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A. Proofs
Proof of Theorem 1. As for the (i) in Theorem 1, we obtain
the upper bound directly from Theorem 4.6 of Alquier et al.
(2019).

As for (ii), by putting these n1n2/(m1m2) estimators
ÂQMC,l together, we focus on both the first and second term
of the right hand side of the upper bound (3.1) respectively.
It is easy to verify that the upper bound in the right hand
side hold.

In terms of the probability, we can conclude that

l1l2∑
l=1

Cl exp(−Clslmmax log(m+)) ≤

max{Cl} exp(log(n1n2)−min{Cl}mmax log(m+)).

Proposition A.1. Suppose that Conditions (C1)-(C5) hold.
Let h ≥ c log(n+)/N for some c > 0 and h =
O((n1n2)−1/2aN ). We have

∣∣∣f̂ (0)− f (0)
∣∣∣ = OP

(√
log(n+)

Nh
+

aN√
n1n2

)
.

Proof of Proposition A.1. Let

DN,h (A) =
1

Nh

N∑
i=1

K

(
Yi − tr(XT

i A)

h

)
.

To prove the proposition, without loss of generality, we can
assume that ‖A − A?‖F ≤ aN . It follows that f̂(0) =
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DN,h(A) and∣∣∣f̂ (0)− f (0)
∣∣∣ ≤ sup

‖A−A?‖F≤aN
|DN,h (A)− f (0)| .

We denote A? = (A?,11, . . . , A?,n1n2
). For every s

and t, we divide the interval [A?,st − aN , A?,st + aN ]
into (n1n2)M small sub-intervals and each has length
2aN/(n1n2)M , where M is a large positive number. There-
fore, there exists a set of matrices in Rn1×n2 , {A(k), 1 ≤
k ≤ sN} with sN ≤ (n1n2)M(n1n2) and ‖A(k) −
A?‖F ≤ aN , such that for any A in the ball {A : A ∈
Rn1×n2 , ‖A − A?‖F ≤ aN}, we have ‖A − A(k)‖F ≤
2
√
n1n2aN/(n1n2)M for some 1 ≤ k ≤ sN . Therefore∣∣∣∣∣ 1hK
(
Yi − tr(XT

i A)

h

)
− 1

h
K

(
Yi − tr(XT

i A(k))

h

)∣∣∣∣∣ ≤
Ch−2

∣∣tr{XT
i

(
A−A(k)

)
}
∣∣ .

This yields that

sup
‖A−A?‖F≤aN

|DN,h (A)− f (0)| −

sup
1≤k≤sN

∣∣DN,h

(
A(k)

)
− f (0)

∣∣ ≤ CN
√
n1n2aN

(n1n2)M+1h2
.

By letting M large enough, we have

sup
|A−A?|2≤aN

|DN,h (A)− f (0)| −

sup
1≤k≤sN

∣∣DN,h

(
A(k)

)
− f (0)

∣∣ = OP
(
n−γ+

)
.

It is enough to show that supk |DN,h(A(k)) −
EDN,h(A(k))| and supk |EDN,h(A(k)) − f(0)| sat-
isfy the bound in the lemma. Let E∗(·) denote the
conditional expectation given {Xk}. We have

E∗
{

1

h
K

(
εi − tr{XT

i (A−A?)}
h

)}
=∫ ∞

−∞
K (x) f

{
hx+ tr{XT

i (A−A?)}
}
dx

= f (0) +O
(
h+

∣∣tr{XT
i (A−A?)}

∣∣) .
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Under Condition (C1), with the fact that E|tr{XT
i (A −

A?)}| ≤ (n1n2)−1aN and Var|tr{XT
i (A − A?)}| ≤

(n1n2)−1a2N , we have∣∣EDN,h

(
A(k)

)
− f (0)

∣∣ ≤
C
(
h+ (n1n2)−1/2

∥∥A(k) −A?

∥∥
F

)
= O(h+ (n1n2)−1/2aN ).

It remains to bound supk |DN,h(A(k)) − EDN,h(A(k))|.
Put

ξi,k = K

(
εi − tr{XT

i

(
A(k) −A?

)
}

h

)
.

We have

E∗ξ2i,k =

h

∫ ∞
−∞
{K (x)}2 f

{
hx+ tr(XT

i

(
A(k) −A?

)
)
}
dx ≤ Ch.

Since K(x) is bounded, we have by the exponential in-
equality (Lemma 1 in (Cai & Liu, 2011)) and the fact that
log(n+) = O(Nh), we have for any γ > 0, there exists a
constant C > 0 such that

sup
k

P

(∣∣∣∣∣
N∑
i=1

(ξi,k − Eξi,k)

∣∣∣∣∣ ≥ C√Nh log(n+)

)
= O

(
n−γ+

)
.

By letting γ > M , we can obtain that

sup
k

∣∣DN,h(A(k))− EDN,h(A(k))
∣∣ =

OP

(√
log(n+)

Nh

)
.

This completes the proof.

Lemma A.1. We have for any γ > 0, |u|2 = 1 and |v|2 =
1, there exists a constant C > 0 such that

Pr

 1

N

N∑
i=1

(
|vTXiu| − E|vTXiu|

)
≥ C

√
log(n+)

nminN


= O(n−γ+ ).

Proof of Lemma A.1. On one hand, we have E|vTXiu| =
O(n−1min). On the other hand, to apply Lemma 1 in
Cai & Liu (2011), we only need to find BN so that∑N
i E(|vTXiu|2 exp η|vTXiu|) ≤ B2

N . For each i =

1, . . . , N , we have

E(|vTXiu|2 exp (η|vTXiu|))

≤ c

n1n2

n1∑
s=1

n2∑
t=1

u2sv
2
t exp (η|usvt|)

≤ c

n1n2

n1∑
s=1

n2∑
t=1

u2sv
2
t exp (ηu2s) exp (ηv2t )

≤ C(n1 + n2)

n1n2
=

C

nmin
.

Take x2 = γ log(n+) and B2
N = Cγ−1Nn−1min in Lemma 1

of Cai & Liu (2011), we can get the conclusion.

Denote BN (A) ∈ Rn1×n2 where

BN (A) =
1

N

N∑
i=1

[
XiI

[
εi ≤ tr

{
XT
i (A−A?)

}]
−Xif

(
tr
{
XT
i (A−A?)

})]
− 1

N

N∑
i=1

[XiI [εi ≤ 0]−Xif (0)] . (A.1)

Let Θ = {A : ‖A−A?‖F ≤ c} for some c > 0.

Lemma A.2. We have for any γ > 0, there exists a constant
C > 0 such that

sup
|v|2=1

sup
|u|2=1

Pr
(

sup
A∈Θ

√
n1n2|vTBN (A)u|√

‖A−A?‖F + nmax log(n+)/N
≥

C

√
log(n+)

nminN

)
= O(n−γ+ ).

Proof of Lemma A.2. We define Rn1×n2 , {A(k), 1 ≤ k ≤
sN} as in the proof of Proposition A.1 with by replacing
aN with c. Then for any A ∈ Θ, there exists A(k) with
‖A−A(k)‖F ≤ 2c

√
n1n2/(n1n2)M and we have

∣∣∣ √
n1n2|vTBN (A)u|√

‖A−A?‖F + nmax log(n+)/N
−

√
n1n2|vTBN (A(k))u|√

‖A(k) −A?‖F + nmax log(n+)/N

∣∣∣
≤
∣∣∣ √

n1n2|vTBN (A(k))u|√
‖A−A?‖F + nmax log(n+)/N

−
√
n1n2|vTBN (A(k))u|√

‖A(k) −A?‖F + nmax log(n+)/N

∣∣∣
+

√
n1n2|vTBN (A)u− vTBN (A(k))u|√
‖A−A?‖F + nmax log(n+)/N

=: I1 + I2.
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It is easy to see that

|I1| ≤ C
∑N
i=1 |vTXiu|tr{XT

i

(
A(k) −A?

)
}

N
×

√
n1n2 × c

√
n1n2

(n1n2)M (c+ nmax log(n+)/N)3/2
=: I3.

With Lemma A.1, we can show that

Pr
(
I3 ≥ C

√
log(n+)

nminN

)
= O(n−γ+ ),

for any γ > 0 by letting M be sufficiently large. For I2,
noting that∣∣∣f (tr{XT

i (A−A?)}
)
− f

(
tr{XT

i

(
A(k) −A?

)
}
) ∣∣∣

≤ C
√
n1n2/(n1n2)M ,

we have

|I2| ≤
√
n1n2

(cnmax log(n+)

N

)−1/4 1

N

N∑
i=1

|vTXiu| ×

I
[
|εi − tr{XT

i

(
A(k) −A?

)
}| ≤ 2c

√
n1n2/(n1n2)M

]
+C

cn1n2
(n1n2)M

(cnmax log(n+)

N

)−1/4
×

1

N

N∑
i=1

|vTXiu|

=: I4 + I5.

It is easy to show that E(I4) = o(
√

log(n+)/(nminN))
with M large enough and

Pr
(
I5 ≥ C

√
log(n+)

nminN

)
≤

N∑
i=1

Pr
(
|vTXiu| ≥

(n1n2)M−2N1/4

nmax log(n+)

)
= O(n−γ+ ),

for any γ > 0 by letting M be sufficiently large. Also for
some η > 0,

E(|vTXiu|2 exp(η|vTXiu|)×
I
[
|εi − tr{XT

i

(
A(k) −A?

)
}| ≤ 2c

√
n1n2/(n1n2)M

]
)

≤ C
√
n1n2(n1n2)−ME|vTXiu|2 exp(η|vTXiu|)

= O(1/((n1n2)M−1/2nmin)).

Now by the exponential inequality in (Cai & Liu, 2011)
(taking x =

√
γ log(n+), Bn =

√
γ−1N log(n+)/nmin

and noting that 1/((n1n2)M−1/2nmin) = o(B2
N )), we have

for large C > 0,

Pr
(
|I4 − E(I4)| ≥ C

√
log(n+)

nminN

)
= O(n−γ+ ).

As sN ≤ (n1n2)M(n1n2), by choosing C sufficiently large
such that γ > M , it is enough to show that for any γ > 0,

sup
|v|2=1

sup
|u|2=1

max
k

Pr
(√

n1n2|vTBN (A(k))u| ×

1√
‖A(k) −A?‖F + nmax log(n+)/N

≥ C

√
log(n+)

nminN

)
= O(n−γ+ ). (A.2)

Set

Zi(A) = I
[
εi ≤ tr{XT

i (A−A?)}
]
− f

(
tr{XT

i (A−A?)}
)
.

Then we have

E(vTXiu)2(Zi(A)− Zi(A?))
2 exp(η|vTXiu|)

≤ C(n1n2)−1‖A−A?‖F×
sup

|v|2=1,|u|2=1

E(vTXiu)2 exp(η|vTXiu|)

≤ C(n1n2)−1‖A−A?‖Fn−1min.

Now letting B2
N = Cγ−1(N‖A(k) − A?‖F /(n1n2) +

N log(n+)/nmin) and x2 = γ log(n+) in Lemma 1 in (Cai
& Liu, 2011), we can show (A.2) holds.

Let

UN = sup
‖A−A?‖F≤aN

‖BN (A)‖ .

For a unit ball B in Rs, we have the fact that there exist
qs balls with centers x1, . . . ,xqs and radius z (i.e., Bi =
{x ∈ Rs : |x − xi| ≤ z}, 1 ≤ i ≤ qs) such that B ⊆
∪qsi=1Bi and qs satisfies qs ≤ (1+2/z)s. Then by a standard
E−net argument, for any matrix A ∈ Rn1×n2 , there exist
v1, ...,vb1 and u1, ...,ub2 (which do not depend on A) with
|vi|2 = 1 and |ui|2 = 1, b1 ≤ 9n1 and b2 ≤ 9n2 such that

‖A‖ ≤ 5 max
1≤i≤b1

max
1≤j≤b2

|vT
i Auj |. (A.3)

So we have UN ≤
5 max1≤i≤b1 max1≤j≤b2 |vT

i BN (A(k))uj |. Assume
the initial value (n1n2)−1/2‖A? − Â0‖F = oP(1). By
Lemma A.2, we have

UN = OP


√√√√∥∥∥Â0 −A?

∥∥∥
F

log(n+)

n1n2nminN
+

log(n+)

nminN

 .

So we have the following lemma.

Lemma A.3. Assume that Conditions (C1)-(C6) hold. We
have

UN = OP

(√ aN log(n+)

n1n2nminN
+

log(n+)

nminN

)
.
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To obtain Theorem 2 which related to the repeated refine-
ments, we consider the following one-step refinement result
at first.

Theorem A.1 (One-step refinement). Suppose that Condi-
tions (C1)–(C5) hold and A? ∈ B(a, n1, n2). By choosing
the bandwidth h � (n1n2)−1/2aN and taking

λN = C

√ log(n+)

nminN
+

a2N
nmin(n1n2)

 ,

where C is a sufficient large constant, we have

∥∥∥Â(1) −A?

∥∥∥2
F

n1n2
= OP

[
max

{√
log(n+)

N
,

r?

(
nmax log(n+)

N
+

a4N
n2min(n1n2)

)}]
. (A.4)

To obtain Theorems A.1 and 2, we require Lemmas A.4 and
1 respectively.

Lemma A.4. Suppose that Conditions (C1)–(C5) hold
and A? ∈ B(a, n1, n2). By choosing the bandwidth
h � (n1n2)−1/2aN , we have

∥∥∥∥∥ 1

N

N∑
i=1

ξ
(1)
i Xi

∥∥∥∥∥ =OP

√ log(n+)

nminN
+

a2N
nmin(n1n2)

 .

Lemma A.4 obtains the upper bound for the stochastic error
term that appears in the first update iteration of the initial
estimator Â0 fulfill condition (C5). It is easy to verify
that our initial estimator ÂLADMC,0 proposed in section 2.2
satisfy condition (C5).

Proof of Lemma A.4. Denote HN (A) ∈ Rn1×n2 where

HN (A) =

f̂−1 (0)

N

N∑
i=1

Xi

{
f
[
tr
{
XT
i (A−A?)

}]
− f (0)

}
+

1

N

N∑
i=1

Xitr
{
XT
i (A−A?)

}
.

We have

∥∥∥∥∥ 1

N

N∑
i=1

ξ
(1)
i Xi

∥∥∥∥∥ ≤∥∥∥∥∥− f̂−1 (0)

N

N∑
i=1

Xi

(
I
[
Yi ≤ tr{XT

i Â0}
]
− τ
)

+
1

N

N∑
i=1

Xitr
{

XT
i

(
Â0 −A?

)}∥∥∥∥∥ ≤∥∥∥HN (Â0)
∥∥∥+

∣∣∣f̂−1(0)
∣∣∣ ∥∥∥∥∥ 1

N

N∑
i=1

[XiI [εi ≤ 0]−Xif (0)]

∥∥∥∥∥
+
∣∣∣f̂−1 (0)

∣∣∣UN .
By Proposition A.1 and (n1n2)1/2 log(n+) = o(NaN ), we
have f̂(0) ≥ c for some c > 0 with probability tending to
one. Therefore, for the last term, by Lemma A.3, we have

|f̂−1(0)|UN = OP

√ aN log(n+)

n1n2nminN
+

log(n+)

nminN

 .

For the second term of the right hand side, by (A.3) and
the exponential inequality in (Cai & Liu, 2011), follow the
same proof with Lemma A.1, we have

∣∣∣f̂−1(0)
∣∣∣ ∥∥∥∥∥ 1

N

N∑
i=1

Xi [I [εi ≤ 0]− f (0)]

∥∥∥∥∥ = OP

√ log(n+)

nminN

 .

By second order Taylor expansion, under condition (C1) we
have,

f̂−1 (0)

N

N∑
i=1

vTXiu
[
f
(

tr{XT
i

(
A? − Â0

)
}
)
− f (0)

]
=
f̂−1 (0) f (0)

N

N∑
i=1

vTXiutr
{

XT
i

(
A? − Â0

)}
+O(1)

f̂−1 (0)

N

N∑
i=1

|vTXiu|
[
tr
{

XT
i

(
A? − Â0

)}]2
.

Let v1, ...,vb1 and u1, ...,ub2 be defined as in the argument
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above Lemma A.3. Together with Lemma A.1,we have∣∣∣vT
kHN

(
Â0

)
uj

∣∣∣ ≤ ∣∣∣f̂−1 (0) f (0)− 1
∣∣∣×∣∣∣∣∣ 1

N

N∑
i=1

vT
kXiujtr

{
XT
i

(
A? − Â0

)}∣∣∣∣∣
+Cf̂−1 (0)

1

N

N∑
i=1

|vT
kXiuj |

[
tr
{

XT
i

(
A? − Â0

)}]2

≤ C

(√
log(n+)

Nh
+

aN√
n1n2

) ∥∥∥A? − Â0

∥∥∥
F

nmin
√
n1n2

+C
1

nmin(n1n2)

∥∥∥A? − Â0

∥∥∥2
F

We can easily have∥∥∥∥∥ 1

N

N∑
i=1

ξ
(1)
i Xi

∥∥∥∥∥ = OP

√ log(n+)

nminN
+

√
aN log(n+)

n1n2nminN

+aN

√
log(n+)

n2minn1n2Nh
+

a2N
nmin(n1n2)

)
.

The lemma is proved.

Define the observation operator Ω : Rn1×n2 → RN as
(Ω(A))k = 〈Xk,A〉.

Proof of Theorem A.1. Due to the basic inequality, we have

1

N

N∑
k=1

(
Ỹ

(1)
k − tr(XT

k Â)
)2

+ λN

∥∥∥Â∥∥∥
∗
≤

1

N

N∑
k=1

(
Ỹ

(1)
k − tr(XT

kA?)
)2

+ λN ‖A?‖∗ ,

which implies

1

N

∥∥∥Ω
(
A? − Â

)∥∥∥2
F

+ λN

∥∥∥Â∥∥∥
∗

≤ 2
〈
Â−A?,Σ

(1)
〉

+ λN ‖A?‖∗

≤ 2
∥∥∥Σ(1)

∥∥∥∥∥∥Â−A?

∥∥∥
∗

+ λN ‖A?‖∗ .

Together with Lemma A.4 and follow the proof of Theorem
3 in Klopp (2014), it complete the proof.

Proof of Lemma 1. Replacing the tuning parameter λN by
λN,t, Lemma 1 follows directly from the proof of Lemma
A.4.

Proof of Theorem 2. Similar with the proof of Theorem
A.1, together with the result in Lemma 1 we complete the
proof.

B. Experiments (Cont’)
B.1. Synthetic Data (Cont’)

In the following, we tested the proposed method DLADMC
with the initial estimator synthetically generated by adding
standard Gaussian noises (N (0,1)) to the ground truth ma-
trix A? and reported all the results in Table S1.

Table S1. The average RMSEs, MAEs, estimated ranks and their
standard errors (in parentheses) of modified DLADMC over 500
simulations. The number in the first column within the parentheses
represents T in Algorithm 1.

(T) RMSE MAE rank
S1(4) 0.6364 (0.0238) 0.4826 (0.0232) 63.74 (5.37)
S2(5) 0.8985 (0.0407) 0.6738 (0.0404) 67.59 (6.76)
S3(5) 0.4460 (0.0080) 0.3179 (0.0067) 43.07 (6.00)
S4(4) 0.8522 (0.0203) 0.6229 (0.0210) 45.21 (5.52)

B.2. Real-World Data (Cont’)

B.2.1. EFFECT OF ITERATION NUMBER

To understand the effect of the iteration number, we ran 10
iterations and report all the details in Table S2. Briefly,
the smallest and largest RMSEs among these iterations
are (0.9226,0.9255), (0.9344,0.9381), (1.0486,1.0554) and
(1.0512,1.0591) with respect to the 4 datasets in Section
4.2. Even with the worst RMSEs, we achieve a similar
conclusion as shown in Section 4.2 of the paper.

Table S2. The RMSEs, MAEs and estimated ranks of DLADMC
with different iteration number under dimensions n1 = 739 and
n2 = 918.

t 1 2 3 4 5

RawA

RMSE 0.9253 0.9253 0.9229 0.9252 0.9233
MAE 0.7241 0.7267 0.7224 0.7264 0.7230
rank 54 50 53 45 59

RawB

RMSE 0.9368 0.9381 0.9344 0.9373 0.9363
MAE 0.7315 0.7344 0.7291 0.7340 0.7310
rank 57 51 59 44 40

OutA

RMSE 1.0550 1.0543 1.0509 1.0549 1.0506
MAE 0.8659 0.8648 0.8609 0.8673 0.8595
rank 28 35 48 29 33

OutB

RMSE 1.0591 1.0569 1.0532 1.0583 1.0527
MAE 0.8707 0.8679 0.8632 0.8713 0.8627
rank 24 33 45 31 30

t 6 7 8 9 10

RawA

RMSE 0.9253 0.9235 0.9250 0.9227 0.9255
MAE 0.7265 0.7233 0.7264 0.7219 0.7268
rank 41 41 45 55 44

RawB

RMSE 0.9362 0.9352 0.9369 0.9345 0.9370
MAE 0.7328 0.7300 0.7333 0.7292 0.7339
rank 49 51 46 58 44

OutA

RMSE 1.0544 1.0486 1.0553 1.0491 1.0554
MAE 0.8671 0.8568 0.8695 0.8569 0.8697
rank 31 38 35 40 33

OutB

RMSE 1.0572 1.0521 1.0577 1.0512 1.0582
MAE 0.8699 0.8616 0.8706 0.8602 0.8716
rank 30 28 31 30 33

B.2.2. MOVIELENS-1M

To further demonstrate the scalability of our proposed
method, we tested various methods on a larger MovieLens-
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1M1 dataset. This data set consists of 1,000,209 movie
ratings provided by 6040 viewers on approximate 3900
movies. The ratings also range from 1 to 5. To evaluate the
performance of different methods, we keep one fifth of the
data to be test set and remaining to be training set. We refer
it to as Raw. Similar to Alquier et al. (2019), we added
artificial outliers by randomly changing 20% of ratings that
are equal to 5 in the train set to 1 and constructed Out. To
avoid rows and columns that contain too few observations,
we only keep the rows and columns with at least 40 ratings.
The resulting target matrix A? is of dimension 4290×2505.
For the proposed DLADMC, we fix the iteration number to
10. For the proposed BLADMC, to faster the speed, we split
the data matrix so that the number of row subsets l1 = 4
and number of column subsets l2 = 3. To save times, the
tunning parameters for all the methods were chosen by the
one-fold validation. The RMSEs, MAEs, estimated ranks
and the total computing time (in seconds) are reported in
Table 2. For a fair comparison, we recorded the time of
each method in the experiment with the selected tuning
parameter.

Table S3. The RMSEs, MAEs and estimated ranks of DLADMC,
BLADMC, ACL and MHT under dimensions n1 = 4290 and
n2 = 2505.

DLADMC BLADMC MHT

Raw

RMSE 0.8632 0.9733 0.8520
MAE 0.6768 0.7865 0.6680
rank 111 1911 156
t 19593.58 1203.45 2113.55

Out

RMSE 0.9161 0.9733 0.9757
MAE 0.7331 0.7865 0.8021
rank 125 1913 45
t 14290.16 1076.69 1053.58

As ACL is not scalable to large dimensions, we could not
obtain the results of ACL within five times of the running
time of the proposed DLADMC. It is noted that under the
raw data Raw, the proposed DLADMC performed similarly
as the least squares estimator MHT. BLADMC lost some
efficiency due to the embarrassingly parallel computing. For
the dataset with outliers, the proposed DLADMC performed
better than MHT.
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