 12 ,

3
4 ] c
′(λ̃) > 0.

For the final entry, observe that there exists a set L ⊆ [ 1
2 ,

3
4 ] with |L| ≥ 1

8ε such that for all a, b ∈ L, it
holds that |a− b| > 2ε. Then, considering ∪l∈[L]T (l) and letting C := ∪l∈[L]C′(l) ⊆ Zk

(
1
2

)
(see (S-46)). We

deduce that there exists a constant c > 0 such that |C| ≥
(
c
ε

)k
, and for all x, s ∈ C it holds that ‖x−s‖2 > 2ε.

�
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