
A Chance-Constrained Generative Framework for Sequence Optimization

Xianggen Liu 1 2 Qiang Liu 3 Sen Song 1 Jian Peng 2

Abstract
Deep generative modeling has achieved many suc-
cesses for continuous data generation, such as
producing realistic images and controlling their
properties (e.g., styles). However, the develop-
ment of generative modeling techniques for opti-
mizing discrete data, such as sequences or strings,
still lags behind largely due to the challenges in
modeling complex and long-range constraints, in-
cluding both syntax and semantics, in discrete
structures. In this paper, we formulate the se-
quence optimization task as a chance-constrained
optimization problem. The key idea is to enforce
a high probability of generating valid sequences
and also optimize the property of interest. We
propose a novel minimax algorithm to simulta-
neously tighten a bound of the valid chance and
optimize the expected property. Extensive experi-
mental results in three domains demonstrate the
superiority of our approach over the existing se-
quence optimization methods.

1. Introduction
The sequence optimization task aims to generate valid se-
quences with desirable properties, which is a fundamental
problem in a variety of applications such as drug discov-
ery (Zhou et al., 2019), code generation (Yin & Neubig,
2017), and gene analysis (Gupta & Zou, 2019). However,
this problem is very challenging. On the one hand, the
space is discrete by nature. The non-differentiability hin-
ders back-propagate gradients to guide the learning of gen-
erators, which is effective in the continuous representation
modeling (Arjovsky et al., 2017); On the other hand, the
generated sequences should be subject to some complex and

1Laboratory for Brain and Intelligence and Department of
Biomedical Engineering, Tsinghua University, Beijing, China.
2Department of Computer Science, University of Illinois at Urbana
Champaign, IL, USA. 3Department of Computer Science, Univer-
sity of Texas at Austin, TX, USA. Correspondence to: Xianggen
Liu <liuxg16@mails.tsinghua.edu.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

long-range constraints (e.g., valency conditions in molecular
generation), pushing the discrete searching more difficult.
For example, to generate a string representing a molecule
or a mathematical expression with a desired quantitative
property, we need to both ensure the validity of the gen-
erated string subject to a grammar and model the string
representation so that it is predictive of the property.

Conventional approaches learn a sequence generator us-
ing the schemes of variational autoencoders (VAE) or gen-
erative adversarial networks (GAN). Gómez-Bombarelli
et al. (2018) map the molecular SMILES strings (Weininger,
1988) to a latent space via VAE and employs Bayesian opti-
mization (Jones et al., 1998) to search the sequences with
desirable properties. Objective-reinforced generative adver-
sarial networks (ORGAN, Guimaraes et al. 2017) optimizes
the property of the sequence directly by making it as part
of the reward function on the basis of SeqGAN (Yu et al.,
2017). But the lack of syntactic restriction for the structured
data makes them tend to generate invalid sequences.

To improve the validity of the generated sequences, Kusner
et al. (2017) and Dai et al. (2018) impose sophisticated and
task-specific grammars into the decoder of VAE. However,
when coming to another type of sequences (e.g., SMART,
InChI, and python code), these works require users to de-
sign new hand-crafted grammatical rules for the decoder.
Furthermore, these syntax-direct generative mechanisms
restrict the output space of the decoder, leading to limited
learning capacity.

As a result, the current sequence optimization methods in the
molecule domain achieve considerably lower performance
than the methods that work on graphs (Kajino, 2019). There-
fore, sequence optimization task would be largely benefited
from a method that can effectively combine the objective of
optimizing a property and the requirement of validity.

To this end, we present a novel Chance-Constrained Gener-
ative Framework (CCGF) for sequence optimization, that
not only optimizes a desirable property but could also flex-
ibly control the validity level of the generated sequences.
In particular, we first formulate sequence optimization as a
chance-constrained optimization problem (CCO, Charnes
et al. 1958), which involves optimizing an objective (e.g.,
a desirable property) on the condition of meeting certain
probabilistic constraints (e.g., validity requirement). Next,

A Chance-Constrained Generative Framework for Sequence Optimization

we use Chernoff bound (Hagerup & Rüb, 1990) to transform
the probabilistic constraint into a deterministic one, making
our CCO problem tractable. Finally, we train a deep neural
network to jointly tighten a bound of the valid chance and
optimize the expected property.

The advantage of modeling sequence optimization as a
chance-constrained sampling problem is multi-fold: (1) The
CCGF framework model itself is agnostic to the specific
grammars and can optimize the desirable property while
guaranteeing the validity level of the sequences. (2) CCGF
allows multiple forms of constraints, not limited to the valid-
ity. (3) It is capable of automatically improving the validity
requirement during the training process. The initial low
validity requirement enables the agent search across a large
space (escaping from the realm of locality); Afterwards, the
stricter validity requirement would reduce the search space
and accelerate the optimization.

We first evaluate the effectiveness of our framework on
various domains, including arithmetic expressions, python
programs, and molecules. Experimental results show that
CCGF outperforms all the sequence optimization methods
among all these domains. Besides, it also achieves better
performance than the graph-based optimization methods in
the molecule domain. Then we design a more difficult task
where the constraint requires the generated molecules to
meet the Lipinski rule (Paul et al., 2010). Superior results
of CCGF further confirm the advantages of our framework.

2. Related Work
In early years, sequence optimization was typically ac-
complished by heuristic algorithms, such as hill climb-
ing (Edelkamp & Schroedl, 2011) and dynamic program-
ming (Bellman, 1966; Hu et al., 2018). In natural language
processing (NLP), beam search (Tillmann et al., 1997) and
the Markov chain Monte Carlo method are also widely ap-
plied to text generation and optimization (Oberlander &
Brew, 2000; Anderson et al., 2017; Liu et al., 2020).

Recently, more advanced methodologies have been pro-
posed in the fields of de novo molecular generation and pro-
tein optimization. For example, Segler et al. (2018) utilize
recurrent neural networks to generate drug-like molecules.
Gómez-Bombarelli et al. (2018) employ a VAE to encode
the molecule SMILES into a continuous latent space, based
on which Bayesian optimization can be applied. Gupta &
Zou (2019) propose a feedback-loop mechanism to itera-
tively improve the properties of DNA sequences produced
by generative adversarial networks. However, all of these
works did not consider the validity of sequences.

On the other hand, considering sequential generators often
produce invalid sequences, Janz et al. (2017) learn a deep
recurrent validator model, which estimates whether a partial

sequence can function as the beginning of a valid sequence.
But they mainly focus on facilitating the validity of other
generative models instead of optimizing a property of se-
quences, and is not directly comparable with ours. Kusner
et al. (2017) present a VAE which encodes and decodes
directly to and from syntactic parse trees, ensuring the gen-
erated outputs are always valid. Dai et al. (2018) further
incorporate semantic checking into the decoder of VAE. Dif-
ferent from these existing approaches, CCGF does not need
the grammar information and instead makes the validity
requirement as a constraint of the CCO problem.

CCGF is also related to nonlinear chance-constrained meth-
ods. A number of theoretical results for the nonlinear
chance-constrained problems, such as the smooth approx-
imation (Geletu et al., 2017) and the conditions of conver-
gence (Adam & Branda, 2016), has been obtained. But
most of these studies either consider a specific continu-
ous distribution or are only suitable for a small searching
space (Adam & Branda, 2019). Therefore, they are not
capable of searching discrete sequences under some com-
plex constraints. We leverage the power of deep neural
networks to optimize a minimax objective derived based on
the CCO formulation, serving as the first attempt to study
the sequence optimization using CCO methods.

3. Main Method
In this section, we present our CCGF framework that mod-
els the sequence optimization as a chance-constrained opti-
mization (CCO) problem. In particular, we first introduce
the CCO problem and approximate its chance constraint.
Next, we describe our generative model and the technique
of incorporating the diversity of the generation. Finally, we
summarize the training process of our framework.

3.1. Sequence Optimization by Generative Modeling

Sequence optimization involves generating sequences with
desirable properties. Formally, let Gθ(ξ) be a generator
parametrized by θ ∈ Rd and ξ ∈ Re is a random vector. d
and e are the sizes of vector dimensions. Given a function
f that measures the property of sequences, Gθ is trained to
produce sequences X that make f(X) as high as possible.
The objective can be expressed by

max
θ

Eξ∼N(0,1)[f(Gθ(ξ))]. (1)

Generative adversarial network (GAN) is a popular training
framework for the sequence optimization. As in Guimaraes
et al. (2017), Gθ is trained to jointly maximize the property
expectation and the discriminative accuracy. However, the
sequence data are usually subject to some complex syntactic
and semantic constraints, which are hard to be encoded
in such models. Therefore, we introduce a novel chance-
constrained optimization framework to handle them.

A Chance-Constrained Generative Framework for Sequence Optimization

3.2. Chance-Constrained Optimization

The chance-constrained Optimization (CCO) problem was
first introduced by Charnes et al. (1958) as an optimization
task under uncertainty. Its solution is usually defined as

θ∗ := argmaxθ∈S f̂(θ),

s.t. P (ĝ(θ, ξ) ≤ T) ≤ ε, (2)

where f̂ : Rd → R and ĝ : Rd×Re → R are two functions.
For each θ ∈ Rd, P (ĝ(θ, ξ) ≤ T) stands for the proba-
bility of the event ĝ(θ, ξ) ≤ T . Such kind of constraints
arises naturally in various applications and is called chance
(or probabilistic) constraints. ε ∈ (0, 1) is a user-defined
acceptable level and T ∈ R is a user-defined threshold.

The above CCO problem explicitly allows small random
violations of the constraints and thus is a relatively robust
approach. It provides a compromise between good optimiza-
tion performance and satisfaction of the random constraints.

Here, we formulate the sequence optimization task as a CCO
problem to take its advantages of considering uncertainty.
Thus the goal of sequence optimization can be rephrased
as follows: generating some sequences with a desirable
property and in the meantime ensuring the confidence of
the validity meeting a certain level. To this end, the two
functions (i.e., f̂ and ĝ) in Eqn. (2) are implemented by

f̂(θ) = Eξ∼N(0,1)[f(Gθ(ξ))], (3)
ĝ(θ, ξ) = g(Gθ(ξ)), (4)

where g(x) ∈ {0, 1} is a binary function indicating whether
the sequence x is valid1 or not.

Therefore, the CCO problem for sequence optimization can
be expressed by

max
θ

Eξ∼N(0,1)[f(Gθ(ξ))], (5)

s.t. P (g(Gθ(ξ)) ≤ T) ≤ ε. (6)

3.3. Approximation of the Chance Constraint

As the validity function g is probably neither continuous
nor convex and its analytic expression may be also un-
known, the lower or upper bounds of the constraint (i.e.,
P (g(Gθ(ξ)) ≤ T)) are helpful for finding tractable ap-
proximate solutions (Nemirovski & Shapiro, 2006) if we
can transform the chance constraint into an expectation
constraint. Here, we apply a concentration inequality to
transform the chance constraint into a deterministic one. In
particular, according to Chernoff bounds (Hagerup & Rüb,
1990)

P (ζ ≤ T) ≤ E[e−αζ]

e−αT
, (7)

1In this paper, the term “valid” means the grammar of the
sequence is correct.

the constraint (i.e., Eqn. (6)) can be transformed to

gc(θ, α) = ε− Eξ∼N(0,1)[e
−αg(Gθ(ξ))]/e−αT ≥ 0. (8)

where ζ is a random variable that is non-negative and α is
a non-negative constant. If this new constraint holds, the
chance constraint holds as well. To ensure that the bound is
tight enough, we consider the following constraint.

min
α
gc(θ, α) ≥ 0. (9)

Applying the Lagrange multiplier method (Bertsekas, 2014),
our original CCO problem can be formulated to the follow-
ing optimization problem, that is,

max
θ

Eξ∼N(0,1)[f(Gθ(ξ))] + λ[min
α
gc(θ, α)]− (10)

where [x]− = min(0, x) is the function that takes the nega-
tive value of the input and λ is a nonnegative multiplier that
coordinates the importance of the constraint.

Applying the Monte Carlo (MC) technique, we can approxi-
mate the objective function by averaging stochastic samples,
given by

max
θ

min
α
J (θ, α) = max

θ
{ 1

N

N∑
i

[f(Gθ(ξi))]

+λ[min
α∈A

(ε− 1

N

N∑
i

e−α(g(Gθ(ξi))−T))]−}, (11)

where ε ∈ (0, 1), T ∈ (0, 1) and λ ∈ R are constants and
N is the number of samples. α is a learnable variable and
A = [0,+∞) is its searching range.

We train Gθ to optimize the above objective J by the RE-
INFORCE algorithm (Williams, 1992). α is trained directly
through back-propagation since J is differentiable to it.

Alternative Approximation. We would like to note that
there are other approaches to deal with the chance constraint.
For example, there is a weaker approximate optimization by
replacing the chance constraint to an expectation inequality.
By removing the constraint, we obtain a linear combination
of the property of interest and the validity score, which can
be regarded as a weaker approximate optimization objective,
given by

max
θ

1

N

N∑
i

[f(Gθ(ξi)) + λcg(Gθ(ξi))],

where λc is a weight similar to λ. Since g may not be dif-
ferentiable, we can apply the REINFORCE algorithm to
optimize it. We refer to this approach as RL-Linear and
find that our approximation outperforms it in terms of both
property optimization and generation validity in the exper-
imental section. Another possible way is the simply treat
chance constraint as the expectation of the binary indicator
function of the validity constraint. However, this approach is

A Chance-Constrained Generative Framework for Sequence Optimization

very hard to initialize, largely because the constraint-derived
penalty terms are discrete and very few sequences satisfy
the constraint at the beginning of the optimization.

3.4. Deep Generative Model for Sequence Data

There are many ways to specify generative models for se-
quence generation. In this work, we consider a widely used
recurrent architecture described as following. The genera-
tive model Gθ takes a random vector ξ ∈ Re as input and
recurrently yields a sequence of characters x = (c1, . . . , cL).
L is the length of the sequence. We use a recurrent neural
network (RNN) as the generative model Gθ, which maps
the character embedding representations of the sequence
into a sequence of hidden states recursively. Concretely, the
hidden state ht is initialized by a nonlinear transformation
of the random vector ξ, computed by

h0 = Tanh(ξW + b), (12)

where W ∈ Re×m and b ∈ Rm are learnable parameters
and m is the hidden size of the RNN. We adopt GRU (Cho
et al., 2014) as the update unit of the RNN, given by

hl = GRU(hl−1, cl−1), l = 1, 2, . . . , L, (13)

where cl is the embedding representations of character cl
and c0 is set to a special token. It should be noticed that more
complex update units like LSTM (Hochreiter & Schmid-
huber, 1997), LSTM with attention mechanism (Bahdanau
et al., 2015), and Transformer (Vaswani et al., 2017) can
also be used here. At each time step, a softmax output layer
maps hidden states into the output token distribution, i.e.,

p(cl|c0, . . . , cl−1) = softmax(hlWs + bs), (14)

where Ws ∈ Rm×k and bs ∈ Rk are learnable parameters.
k is the vocabulary size. Therefore, the entire sequence x is
generated by

x = Gθ(ξ) =

L∏
l=1

p(cl|c0, . . . , cl−1) (15)

3.5. Incorporating Diversity

Based on the objective function defined by Eqn. (11), the
generated sequences by Gθ will converge into a few ex-
tremely high-scored sequences but lack diversities. To en-
courage more divergent sequences, we extend f by taking
the adversarial loss into consideration, that is,

f(Gθ(ξ)) = γfp(Gθ(ξ)) +Dτ (Gθ(ξ)), (16)

where fp is the function that measures the property of in-
terest. Dτ is a discriminator that estimates the probability
that a sample is from the training data rather than generated.
In this way, the augmented loss function will encourage
generated sequences to be similar to a given set of data.
We implement it using bidirectional gated recurrent units

Algorithm 1 Training of CCGF

Input: Dataset X̂ = {x̂i}Ni=1, constants in the constraint
ε and T , the weights λ and γ, batch size B, classification
threshold Tacc, task-specific functions fp, g.
Initialize θ, τ and α.
Pre-train Gθ using MLE on X̂ .
repeat

Sample random vectors Ξ = {ξj}Bj=1∼N(0, 1).
Generate X = Gθ(Ξ).
Compute property scores fp(X) and validity g(X).
Compute the probabilities of being true samples
Dτ (X).
Update θ using REINFORCE algorithm via Eqn. (11).
Update α using gradient descent via Eqn. (11).
Use current Gθ to generate negative examples.
Combine negative examples with X̂ as the training
data of Dτ .
Update τ using gradient descent via Eqn. (17).

until mean(Dτ (X)) < Tacc.

(BiGRU). τ is the set of its parameters. γ is a weight coor-
dinating the importance of the property score.

Dτ is trained simultaneously to maximize the accuracy of
the classification between the training examples and gener-
ated samples. The objective of Dτ is given by

max
τ

N∑
i

logDτ (x̂i) +

N∑
i

log(1−Dτ (Gθ(ξi))), (17)

where x̂i is a sequence sample from training data.

3.6. CCGF Sequence Optimization

We summarize our chance-constrained framework for se-
quence optimization, also shown in Algorithm 1.

Given a dataset X̂ and a corresponding task that is defined
by the functions fp and g, CCGF learns to generate different
sequences with desired properties and high validity. First of
all, the generative model Gθ is initialized by a pre-trained
model through maximum likelihood estimation (MLE) on
the dataset. For each updating step, CCGF randomly sam-
ples a batch of random vectors Ξ, based on which the gen-
erator Gθ generates a batch of sequences. The rewards of
the generation are derived by Eqn. (11) and are used to
update the parameter θ and α. We also use the generator
to produce negative examples and combine them with the
positive examples in X̂ to train the discriminative modelDτ .
We repeat the above operations iteratively. It is certain that
optimizing a property of sequences hurts their diversities.
Therefore, we leverage the discriminative model Dτ as our
diversity indicator. When the classification performance
of Dτ is lower than a threshold Tacc, we stop the training

A Chance-Constrained Generative Framework for Sequence Optimization

process.

Theorem 1. For any T ∈ (0, 1), ε ∈ (0, 1) and the av-
erage validity v ∈ [0, 1] of the generation, there exists
α̂ ∈ [0,+∞) and once the variable α ≥ α̂, we have
∂J (θ,α)
∂α ≤ 0. (The proof is in Appendix B.)

The above theorem shows that, once α is larger than a con-
stant α̂, the validity requirement of CCGF (also termed as
the lower bound of validity that meets the constraint, Ap-
pendix A) will monotonically increase as the optimization
process proceeds. This coincides with simulated anneal-
ing (Kirkpatrick et al., 1983): the initial low validity re-
quirement enables the searching agent to escape from the
realm of locality in the beginning of learning. Afterward,
the stricter validity requirement would reduce the search
space and accelerate the optimization.

Initialization of α. To make Theorem 1 work throughout
the optimization process, we initialize α with α̂, whose
computation is provided in Appendix C.

4. Experimental Results
In this section, we evaluate the proposed CCGF framework
with applications in three domains, including arithmetic
expressions, python programs and molecules.

4.1. Implementation Details

CCGF is implemented based on the PyTorch library (Paszke
et al., 2017). Among the CCGF framework, the generative
model Gθ is trained by policy gradient using the REIN-
FORCE algorithm; the discriminative model Dτ is trained
via gradient descent. The Adam algorithm with a learn-
ing rate of r is used to update their parameters. The SGD
algorithm with a learning rate of rα is used to update α.

As both the scales of properties to be optimized and the
learning difficulties of individual tasks are different, the
optimal hyperparameters of CCGF vary across tasks. To
reduce the searching range of the hyperparameters, we
first empirically determine the global values of some ro-
bust hyperparameters for all the tasks and then apply grid
search procedures for the other hyperparameters in each
task. Specifically, the hidden states of the discriminative
model, the hidden states of the generative model and the
random vector ξ are set to share the same dimension. We
fix the validity threshold T to 0.5 and adjust ε for each task
since they act the same role in the constraint (defining the
validity requirement). The batch size B is set to 1, 000 be-
cause MC sampling works in a relatively large distribution
but the memory of the machine is limited. We investigate in-
fluences of classification threshold Tacc to the performance
of CCGF (Appendix D) and finally set Tacc to 0.1. As for
the determination of the other hyperparameters (including

Table 1. Optimization performance of individual methods on the
dataset of arithmetic expressions. Following Kusner et al. (2017),
the desirable property in the arithmetic expression is the similarity
of the results yielded by the sampled expression and the target
expression. A higher score is preferred.

Methods 1st 2nd 3nd Average Validity

CVAE -0.39 -0.40 -0.40 -4.75 86%
GVAE -0.04 -0.10 -0.37 -3.47 99%
CCGF -0.04 -0.04 -0.04 -0.52 99%

the constant ε in the constraint, the two weights γ and λ in
the objective function, two learning rates r and rα, hidden
size m of RNN), we perform grid search procedures for
individual tasks. Their selected values for each task are
listed in Appendix E.

4.2. Arithmetic Expressions

The task of arithmetic expressions aims to search for the
expression sequences that fit a target one. The target arith-
metic expression is “1 / 3 + x + s i n (x * x).” We follow
Kusner et al. (2017) to generate expression sequences by
the following rules of grammars:

S→ S‘+’T | S‘*’T | S‘/’T | T

T→ ‘(’S‘)’ | ‘sin (’S‘)’ | ‘exp (’S‘)’

T→ ‘x’ | ‘1’ | ‘2’ | ‘3’

where S and T are non-terminals and the symbol | is a sep-
arator between the possible production rules. We randomly
collect 100,000 univariate arithmetic expressions that have
at most 15 production rules. We use all of them as the train-
ing data of CCGF, and 90% of them are used for the training
of MLE and 10% of them for validating of MLE (similar
protocols are also applied to the following experiments).

The property scores of arithmetic expressions are calculated
based on their computed outputs. Concretely, given a se-
quence (arithmetic expression), the score of the property is
computed by − log(1 + MSE), where MSE indicates the
mean square error between the outputs of the expression
and the outputs of the target expression. The outputs of
an expression comprise of 1,000 results that are obtained
by passing the linearly-spaced input values between −10
and 10. Based on this metric, a higher property score cor-
responds to a more similar expression to the target one.
Since the invalid sequences can not be computed, we train a
BiGRU network to fit the property based on the collected
dataset and take it as the function fp. As for the function g, it
is implemented by the grammar rules described previously.

We compare our method with CVAE (Gómez-Bombarelli
et al., 2018) and GVAE (Kusner et al., 2017). Both of them
learn a latent space and leverage Bayesian optimization

A Chance-Constrained Generative Framework for Sequence Optimization

Table 2. Best expressions produced by individual methods.
Methods Rank Expression

Target expression - 1 / 3 + x + sin(x * x)

CVAE
1 x * 1 + sin(3) + sin(3 / 1)
2 x * 1 + sin(1) + sin(2 * 3)
3 x + 1 + sin(3) + sin(3 + 1)

GVAE
1 x / 1 + sin(3) + sin(x * x)
2 1 / 2 + (x) + sin(x * x)
3 x / x + (x) + sin(x * x)

CCGF
1 x * 1 + sin(3) + sin(x * x)
2 sin(3) + x / 1 + sin(x * x)
3 1 * x + sin(3) + sin(x * x)

algorithm (Jones et al., 1998) to search the sequences with
high property scores. CVAE only takes character sequence
information; GVAE also utilizes the context-free grammar.

Table 1 shows the top 3 property scores, average scores and
the average validity among the 2, 500 sequences generated
by each method. Compared with CVAE, GVAE largely
improves the properties of generated sequences and validity
performance by making use of the grammar information.
CCGF does not need the grammar information and achieves
the best results in terms of all the metrics, showing the
advantages of modeling the sequence optimization to the
CCO problem. Table 2 shows the top 3 expressions found
by each method. All the top 3 expressions produced by
CCGF are the closest to the target expressions, with different
surfaces.

Table 3. Optimization performance of individual methods on the
task of python programs.

Methods 1st 2nd 3nd Validity

CVAE -0.174 -0.289 -0.304 0.02%
GVAE -0.545 -0.550 -0.575 2.96%

SD-VAE -0.121 -0.144 -0.146 100.00%
CCGF -0.048 -0.048 -0.064 99.5%

Target

O
u
tp
u
t

Input

CCGF

GVAE

SD-VAE

CVAE

Figure 1. Curves of the best programs found by different methods
where programs are regarded as functions of the input (i.e., v0).

4.3. Short Python Programs

In this task, we aim at finding some python programs that
fit the target one. We follow Kusner et al. (2017) to collect
130, 000 univariate programs as the training data. All the
program sequences comply with the grammar rules of the
python programming language. The input of the program is
v0 and its output variable is specified by return. In this
experiment, the function g is implemented by the python
compiler to check the grammar of the generated programs.
The function fp, also implemented by a well trained BiGRU,
yields the similarity (i.e., − log(1 + MSE) of the execution
outputs between the given program and the target program.
The execution outputs of a python program comprise 1,000
results obtained by assigned v0 to the linearly-spaced values
between −5 to 5. The target program is listed below.

v1=sin(v0);v2=exp(v1);v3=v2-1;return v3

Besides CVAE and GVAE, we also compare CCGF with
SD-VAE. SD-VAE is another VAE-based sequential genera-
tor that makes use of both syntactic and semantic checking
in the decoder of VAE. Table 3 shows the performance of
individual methods in the optimization of python programs.
We notice that the average validity scores of CVAE and
GVAE is quite low, which is largely due to the more com-
plex grammar of python programs. SD-VAE improves both
the optimization performance and the validity of generation
by leveraging syntax and semantic checking in the decoding
process. CCGF surpasses all these methods in the optimiza-
tion scores and also obtains similar validity performance
with SD-VAE. Moreover, Figure 1 illustrates the curves of
the best programs found by each method, which further con-
firms the superiority of the best program found by CCGF.

4.4. Generating SMILES Strings for Molecule
Optimization

The goal of sequence optimization in the molecule domain
involves generating molecule sequences with desired prop-
erties. Here we consider generating molecules in the format
of SMILES strings. We use the ZINC molecular dataset,
which contains 250, 000 drug-like molecules (Irwin et al.,
2012). We consider the following two properties.

• Solubility. A property that measures how likely a
molecule can mix with water. As in Shi et al. (2020),
we measure it via the logP score penalized by the ring
size and synthetic accessibility (Ertl & Schuffenhauer,
2009).

• Druglikeness. A property that describes how likely a
molecule to be a drug. We use the quantitative estima-
tion of drug-likeness (QED) to measure it.

We adopt the scripts used in You et al. (2018) to compute

A Chance-Constrained Generative Framework for Sequence Optimization

Table 4. Optimization performance of individual methods on the ZINC dataset.

Methods Penalized LogP QED
1st 2nd 3nd Top 50 Avg. Validity 1st 2nd 3nd Top 50 Avg. Validity

ZINC (Dataset) 4.52 4.30 4.23 0.78 100.0% 0.948 0.948 0.948 0.948 100.0%

Graph-based

Random walk (Zhou et al., 2019) -3.99 -4.31 -4.37 - 100.0% 0.640 0.560 0.560 - 100.0%
JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 3.93 100.0% 0.925 0.911 0.910 - 100.0%

MHG-VAE (Kajino, 2019) 5.56 5.40 5.34 4.49 100.0% - - - - -
GCPN (You et al., 2018) 7.98 7.85 7.80 - 100.0% 0.948 0.947 0.946 - 100.0%

MRNN (Popova et al., 2019) 8.63 6.08 4.73 - 100.0% 0.844 0.796 0.736 - 100.0%
MolDQN (Zhou et al., 2019) 11.51 11.51 11.50 - 100.0% 0.934 0.931 0.930 - 100.0%
GraphAF (Shi et al., 2020) 12.23 11.29 11.05 - 100.0% 0.948 0.948 0.947 - 100.0%

Sequence-based

CVAE (Gómez-Bombarelli et al., 2018) 1.98 1.42 1.19 - 0.7% - - - - -
GVAE (Kusner et al., 2017) 2.94 2.89 2.80 - 7.2% - - - - -
SD-VAE (Dai et al., 2018) 4.04 3.50 2.96 - 43.5% - - - - -

ORGAN (Guimaraes et al., 2017) 3.63 3.49 3.44 - 0.4% 0.896 0.824 0.820 - 2.2%
CCGF 12.32 11.79 11.61 10.15 98.8% 0.948 0.948 0.948 0.947 99.0%

Table 5. Diversity and novelty of the sequences generated by individual methods. Results with † are obtained based on their published
codes.

Methods Diversity NoveltyMorganFp MACCS PairFp TopologicalFp

GVAE† 0.59 ± 0.13 0.43 ± 0.15 0.47 ± 0.16 0.45 ± 0.12 100.0%
SD-VAE† 0.62 ± 0.10 0.42 ± 0.13 0.49 ± 0.13 0.46 ± 0.12 100.0%
MolDQN† 0.58 ± 0.13 0.33 ± 0.17 0.51 ± 0.13 0.44 ± 0.12 100.0%
GraphAF† 0.48 ± 0.33 0.39 ± 0.33 0.51 ± 0.30 0.49 ± 0.31 100.0%

CCGF 0.57 ± 0.29 0.62 ± 0.22 0.62 ± 0.32 0.53 ± 0.19 100.0%

the above two properties for a fair comparison. We also
train a BiGRU network as the function fp for each of the
optimization tasks, to obtain properties of invalid sequences
during the training phase. The function g is implemented by
grammar rules of SMILES via the RDKit (Landrum) library.

The property optimization in molecule domains has attracted
considerable attention in recent years. The related works in-
clude ORGAN, Random walk, JT-VAE, MHG-VAE, GCPN,
MRNN, MolDQN and GraphAF. All of these methods ex-
cept ORGAN generate molecules based on graphs instead
of sequences. We refer to them as graph-based methods.
The Random walk produces graphs by generating nodes
and edges randomly (Zhou et al., 2019). JT-VAE (Jin et al.,
2018) generates molecules by first decoding a tree struc-
ture of chemical groups and then assembling them into
molecules. GCPN (You et al., 2018) learns to optimize
domain-specific rewards and adversarial loss through policy
gradient. MRNN (Popova et al., 2019) uses RNN to generate
atoms and bonds of molecules sequentially. MolDQN (Zhou
et al., 2019) utilizes double Q-learning for molecular opti-
mization. GraphAF (Shi et al., 2020) is a flow-based autore-
gressive model that generates the nodes and edges based
on existing sub-graphs. We take all of these methods into
comparison as shown in Table 4.

Among sequence-based approaches, CVAE and ORGAN

achieve the worst performance in terms of validity, indi-
cating that directly maximizing the penalized logP hurts
the grammar of sequences. We further observe that CCGF
yields significantly better results than all the other sequence-
based approaches. This shows sequence optimization is
better modeled as a chance-constraint optimization problem,
instead of searching from a learned latent space.

It is curious to see how CCGF is compared with graph-based
generative approaches. Although the graph-based methods
explicitly specify the validity within their model and always
generate valid molecules, they have to face a more complex
searching space. We notice in Table 4 that CCGF also
outperforms most graph-based approaches and achieves
comparable performance with GraphAF, the best method,
in terms of the two desirable properties, with a negligible
loss in the average validity (∼1%). We have also depicted
the molecules with the highest penalized logP generated by
CCGF and GraphAF (Appendix F), the latter of which is
the previously state-of-the-art optimization approach.

Furthermore, we have measured the diversity of the opti-
mized molecules. Following Dai et al. (2018), we use the
pair-wise distance to indicate the diversity, which is calcu-
lated by 1− s, where s is the similarity score based on one
of the fingerprint types of molecules. Four fingerprint types
are adopted in this experiment, namely MorganFp, MACCS,

A Chance-Constrained Generative Framework for Sequence Optimization

Table 6. Performance of individual methods on the task of optimiz-
ing solubility (penalized logP) based on the constraint of Lipinski
rule. The results of each method are obtained based on the 2, 500
generated sequences. The “Validity” stands for the fraction of
generated sequences that meet the Lipinski rule.

Methods 1st 2nd 3nd Top 50 Avg. “Validity”

GVAE 2.78 2.73 2.59 1.42 91.6%
SD-VAE 3.10 3.01 2.77 1.71 92.7%
MolDQN 3.88 3.55 3.29 2.97 98.5%
GraphAF 4.15 3.74 3.64 3.31 97.4%

CCGF 4.30 4.02 3.97 3.58 98.9%

PairFp and TopologicalFp (Nilakantan et al., 1987). For
each method, we randomly sample 100 molecules and com-
pute the average diversities and the standard deviations. As
shown in Table 5, we find the diversity of sequences gen-
erated by CCGF is better than those generated by other
methods in three of the four metrics.

Last but not least, We have additionally evaluated the nov-
elty (the percentage of molecules not appearing in the train-
ing set) of the molecules generated by several competitive
models including GVAE, SD-VAE, MolDQN, GraphAF,
CCGF. We find the molecules produced by each method are
mostly new. We conjecture the high novelty is mainly due
to the vast sampling space and the objective of sequence
optimization (instead of MLE).

4.5. Molecule Optimization under Complex
Constraints

Our framework allows various formations of constraints;
grammar rules are just one kind of them. Here we consider
a more difficult constraint in molecule optimization—the
Lipinski rule (Paul et al., 2010), which is a widely-used met-
ric to determine whether the molecule is a likely orally active
drug in humans (Zhavoronkov et al., 2019). Compared with
the continuous QED, the binary value of the Lipinski rule is
simpler to computed and free of manually selecting a cutoff.
Based on this constraint, CCGF is required to optimize the
solubility of a given molecule.

Optimizing multiple goals simultaneously is an emerging
and challenging research topic. We only find MolDQN pro-
vides a solution that maximizes the linear combination of
the two goals by reinforcement learning. Here, we follow
MolDQN and extend the several competitive approaches
(i.e., GVAE, SD-VAE and GraphAF) to this task by impos-
ing the Lipinski rule into their original objective functions.
The adaptations are all based on their published codes and
more implementation details are elaborated in Appendix G.

The optimization performances of individual methods are
shown in Table 6. GVAE and SD-VAE achieve the worst
performance, indicating searching molecules from latent

1st 2nd 3nd

CCGF

GraphAF

1st 2nd 3nd

Figure 2. The top-3 molecules produced by CCGF subject to the
Lipinski rule. Following the color convention in chemistry, individ-
ual sizes and colors of atoms stand for different chemical elements,
where black atoms stand for carbon and red for oxygen.

Table 7. Ablation study.
Methods Molecules (Penalized LogP) Programs

Top 50 Avg. Validity Top 50 Avg. Validity

MLE 3.17 80.2% -0.453 92.2%
RL-Linear 8.81 98.5% -0.131 99.2%

CCGF-fixed 8.53 98.9% -0.139 99.1%
CCGF 10.15 98.8% -0.113 99.5%

space by Bayesian optimization is less effective than RL.
CCGF outperforms GraphAF in terms of all the metrics in-
cluding the fraction of sequences meeting the Lipinski rule.
This shows that CCGF is a better framework to simultane-
ously optimize two objectives than graph-based methods.
The molecules with the highest scores discovered by our
model and GraphAF are illustrated in Figure 2.

4.6. Further Analysis

Ablation Study. We first introduce two control models, de-
noted by CCGF-fixed and RL-Linear. CCGF-fixed follows
the basic framework of CCGF but uses a fixed α during the
learning. α is set to the finalized value of α in the origi-
nal CCGF. As mentioned previously, RL-Linear shares the
same generative model but differs in the objectives. Note
that the diversity term was also incorporated in RL-Linear a
fair comparison with CCGF.

We evaluate the two control models on two tasks, i.e., opti-
mizing the penalized logP of molecules and fitting the target
program. The results in Table 7 show that CCGF with fixed
α obtains similar validity but significantly worse perfor-
mance of logP scores than the original CCGF. We conjecture
it is because the initial smaller α enables CCGF to explore
more sequences with high predicted properties even if they
are not valid, leading to better performance. With the same
generative model and a similar training scheme, RL-Linear

A Chance-Constrained Generative Framework for Sequence Optimization

still lags behind CCGF significantly, further demonstrating
the advantages of our modeling strategy.

Optimization Convergence. We show the learning curves
of CCGF and RL-Linear in Appendix Figure 2. In the
learning curve of CCGF, we observe that both the validity
and α are gradually increasing along with the number of
training epochs, which validates the theoretical analysis in
Theorem 1. In addition, the increase of penalized logP and
the validity is more slowly than those of RL-Linear, making
the training process significant longer and contributing more
gains in the optimized property.

5. Conclusion
In this paper, we present a new framework that models se-
quence optimization as a chance-constrained optimization
problem, to not only optimize a desirable property of se-
quences but also guarantee the validity of the generation.
Our framework can automatically improve the validity re-
quirement during the training process and facilitate the agent
to escape from the locality. Intensive experiments on three
domains show our framework outperforms previously state-
of-the-art optimization methods to a large extent. We also
outperform graph-based generators in a task of the molecule
optimization under complex constraints.

Acknowledgements
We thank the anonymous reviewers for their insightful sug-
gestions. We also thank Fangping Wan for the helpful dis-
cussion. Jian Peng acknowledges the support of the National
Science Foundation (NSF) CAREER award (1652815).

References
Adam, L. and Branda, M. Nonlinear chance constrained

problems: optimality conditions, regularization and
solvers. Journal of Optimization Theory and Applica-
tions, 170(2):419–436, 2016.

Adam, L. and Branda, M. Machine learning approach
to chance-constrained problems: An algorithm based
on the stochastic gradient descent. arXiv preprint
arXiv:1905.10986, 2019.

Anderson, P., Fernando, B., Johnson, M., and Gould, S.
Guided open vocabulary image captioning with con-
strained beam search. In EMNLP, pp. 936–945, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International Conference
on Machine Learning, volume 70, pp. 214–223, 2017.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In

International Conference on Learning Representations,
2015.

Bellman, R. Dynamic programming. Science, 153(3731):
34–37, 1966.

Bertsekas, D. P. Constrained optimization and Lagrange
multiplier methods. Academic press, 2014.

Charnes, A., Cooper, W. W., and Symonds, G. H. Cost hori-
zons and certainty equivalents: an approach to stochastic
programming of heating oil. Management science, 4(3):
235–263, 1958.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using rnn encoder-decoder for sta-
tistical machine translation. In EMNLP, pp. 1724–1734,
2014.

Dai, H., Tian, Y., Dai, B., Skiena, S., and Song, L. Syntax-
directed variational autoencoder for structured data. In
International Conference on Learning Representations,
2018.

Edelkamp, S. and Schroedl, S. Heuristic Search: Theory
and Applications. Elsevier, 2011.

Ertl, P. and Schuffenhauer, A. Estimation of synthetic acces-
sibility score of drug-like molecules based on molecular
complexity and fragment contributions. Journal of chem-
informatics, 1(1):8, 2009.

Geletu, A., Hoffmann, A., Kloppel, M., and Li, P. An inner-
outer approximation approach to chance constrained op-
timization. SIAM Journal on Optimization, 27(3):1834–
1857, 2017.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C.,
Farias, P. L. C., and Aspuru-Guzik, A. Objective-
reinforced generative adversarial networks (ORGAN)
for sequence generation models. arXiv preprint
arXiv:1705.10843, 2017.

Gupta, A. and Zou, J. Feedback gan for DNA optimizes
protein functions. Nature Machine Intelligence, 1(2):105,
2019.

Hagerup, T. and Rüb, C. A guided tour of chernoff bounds.
Information processing letters, 33(6):305–308, 1990.

A Chance-Constrained Generative Framework for Sequence Optimization

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hu, H., Liu, X., Xiao, A., Li, Y., Zhang, C., Jiang,
T., Zhao, D., Song, S., and Zeng, J. Rationaliz-
ing translation elongation by reinforcement learning.
bioRxiv:10.1101/463976, 2018.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S.,
and Coleman, R. G. ZINC: a free tool to discover chem-
istry for biology. Journal of chemical information and
modeling, 52(7):1757–1768, 2012.

Janz, D., van der Westhuizen, J., Paige, B., Kusner, M. J.,
and Hernández-Lobato, J. M. Learning a generative
model for validity in complex discrete structures. In
International Conference on Learning Representations,
2017.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International Conference on Machine Learning (ICML),
2018.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global optimization, 13(4):455–492, 1998.

Kajino, H. Molecular hypergraph grammar with its appli-
cation to molecular optimization. In International Con-
ference on Machine Learning (ICML), pp. 3183–3191,
2019.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. Science, 220(4598):
671–680, 1983.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. Proceedings of the
34th International Conference on Machine Learning, 70:
1945–1954, 2017.

Landrum, G. RDKit: Open-source cheminformatics.

Liu, X., Mou, L., Meng, F., Zhou, H., Zhou, J., and Song,
S. Unsupervised paraphrasing by simulated annealing.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 302–312,
2020.

Nemirovski, A. and Shapiro, A. Convex approximations
of chance constrained programs. SIAM Journal on Opti-
mization, 17(4):969–996, 2006.

Nilakantan, R., Bauman, N., Dixon, J. S., and Venkataragha-
van, R. Topological torsion: a new molecular descriptor
for sar applications. comparison with other descriptors.
Journal of Chemical Information and Computer Sciences,
27(2):82–85, 1987.

Oberlander, J. and Brew, C. Stochastic text generation.
Philosophical Transactions of the Royal Society of Lon-
don. Series A: Mathematical, Physical and Engineering
Sciences, 358(1769):1373–1387, 2000.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. Neural Informa-
tion Processing Systems, 2017.

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger,
C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L.
How to improve R&D productivity: the pharmaceutical
industry’s grand challenge. Nature reviews Drug discov-
ery, 9(3):203, 2010.

Popova, M., Shvets, M., Oliva, J., and Isayev, O. Molecu-
larRNN: Generating realistic molecular graphs with op-
timized properties. arXiv preprint arXiv:1905.13372,
2019.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P.
Generating focused molecule libraries for drug discovery
with recurrent neural networks. ACS central science, 4
(1):120–131, 2018.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang, J.
GraphAF: a flow-based autoregressive model for molec-
ular graph generation. In International Conference on
Learning Representations, 2020.

Tillmann, C., Vogel, S., Ney, H., Zubiaga, A., and Sawaf,
H. Accelerated dp based search for statistical translation.
In European Conference on Speech Communication and
Technology, pp. 2667–2670, 1997.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Weininger, D. SMILES, a chemical language and informa-
tion system. 1. introduction to methodology and encoding
rules. Journal of Chemical Information and Computer
Sciences, 28(1):31–36, 1988.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Yin, P. and Neubig, G. A syntactic neural model for general-
purpose code generation. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics, pp. 440–450, 2017.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecular
graph generation. In Advances in Neural Information
Processing Systems, pp. 6410–6421, 2018.

A Chance-Constrained Generative Framework for Sequence Optimization

Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence
generative adversarial nets with policy gradient. In Thirty-
First AAAI Conference on Artificial Intelligence, pp. 2852–
2858, 2017.

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov,
M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev,
V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev,
A., et al. Deep learning enables rapid identification of
potent DDR1 kinase inhibitors. Nature biotechnology, 37
(9):1038–1040, 2019.

Zhou, Z., Kearnes, S., Li, L., Zare, R. N., and Riley, P. Op-
timization of molecules via deep reinforcement learning.
Scientific reports, 9(1):1–10, 2019.

