
Learning Deep Kernels for Non-Parametric Two-Sample Tests

A. Theoretical analysis
Appendix A.2 proves the main results under some assumptions about the kernel parameterization, using intermediate results
about uniform convergence of our estimators in Appendix A.3. Appendix A.4 then shows that these assumptions hold for
different settings of kernel learning.

A.1. Preliminaries

Given a kernel k
!

and sample sets {X
i

}n
i=1

⇠ Pn, {Y
i

}n
i=1

⇠ Qn, define the n⇥ n matrix

H
(!)

ij

= k
!

(X
i

, X
j

) + k
!

(Y
i

, Y
j

)� k
!

(X
i

, Y
j

)� k
!

(X
j

, Y
i

);

we will often omit ! when it is clear from context. The U -statistic estimator of the squared MMD (2) is

⌘̂
!

=

1

n(n� 1)

X

i 6=j

H
ij

.

The squared MMD is ⌘
!

= E[H
12

]. The variance of ⌘̂
!

is given by Lemma 10.
Lemma 10. For a fixed kernel k

!

and random sample sets {X
i

}n
i=1

, {Y
i

}n
i=1

, we have

Var[⌘̂
!

] =

4(n� 2)

n(n� 1)

⇠
(!)

1

+

2

n(n� 1)

⇠
(!)

2

=

4

n
⇠
(!)

1

+

2⇠
(!)

2

� 4⇠
(!)

1

n(n� 1)

, (8)

where
⇠
(!)

1

= E
h
H

(!)

12

H
(!)

13

i
� E

h
H

(!)

12

i
2

, ⇠
(!)

2

= E
⇣

H
(!)

12

⌘
2

�
� E

h
H

(!)

12

i
2

.

Thus as n ! 1,
nVar[⌘̂

!

] ! 4⇠
(!)

1

=: �2

!

.

Proof. Let U denote the pair (X,Y), and h
!

(U,U 0
) = k

!

(X,X 0
) + k

!

(Y, Y 0
) � k

!

(X,Y 0
) � k

!

(X 0, Y), so that
H

(!)

ij

= h
!

(U
i

, U
j

). Via Lemma A in Section 5.2.1 of Serfling (1980), we know that (8) holds with

⇠
(!)

1

= Var

U

[E
U

0
[h

!

(U,U 0
)]]

= E
U

[E
U

0
[h

!

(U,U 0
)]E

U

00
[h

!

(U,U 00
)]]� E

U

[E
U

0
[h

!

(U,U 0
)]]

2

= E[H(!)

12

H
(!)

13

]� E[H(!)

12

]

2

and
⇠
2

= Var

U,U

0
[h

!

(U,U 0
)] = E

⇣
H

(!)

12

⌘
2

�
� E

h
H

(!)

12

i
2

.

We use a V -statistic estimator (5) for �2

!

:

�̂2

!

= 4

0

B@
1

n

nX

i=1

0

@ 1

n

nX

j=1

H
(!)

ij

1

A
2

�

0

@ 1

n2

nX

i=1

nX

j=1

H
(!)

ij

1

A
2

1

CA .

As a V -statistic, �̂2

!

is biased. In fact, Sutherland et al. (2017) and Sutherland (2019) provide an unbiased estimator of
Var[⌘̂

!

] – including the terms of order 1

n(n�1)

. Although this estimator takes the same quadratic time to compute as (5), it
contains many more terms, which are cumbersome both for implementation and for analysis. (5) is also marginally more
convenient in that it is always at least nonnegative. As we show in Lemma 18, the amount of bias is negligible as n increases.
In practice, we expect the difference to be unimportant – or the V -statistic may in fact be beneficial, since underestimating
�2 harms the estimate of ⌘/�2 more than overestimating it does.

Similarly, although we use the U -statistic estimator (2), it would be very similar to use the biased estimator n�2

P
ij

H
ij

, or
the minimum variance unbiased estimator n�1

(n� 1)

�1

P
i 6=j

(k(X
i

, X
j

) + k(Y
i

, Y
j

))� 2n�2

P
ij

k(X
i

, Y
J

). Showing
comparable concentration behavior to Proposition 15 is trivially different, and in fact it is also not difficult to show �2

!

is the
same for all three estimators (up to lower-order terms).

Learning Deep Kernels for Non-Parametric Two-Sample Tests

A.2. Main results

We will require the following assumptions. These are fairly agnostic as to the kernel form; Appendix A.4.2 shows that these
assumptions hold (and gives the constants) for the kernels (1) we use in the paper.

(A) The kernels k
!

are uniformly bounded:
sup

!2⌦

sup

x2X
k
!

(x, x) ⌫.

For the kernels we use in practice, ⌫ = 1.

(B) The possible kernel parameters ! lie in a Banach space of dimension D. Furthermore, the set of possible kernel
parameters ⌦ is bounded by R

!

, ⌦ ✓ {! | k!k R
⌦

}.

Appendix A.4.2 builds this space and its norm for the kernels we use in the paper.

(C) The kernel parameterization is Lipschitz: for all x, y 2 X and !,!0 2 ⌦,

|k
!

(x, y)� k
!

0
(x, y)| L

k

k! � !0k.

Proposition 23 in Appendix A.4.2 gives an expression for L
k

for the kernels we use in the paper.

We will first show the main results under these general assumptions, using uniform convergence results shown in Ap-
pendix A.3, then show Assumptions (B) and (C) for particular kernels in Appendix A.4.2.

Theorem 11. Under Assumptions (A) to (C), let ¯⌦
s

✓ ⌦ be the set of kernel parameters for which �2

!

� s2, and assume
⌫ � 1. Take � = n�1/3. Then, with probability at least 1� �,

sup

!2¯

⌦s

�����
⌘̂
!

�̂
!,�

� ⌘
!

�
!

�����
2⌫

s2n1/3

1

s
+

2304⌫2p
n

+

4s

n1/6

+ 1024⌫

� "
L
k

+

r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
#!

,

and thus, treating ⌫ as a constant,

sup

!2¯

⌦s

| ⌘̂
!

�̂
!,�

� ⌘
!

�
!

| = ˜O
P

✓
1

s2n1/3

1

s
+ L

k

+

p
D

�◆
.

Proof. Let �2

!,�

:= �2

!

+ �. Using |⌘̂
!

| 4⌫, we begin by decomposing

sup

!2¯

⌦s

| ⌘̂
!

�̂
!,�

� ⌘
!

�
!

| sup

!2¯

⌦s

| ⌘̂
!

�̂
!,�

� ⌘̂
!

�
!,�

|+ sup

!2¯

⌦s

| ⌘̂
!

�
!,�

� ⌘̂
!

�
!

|+ sup

!2¯

⌦s

| ⌘̂!
�
!

� ⌘
!

�
!

|

= sup

!2¯

⌦s

|⌘̂
!

| 1

�̂
!,�

1

�
!,�

|�̂2

!,�

� �2

!,�

|
�̂
!,�

+ �
!,�

+ sup

!2¯

⌦s

|⌘̂
!

| 1

�
!,�

1

�
!

|�2

!,�

� �2

!

|
�
!,�

+ �
!

+ sup

!2¯

⌦s

1

�
!

|⌘̂
!

� ⌘
!

|

 sup

!2¯

⌦s

4⌫p
� s (s+

p
�)

|�̂2

!

� �2

!

|+ 4⌫�p
s2 + � s

�p
s2 + �+ s

� + sup

!2¯

⌦s

1

s
|⌘̂

!

� ⌘
!

|

 4⌫

s2
p
�
sup

!2⌦

|�̂2

!

� �2

!

|+ 2⌫

s3
�+

1

s
sup

!2⌦

|⌘̂
!

� ⌘
!

|.

Propositions 15 and 16 show uniform convergence of ⌘̂
!

and �̂2

!

, respectively. Thus, with probability at least 1� �, the error
is at most

2⌫

s3
�+

8⌫

s
p
n
+

1792⌫
p
ns2

p
�

�r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
+

8

s
p
n
+

2048⌫2
p
ns2

p
�

�
L
k

+

4608⌫3

s2n
p
�
.

Taking � = n�1/3 gives

2⌫

s3n1/3

+

8⌫

s
p
n
+

1792⌫

s2n1/3

�r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
+

8

s
p
n
+

2048⌫2

s2n1/3

�
L
k

+

4608⌫3

s2n5/6

.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Using 1 ⌫, 1792 < 2048, we can get the slightly simpler upper bound

2⌫

s3n1/3

+

8⌫

s
p
n
+

2048⌫2

s2n1/3

� "
L
k

+

r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
#
+

4608⌫3

s2n5/6

.

It is worth noting that, if we are particularly concerned about the s dependence, we can make some slightly different choices
in the decomposition to improve the dependence on s while worsening the rate with n.

Corollary 12. In the setup of Theorem 11, additionally assume that there is a unique population maximizer !⇤ of J from
(3), i.e. for each t > 0 we have

sup

!2¯

⌦s:k!�!

⇤k�t

J(P,Q; k
!

) < J(P,Q; k
!

⇤
).

For each n, let S(n)

P and S
(n)

Q be sequences of sample sets of size n, let ˆJ
n

(!) denote J
�=n

�1/3(S
(n)

P , S
(n)

Q ; k
!

), and take
!̂⇤
n

to be a maximizer of ˆJ
n

(!).7 Then !̂⇤
n

converges in probability to !⇤.

Proof. By Theorem 11, sup
!2¯

⌦s
| ˆJ

n

(!)�J(!)| P! 0. Then the result follows by Theorem 5.7 of Van der Vaart (2000).

Corollary 13. In the setup of Theorem 11, suppose we use n sample points to select a kernel !̂
n

2 argmax

!2¯

⌦s
ˆJ
�

(!)

and m sample points to run a test of level ↵. Let r(m)

!̂n
denote the rejection threshold for a test with that kernel of size

m. Define J⇤
:= sup

!2¯

⌦s
J(!), and constants C, C 0, C 00, N

0

depending on ⌫, L
k

, D, R
⌦

and s. For any n � N
0

, with
probability at least 1� �, this test procedure has power

Pr

⇣
m ⌘̂

!̂n > r
(m)

!̂n

⌘
� �

p
mJ⇤ � C

p
m

n
1
3

r
log

n

�
� C 0

r
log

1

↵

!
� C 00

p
m
.

Proof. Let !̂
n

2 argmax

!2¯

⌦s
ˆJ
�

(!). By Theorem 11, there are some N
0

, C depending on ⌫, L
k

, D, R
⌦

, and s such that
as long as n � N

0

, with probability at least 1� � it holds that

sup

!2¯

⌦s

|J
�

(!)� J(!)| 1

2

Cn� 1
3

r
log

n

�
=: ✏

n

.

Assume for the remainder of this proof that this event holds. Letting !⇤ 2 argmax J(!), we know because !̂
n

maximizes
ˆJ
�

that ˆJ
�

(!̂
n

) � ˆJ
�

(!⇤
). Using uniform convergence twice,

J(!̂
n

) � ˆJ
�

(!̂
n

)� ✏
n

� ˆJ
�

(!⇤
)� ✏

n

� (J(!⇤
)� ✏

n

)� ✏
n

= J⇤ � 2✏
n

.

Now, although Proposition 2 establishes that r(m)

!

! r
!

and it is even known (Korolyuk & Borovskikh, 1988, Theorem 5)
that |r(m)

!

� r
!

| is o(1/
p
m), the constant in that convergence will depend on the choice of ! in an unknown way. It’s thus

simpler to use the very loose but uniform (McDiarmid-based) bound given by Corollary 11 of Gretton et al. (2012a), which
implies r(m)

!

 4⌫
p
log(↵�1

)m no matter the choice of !.

We will now need a more precise characterization of the power than that provided by the central limit theorem of Proposition 2.
Callaert & Janssen (1978) provide such a result, a Berry-Esseen bound on U -statistic convergence: there is some absolute
constant C 0

BS

= 2

3

4

3C
BS

such that

sup

t

|Pr
H1

✓p
m
⌘̂
!

� ⌘
!

�2

!

 t

◆
� �(t)| C 0

BS

E|H
12

|3
(�

!

/2)3
p
m

 C
BS

⌫3

�3

!

p
m

.

7In fact, it suffices for the !̂⇤
n to only approximately maximize Ĵn, as long as their suboptimality is oP (1).

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Letting r
(m)

!

be the appropriate rejection threshold for k
!

with m samples, the power of a test with kernel k
!

is

Pr

⇣
m⌘̂

!

> r(m)

!

⌘
= Pr

p
m
⌘̂
!

� ⌘
!

�
!

>
r
(m)

!p
m�

!

�
p
m

⌘
!

�
!

!

� �

p
mJ(!)� r

(m)

!p
m�

!

!
� C

BS

⌫3

�3

!

p
m

� �

p
mJ(!)� r

(m)

!

s
p
m

!
� C 00

p
m
,

using a new constant C 00
:= C

BS

⌫3/s3. Combining the previous results on J(!̂
n

) and r
(m)

!̂n
yields the claim.

Corollary 14. In the setup of Corollary 13, suppose we are given N data points to divide between n training points and
m = N � n testing points, and � < 0.22 is fixed. Ignoring the Berry-Esseen convergence term outside of �, the asymptotic
power upper bound

�

p
mJ⇤ � C

p
m

n
1
3

r
log

n

�
� C 0

r
log

1

↵

!

is maximized only when, as other quantities remain constant,

lim

N!1
n

⇣
Cp
3J

⇤N
p
logN

⌘ 3
4

= 1.

Proof. Because the C 0 term is constant, we wish to choose

argmax

0<n<N

J⇤

C

p
N � n�

p
N � n

n
1
3

r
log

n

�
.

Clearly neither endpoint is optimal. Relaxing n to be real-valued, the optimum must be achieved at a stationary point, where

�J⇤

2C
p
N � n

+

p
log

n

�

2

p
N � nn

1
3

+

1

3

p
N � nn� 4

3

r
log

n

�
� 1

2

p
N � nn� 4

3

⇣
log

n

�

⌘� 1
2
= 0.

Multiplying by 2

p
N � nn

4
3
p
log

n

�

and rearranging, we get that a stationary point is achieved exactly when

1

3

[n+ 2N] log

n

�
+ n

| {z }
D

=

J⇤

C
n

4
3

r
log

n

�
+N

| {z }
E

.

Now write, without loss of generality, n =

�
A

N

N
p
logN

� 3
4 , and so

D =

1

3

"
A

3
4
N

N
3
4
(logN)

3
8
+ 2N

#"
3

4

logA
N

+

3

4

logN +

3

8

log logN
| {z }

logn

+ log

1

�

#
+A

3
4
N

N
3
4
(logN)

3
8

E =

J⇤

C
A

N

N
p
logN

vuuut
3

4

logA
N

+

3

4

logN +

3

8

log logN
| {z }

logn

+ log

1

�
+N.

We will show that D � E ! 0 requires A
N

! C/(
p
3J⇤

), implying the result.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

We first suppose A
N

= !(1), further breaking into cases which result in different terms inside D and E becoming dominant:

If A
N

= ⌦(N), D = ⇥

⇣
A

3
4
N

N
3
4
(logN)

3
8
logA

N

⌘
, E = ⇥

⇣
A

N

N
p

log(N) log(A
N

)

⌘
.

If A
N

= ⌦

N

1
3

p
logN

!
, A

N

= o(N), D = ⇥

⇣
A

3
4
N

N
3
4
(logN)

3
8
logN

⌘
, E = ⇥ (A

N

N logN) .

If A
N

= !(1), A
N

= o

N

1
3

p
logN

!
, D = ⇥ (N logN) , E = ⇥ (A

N

N logN) .

In each case, E = !(D) and so D � E ! �1, contradicting that D = E. Thus a stationary point requires A
N

= O(1)

for a stationary point.

We now do the same for A
N

= o(1). First, clearly n � 1; suppose that in fact n = ⇥(1), i.e. A
N

= ⇥

�
1/(N

p
logN)

�
.

In this case, we would have D =

2

3

N log

n

�

+ ⇥(1) and E = N + ⇥(1), so that D = E requires 2

3

log

n

�

! 1, i.e.
n ! � exp 3

2

⇡ 4.5 �. For � < 0.22, this contradicts n � 1. So we know that log n = !(1). Now, the remaining options for
A

N

all yield D � E ! 1:

If A
N

= o(1), A
N

= ⌦

✓
1

logN

◆
, D = ⇥ (N log n) , E = ⇥ (A

N

N log n) .

If A
N

= o

✓
1

logN

◆
, A

N

= !

✓
1

N
p
logN

◆
, D = ⇥ (N log n) , E = ⇥ (N) .

Thus we have established that A
N

= ⇥(1). Thus, we obtain that

D =

1

2

N logN +O (N) E =

p
3J⇤

2C
A

N

N logN +O
⇣
N
p
logN

⌘
.

Asymptotic equality hence requires A
N

! C/(
p
3J⇤

).

A.3. Uniform convergence results

These results, on the uniform convergence of ⌘̂ and �̂2, were used in the proof of Theorem 11.
Proposition 15. Under Assumptions (A) to (C), we have that with probability at least 1� �,

sup

!

|⌘̂
!

� ⌘
!

| 8p
n

"
⌫

r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
+ L

k

#
.

Proof. Theorem 7 of Sriperumbudur et al. (2009) gives a similar bound in terms of Rademacher chaos complexity, but for
ease of combination with our bound on convergence of the variance estimator, we use a simple ✏-net argument instead.

We study the random error function
�(!) := ⌘̂

!

� ⌘
!

.

First, we place T points {!
i

}T
i=1

such that for any point ! 2 ⌦, min

i

k!�!
i

k q; Assumption (B) ensures this is possible
with at most T = (4R

⌦

/q)D points (Cucker & Smale, 2001, Proposition 5).

Now, E� = 0, because ⌘̂ is unbiased. Recall that ⌘̂ =

1

n(n�1)

P
i 6=j

H
ij

, and via Assumption (A) we know |H
ij

| 4⌫.
This ⌘̂, and hence �, satisfies bounded differences: if we replace (X

1

, Y
1

) with (X 0
1

, Y 0
1

), obtaining ⌘̂0 = 1

n(n�1)

P
i 6=j

F
ij

where F agrees with H except when i or j is 1, then

|⌘̂ � ⌘̂0| 1

n(n� 1)

X

i 6=j

|H
ij

� F
ij

| = 1

n(n� 1)

X

i>1

|H
i1

� F
i1

|+ 1

n(n� 1)

X

j>1

|H
1j

� F
1j

|

 2

n(n� 1)

X

i>1

8⌫ =

16⌫

n
.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Using McDiarmid’s inequality for each �(!
i

) and a union bound, we then obtain that with probability at least 1� �,

max

i2{1,...,T}
|�(!)| 16⌫p

2n

r
log

2T

�
 8⌫p

n

s

2 log

2

�
+ 2D log

4R
⌦

q
.

We also have via Assumption (C), for any two !,!0 2 ⌦,

|⌘̂
!

� ⌘̂
!

0 | 1

n(n� 1)

X

i 6=j

|H(!)

ij

�H
(!

0
)

ij

| 1

n(n� 1)

X

i 6=j

4L
k

k! � !0k = 4L
k

k! � !0k

|⌘
!

� ⌘
!

0 | = |E
h
H

(!)

12

i
� E

h
H

(!

0
)

12

i
| E|H(!)

12

�H
(!

0
)

12

| 4L
k

k! � !0k

so that k�k
L

 8L
k

. Combining these two results, we know that with probability at least 1� �

sup

!

|�(!)| max

i2{1,...,T}
|�(!

i

)|+ 8L
k

q 8⌫p
n

s

2 log

2

�
+ 2D log

4R
⌦

q
+ 8L

k

q;

setting q = 1/
p
n yields the desired result.

Proposition 16. Under Assumptions (A) to (C), with probability at least 1� �,

sup

!2⌦

���̂2

!

� �2

!

�� 64p
n

"
7

r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
+

18⌫2p
n

+ 8L
k

⌫

#
.

Proof. We again use an ✏-net argument on the (random) error function

�(!) := �̂2

k!
� �2

k!
.

First, choose T points {!
i

}T
i=1

such that for any point ! 2 ⌦, min

i

k!�!
i

k q; again, via Assumption (B) and Proposition
5 of Cucker & Smale (2001) we have T (4R

⌦

/q)D. By Lemmas 17 and 18 and a union bound, with probability at least
1� �,

max

i2{1,...,T}
|�(!)| 448

r
2

n
log

2T

�
+

1152⌫2

n
 448

s
2

n
log

2

�
+

2

n
D log

4R
⌦

q
+

1152⌫2

n
.

Lemma 19 shows that k�k
L

 512L
k

⌫, which means that with probability at least 1� �,

sup

!2⌦

|�(!)| 448

s
2

n
log

2

�
+

2

n
D log

4R
⌦

q
+

1152⌫2

n
+ 512L

k

⌫q. (9)

Taking q = 1/
p
n gives the desired result.

Lemma 17. For any kernel k bounded by ⌫ (Assumption (A)), with probability at least 1� �,

|�̂2

k

� E �̂2

k

| 448

r
2

n
log

2

�
.

Proof. We simply apply McDiarmid’s inequality to �̂2

k

. Suppose we change (X
1

, Y
1

) to (X 0
1

, Y 0
1

), giving a new H matrix
F which agrees with H on all but the first row and column. Note that |H

ij

| 4⌫, and recall

�̂2

k

= 4

0

B@
1

n3

X

i

0

@
X

j

H
ij

1

A
2

�

0

@ 1

n2

X

ij

H
ij

1

A
2

1

CA .

Learning Deep Kernels for Non-Parametric Two-Sample Tests

The first term in the parentheses of �̂2

k

changes by

| 1
n3

X

i

0

@
X

j

H
ij

1

A
2

� 1

n3

X

i

0

@
X

j

F
ij

1

A
2

| 1

n3

X

ij`

|H
ij

H
i`

� F
ij

F
i`

|.

In this sum, if none of i, j, or ` are one, the term is zero. The n2 terms for which i = 1 are each upper-bounded
by 32⌫2, simply bounding each H or F by 4⌫. Of the remainder, there are (n � 1) terms where j = ` = 1, each
|H2

i1

� F 2

i1

| 16⌫2. We are left with 2(n � 1)

2 terms which have exactly one of j or ` equal to 1; the j = 1 terms are
|H

i1

H
i`

� F
i1

H
i`

| |H
i1

� F
i1

||H
i`

| (8⌫)(4⌫), so each of these terms is at most 32⌫2. The total sum is thus at most

1

n3

�
n2

32⌫2 + (n� 1)16⌫2 + 2(n� 1)

2

32⌫2
�
=

✓
6

n
� 7

n2

+

3

n3

◆
16⌫2.

The remainder of the change in �̂2

k

can be determined by bounding

|
X

ij

H
ij

�
X

ij

F
ij

|
X

ij

|H
ij

� F
ij

| =
X

j

|H
1j

� F
1j

|+
X

i>1

|H
i1

� F
i1

|

 n(8⌫) + (n� 1)(8⌫) = (8⌫)(2n� 1),

which then gives us

|

0

@ 1

n2

X

ij

H
ij

1

A
2

�

0

@ 1

n2

X

ij

F
ij

1

A
2

| = | 1
n2

X

ij

H
ij

+

1

n2

X

ij

F
ij

|| 1
n2

X

ij

H
ij

� 1

n2

X

ij

F
ij

|

 (2 · 4⌫) 2n� 1

n2

(8⌫) = 64⌫2
✓
2

n
� 1

n2

◆
.

Thus

|�̂2

k

� (�̂0
k

)

2| 4

✓
6

n
� 7

n2

+

3

n3

◆
16⌫2 +

✓
2

n
� 1

n2

◆
64⌫2

�
=

64⌫2

n3

⇥
14n2 � 11n+ 3

⇤
 896⌫2

n
.

Because the same holds for changing any of the (X
i

, Y
i

) pairs, the result follows by McDiarmid’s inequality.

Lemma 18. For any kernel k bounded by ⌫ (Assumption (A)), the estimator �̂2

k

satisfies

|E �̂2

k

� �2

k

| 1152⌫2

n
.

Proof. We have that

E �̂2

k

= 4

0

@ 1

n3

X

ij`

E [H
i`

H
j`

]� 1

n4

X

ijab

E [H
ij

H
ab

]

1

A .

Most terms in these sums have their indices distinct; these are the ones that we care about. (We could evaluate the
expectations of the other terms exactly, but it would be tedious.) We can thus break down the first term as

1

n3

X

ij`

E[H
i`

H
j`

] =

1

n3

X

ij`:|{i,j,`}|=3

E[H
i`

H
j`

] +

1

n3

X

ij`:|{i,j,`}|<3

E[H
i`

H
j`

]

=

n(n� 1)(n� 2)

n3

E[H
12

H
13

] +

✓
1� n(n� 1)(n� 2)

n3

◆
q,

Learning Deep Kernels for Non-Parametric Two-Sample Tests

where q is the appropriately-weighted mean of the various E[H
i`

H
j`

] terms for which i, j, ` are not mutually distinct. Since
|H

ij

| 4⌫, E[H
i`

H
j`

] < 16⌫2 and so |q| 16⌫2 as well. Noting that

n(n� 1)(n� 2)

n3

= 1� 3

n
+

2

n2

we obtain
| 1
n3

X

ij`

E[H
i`

H
j`

]� E[H
12

H
13

]| =
✓
3

n
� 2

n2

◆
|�E[H

12

H
13

] + q|
✓
3

n
� 2

n2

◆
32⌫2. (10)

The second term can be handled similarly:

1

n4

X

ijab

E[H
ij

H
ab

] =

1

n4

X

ijab:|{i,j,a,b}|=4

E[H
ij

H
ab

] +

1

n4

X

ijab:|{i,j,a,b}|<4

E[H
ij

H
ab

]

=

n(n� 1)(n� 2)(n� 3)

n4

E[H
ij

H
ab

] +

✓
1� n(n� 1)(n� 2)(n� 3)

n4

◆
r,

where r is the appropriately-weighted mean of the non-distinct terms, |r| 16⌫2. For i, j, a, b all distinct, E[H
ij

H
ab

] =

E[H
12

]

2. Here
n(n� 1)(n� 2)(n� 3)

n4

=

(n� 1)(n2 � 5n+ 6)

n3

= 1� 6

n
+

11

n
� 6

n3

and so
| 1
n4

X

ijab

E[H
ij

H
ab

]� E[H
12

]

2|
✓
6

n
� 11

n2

+

6

n3

◆
32⌫2. (11)

Recalling �2

k

= 4(E[H
12

H
13

]� E[H
12

]

2

),

|E �̂2

k

� �2

k

| 128⌫2
✓
9

n
� 13

n2

+

6

n3

◆
,

and since n � 1, we have 13/n2 > 6/n3, yielding the result.

Lemma 19. Under Assumptions (A) and (C), we have

sup

!,!

02⌦

|�̂2

!

� �̂2

!

0 |
k! � !0k 256L

k

⌫ and sup

!,!

02⌦

|�2

!

� �2

!

0 |
k! � !0k 256L

k

⌫.

Proof. We first handle the change in �̂
k

:

|�̂2

k!
� �̂2

k!0 | = 4| 1
n3

X

ij`

H
(!)

i`

H
(!)

j`

� 1

n3

X

ij`

H
(!

0
)

i`

H
(!

0
)

j`

� 1

n4

X

ijab

H
(!)

ij

H
(!)

ab

+

1

n4

X

ijab

H
(!

0
)

ij

H
(!

0
)

ab

|

 4

n3

X

ij`

|H(!)

i`

H
(!)

j`

�H
(!

0
)

i`

H
(!

0
)

j`

|+ 4

n4

X

ijab

|H(!)

ij

H
(!)

ab

�H
(!

0
)

ij

H
(!

0
)

ab

|.

We can handle both terms by bounding

|H(!)

ij

H
(!)

ab

�H
(!

0
)

ij

H
(!

0
)

ab

| |H(!)

ij

H
(!)

ab

�H
(!)

ij

H
(!

0
)

ab

|+ |H(!)

ij

H
(!

0
)

ab

�H
(!

0
)

ij

H
(!

0
)

ab

|

= |H(!)

ij

||H(!)

ab

�H
(!

0
)

ab

|+ |H(!)

ij

�H
(!

0
)

ij

||H(!

0
)

ab

|

 4⌫
⇣
|H(!)

ab

�H
(!

0
)

ab

|+ |H(!)

ij

�H
(!

0
)

ij

|
⌘
.

Using Assumption (C) and the definition of H ,

|H(!)

ij

�H
(!

0
)

ij

| 4L
k

k! � !0k

Learning Deep Kernels for Non-Parametric Two-Sample Tests

so
|H(!)

ij

H
(!)

ab

�H
(!

0
)

ij

H
(!

0
)

ab

| 32⌫L
k

k! � !0k (12)
and hence

|�̂2

!

� �̂2

!

0 | 256⌫L
k

k! � !0k.

Again using (12), we also have

|�2

!

� �2

!

0 | 4|E
h
H

(!)

12

H
(!)

13

i
� E

h
H

(!

0
)

12

H
(!

0
)

13

i
|+ 4|E

h
H

(!)

12

i
2

� E
h
H

(!

0
)

12

i
2

|

 4E|H(!)

12

H
(!)

13

�H
(!

0
)

12

H
(!

0
)

13

|+ 4E|H(!)

12

H
(!)

34

�H
(!

0
)

12

H
(!

0
)

34

|
 256⌫L

k

k! � !0k.

A.4. Constructing appropriate kernels

We now show Propositions 7 to 9, which each state that Assumption (C) is satisfied by various choices of kernel. The
following assumption will be useful for different kernel schemes.

(I) The domain X is Euclidean and bounded, X ✓
�
x 2 Rd

: kxk R
X

for some constant R

X

< 1.

We begin by recalling a well-known property of the Gaussian kernel, useful for both Gaussian bandwidth selection and deep
kernels. A proof is in Appendix A.5.

Lemma 20. The Gaussian kernel (a, b) = exp

⇣
�ka�bk2

2�

2

⌘
satisfies

|(a, b)� (a0, b0)| 1

�
p
e
(ka� bk+ ka0 � b0k) 1

�
p
e
(ka� a0k+ kb� b0k) .

A.4.1. GAUSSIAN BANDWIDTH SELECTION (PROPOSITION 7)

Lemma 20 immediately gives us Assumption (C) when we chose among Gaussian kernels:
Proposition 21. Define a one-dimensional Banach space for inverse lengthscales of Gaussian kernels � > 0, so that
k
�

(x, y) =
1/�

(x, y), with standard addition and multiplication and norms defined by the absolute value, and k
0

taken
to be the constant 1 function. Let ⌦ be any subset of this space. Under Assumption (I), Assumption (C) holds: for any
x, y 2 X and �, �0 2 �,

|k
�

(x, y)� k
�

0
(x, y)| 2R

Xp
e
|� � �0|.

Proof.

|k
�

(x, y)� k
�

0
(x, y)| = |

1

(�x, �y)�
1

(�0x, �0y)| 1p
e
|�kx� yk � �0kx� yk| = kx� ykp

e
|� � �0|.

A.4.2. DEEP KERNELS (PROPOSITION 9)

To handle the deep kernel case, we will need some more assumptions on the form of the kernel.

(II) �
!

(x) = �
(⇤)

!

is a feedforward neural network with ⇤ layers given by

�(0)

!

(x) = x �(`)

!

(x) = �(`)

⇣
W (`)

!

�(`�1)

!

(x) + b(`)
!

⌘
,

where the network parameter ! consists of all the weight matrices W (`)

!

and biases b(`)
!

, and the activation functions
�(`) are each 1-Lipschitz, k�(`)

(x)��(`)

(y)k kx� yk, with �(`)

(0) = 0 so that k�(`)

(x)k kxk. Define a Banach
space on !, with addition and scalar multiplication componentwise, and

k!k = max

`2{1,...,⇤}
max

⇣
kW (`)

!

k, kb(`)
!

k
⌘
,

where the matrix norm denotes operator norm kWk = sup

x

kWxk/kxk. (For convolutional networks, see Remark 25.)

Learning Deep Kernels for Non-Parametric Two-Sample Tests

(III) k
!

is a kernel of the form (1),

k
!

(x, y) = [(1� ✏)(�
!

(x),�
!

(y)) + ✏] q(x, y),

with 0 ✏ 1, a kernel function, and q(x, y) a kernel with sup

x

q(x, x) Q.
Note that this includes kernels of the form k

!

(x, y) = (�
!

(x),�
!

(y)): take ✏ = 0 and q(x, y) = 1.

(IV) in Assumption (III) is a kernel function satisfying

|(a, b)� (a0, b0)| L

(ka� a0k+ kb� b0k) .
This holds for a Gaussian via Lemma 20.

We now turn to proving Assumption (C) for deep kernels. First, we will need some smoothness properties of the network �.
Lemma 22. Under Assumption (II), suppose !,!0 have k!k R, k!0k R, with R 6= 1. Then, for any x,

k�
!

(x)k R⇤kxk+ R

R� 1

(R⇤ � 1) (13)

k�
!

(x)� �
!

0
(x)k

✓
⇤R⇤�1

✓
kxk+ R

R� 1

◆
� R⇤ � 1

(R� 1)

2

◆
k! � !0k. (14)

If R � 2, we furthermore have

k�
!

(x)k R⇤

(kxk+ 2) (15)

k�
!

(x)� �
!

0
(x)k ⇤R⇤�1

(kxk+ 2) k! � !0k. (16)

The proof, by recursion, is given in Appendix A.5. We are now ready to prove Assumption (C) for deep kernels.
Proposition 23. Make Assumptions (I) to (IV) and Assumption (B), with R

⌦

� 2.8 Then Assumption (C) holds: for any
x, y 2 X and !,!0 2 ⌦,

|k
!

(x, y)� k
!

0
(x, y)| 2Q(1� ✏)L

⇤R⇤�1

⌦

(R
X

+ 2)k! � !0k.

Proof.

|k
!

(x, y)� k
!

0
(x, y)| = (1� ✏)|(�

!

(x),�
!

(y))� (�
!

0
(x),�

!

0
(y))|q(x, y)

 Q(1� ✏)L

(|�
!

(x)� �
!

0
(x)|+ |�

!

(y)� �
!

0
(y)|)

 Q(1� ✏)L

⇤R⇤�1

⌦

(kxk+ kyk+ 4)k! � !0k
 Q(1� ✏)L

⇤R⇤�1

⌦

(2R
X

+ 4)k! � !0k.
Remark 24. For the deep kernels we use in the paper (Assumptions (II) to (IV)) on bounded domains (Assumption (I)),
we know L

k

via Proposition 23; Theorem 6 combines Theorem 11, Corollary 12, and Proposition 23. If we further use a
Gaussian kernel q of bandwidth �

�

, the last bracketed term in the error bound of Theorem 11 becomes

2(1� ✏)

�
�

p
e

⇤R⇤�1

⌦

(R
X

+ 2) +

r
2 log

2

�
+ 2D log

�
4R

⌦

p
n
�
.

The component R⇤�1

⌦

(R
X

+ 2), from (15), is approximately the largest that �
!

could make its outputs’ norms; �
�

will
generally be on a comparable scale to the norm of the actual outputs of the network, so their ratio is something like the

“unused capacity” of the network to blow up its inputs. This term is weighted about equally in the convergence bound with
the square root of the total number of parameters in the network.

Remark 25. We can handle convolutional networks as follows. We define ⌦ in essentially the same way, letting W
(`)

!

denote
the convolutional kernel (the set of parameters being optimized), but define k!k in terms of the operator norm of the linear
transform corresponding to the convolution operator. This is given in terms of the operator norm of various discrete Fourier
transforms of the kernel matrix by Lemma 2 of Bibi et al. (2019); see also Theorem 6 of Sedghi et al. (2019). The number
of parameters D is then the actual number of parameters optimized in gradient descent, but the radius R

⌦

is computed
differently.

8Of course, if we know a bound of R⌦ < 2, the result will still hold using R⌦ = 2. It is also possible to show a tighter result, via (13)
and (14) or their analogue for R = 1; the expression is simply less compact.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

A.4.3. MULTIPLE KERNEL LEARNING (PROPOSITION 8)

Multiple kernel learning (Gönen & Alpaydn, 2011) also falls into our setting. A special case of this family of kernels was
studied for the (easier to analyze) “streaming” MMD estimator by Gretton et al. (2012b).

(V) Let {k
i

}D
i=1

be a set of base kernels, each satisfying sup

x2X k
i

(x, x) K for some finite K. Define k
!

as

k
!

(x, y) =

DX

i=1

!
i

k
i

(x, y).

Define the norm of a kernel parameter by the norm of the corresponding vector ! 2 RD. Let ⌦ be a set of possible
parameters such that for each ! 2 ⌦, k

!

is positive semi-definite, and k!k R
⌦

for some R
⌦

< 1.

Not only does learning in this setting work (Proposition 26), it is also – unlike the deep setting – efficient to find an exact
maximizer of ˆJ

�

(Proposition 27).
Proposition 26. Assumption (V) implies Assumptions (A) to (C). In particular,

sup

!2⌦

sup

x2X
k
!

(x, x) KR
⌦

p
D

|k
!

(x, y)� k
!

0
(x, y)| K

p
Dk! � !0k.

Proof. Assumption (B) is immediate from Assumption (V), since ⌦ ⇢ RD. Let k(x, y) 2 RD denote the vector whose
ith entry is k

i

(x, y), so that k
!

(x, y) = !Tk(x, y). As kk(x, y)k1 K, we know kk(x, y)k K
p
D. Assumptions (A)

and (C) follow by Cauchy-Schwartz.

Proposition 27. Take Assumption (V), and additionally assume that ⌦ = {! | 8i.!
i

� 0,
P

i

!
i

= Q} for some Q < 1.
A maximizer of ˆJ

�

(!) can then be found by scaling the solution to a convex quadratic program,

!̃ = argmin

!2[0,1)

D
: !

Tb=1

!T
(A+ �I)!, !̂ =

QP
i

!̃
i

!̃ 2 argmax

!2⌦

ˆJ
�

(!),

where

(H
ij

)

`

= k
`

(X
i

, X
j

) + k
`

(Y
i

, Y
j

)� k
`

(X
i

, Y
j

)� k
`

(X
j

, Y
i

)

b =

1

n(n� 1)

X

i 6=j

H
ij

2 RD

A =

4

n3

X

i

0

@
X

j

H
ij

1

A

0

@
X

j

H
ij

1

A
T

� 4

n4

0

@
X

ij

H
ij

1

A

0

@
X

ij

H
ij

1

A
T

2 RD⇥D,

as long as b has at least one positive entry.

Proof. The H matrix used by ⌘̂
!

and �̂
!

takes a simple form:

H
(!)

ij

= k
!

(X
i

, X
j

) + k
!

(Y
i

, Y
j

)� k
!

(X
i

, Y
j

)� k
!

(X
j

, Y
i

) = !TH
ij

.

Thus

⌘̂
!

= !T

0

@ 1

n(n� 1)

X

i 6=j

H
ij

1

A
= !Tb

�̂2

!

=

4

n3

X

i

0

@!T
X

j

H
ij

1

A
2

� 4

n4

0

@!T
X

ij

H
ij

1

A
2

= !T

0

B@
4

n3

X

i

0

@
X

j

H
ij

1

A

0

@
X

j

H
ij

1

A
T

� 4

n4

0

@
X

ij

H
ij

1

A

0

@
X

ij

H
ij

1

A
T
1

CA! = !TA!.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Note that because �̂2

!

� 0 for any !, we have A ⌫ 0. We have now obtained a problem equivalent to the one in Section 4 of
Gretton et al. (2012b); the argument proceeds as there.

A.5. Miscellaneous Proofs

The following lemma was used for Propositions 21 and 23.

Lemma 20. The Gaussian kernel (a, b) = exp

⇣
�ka�bk2

2�

2

⌘
satisfies

|(a, b)� (a0, b0)| 1

�
p
e
(ka� bk+ ka0 � b0k) 1

�
p
e
(ka� a0k+ kb� b0k) .

Proof. We have that

|(a, b)� (a0, b0)| = |exp
✓
�ka� bk2

2�2

◆
� exp

✓
�ka0 � b0k2

2�2

◆
|

 kx 7! exp

✓
� x2

2�2

◆
k
L

|ka� bk � ka0 � b0k|.

We can bound the Lipschitz constant as its maximal derivative norm,

sup

x

|x|
�2

exp

✓
� x2

2�2

◆
.

Noting that
d

dx
log

✓
|x|
�2

exp

✓
� x2

2�2

◆◆
=

1

x
� x

�2

vanishes only at x = ±�, the supremum is achieved by using that value, giving

kx 7! exp

✓
� x2

2�2

◆
k
L

=

1

�
p
e
.

The result follows from

|ka� bk � ka0 � b0k| ka� b� a0 + b0k ka� a0k+ kb� b0k.

This next lemma was used in Proposition 23.
Lemma 22. Under Assumption (II), suppose !,!0 have k!k R, k!0k R, with R 6= 1. Then, for any x,

k�
!

(x)k R⇤kxk+ R

R� 1

(R⇤ � 1) (13)

k�
!

(x)� �
!

0
(x)k

✓
⇤R⇤�1

✓
kxk+ R

R� 1

◆
� R⇤ � 1

(R� 1)

2

◆
k! � !0k. (14)

If R � 2, we furthermore have

k�
!

(x)k R⇤

(kxk+ 2) (15)

k�
!

(x)� �
!

0
(x)k ⇤R⇤�1

(kxk+ 2) k! � !0k. (16)

Proof. First, k�(0)

!

(x)k = kxk, showing (13) when ⇤ = 0. In general,

k�(`)

!

(x)k = k�(`)

⇣
W (`)

!

�(`�1)

!

(x) + b(`)
!

⌘
k

 kW (`)

!

�(`�1)

!

(x) + b(`)
!

k
 kW (`)

!

kk�(`�1)

!

(x)k+ kb(`)
!

k
 Rk�(`�1)

!

(x)k+R,

Learning Deep Kernels for Non-Parametric Two-Sample Tests

and expanding this recursion gives

k�(`)

!

(x)k R`kxk+
`X

m=1

Rm

= R`kxk+ R

R� 1

(R` � 1).

Now, we have (14) for ⇤ = 0 because �
(0)

!

(x)� �
(0)

!

0 (x) = 0. For ` � 1, we have

k�(`)

!

(x)� �
(`)

!

0 (x)k = k�(`)

⇣
W (`)

!

�(`�1)

!

(x) + b(`)
!

⌘
� �(`)

⇣
W

(`)

!

0 �
(`�1)

!

0 (x)� b
(`)

!

0

⌘
k

 kW (`)

!

�(`�1)

!

(x)�W
(`)

!

0 �
(`�1)

!

(x)k+ kW (`)

!

0 �
(`�1)

!

(x)�W
(`)

!

0 �
(`�1)

!

0 (x)k+ kb(`)
!

� b
(`)

!

0 k
 kW (`)

!

�W
(`)

!

0 kk�(`�1)

!

(x)k+ kW (`)

!

0 kk�(`�1)

!

(x)� �
(`�1)

!

0 (x)k+ k! � !0k

 k! � !0k
✓
R`�1kxk+ R

R� 1

(R`�1 � 1) + 1

◆
+Rk�(`�1)

!

(x)� �
(`�1)

!

0 (x)k.

Expanding the recursion yields

k�(`)

!

(x)� �
(`)

!

0 (x)k
`�1X

m=0

Rm

✓
R`�1�mkxk+ R

R� 1

(R`�m�1 � 1) + 1

◆
k! � !0k

=

`�1X

m=0

✓
R`�1kxk+ R`

R� 1

� Rm+1

R� 1

+Rm

◆
k! � !0k

=

`R`�1kxk+ `R`

R� 1

�
✓

R

R� 1

� 1

◆
`�1X

m=0

Rm

!
k! � !0k

=

✓
`R`�1

✓
kxk+ R

R� 1

◆
� 1

R� 1

R` � 1

R� 1

◆
k! � !0k.

When R � 2, we have that R/(R� 1) 2 and R` > 1, giving (15) and (16).

B. Experimental Details
B.1. Details of synthetic datasets

Table 6 shows details of four synthetic datasets. Blob datasets are often used to validate two-sample test methods (Gretton
et al., 2012b; Jitkrittum et al., 2016; Sutherland et al., 2017), although we rotate each blob to show the benefits of non-
homogeneous kernels. HDGM datasets are first proposed in this paper. HDGM-D can be regarded as high-dimension Blob-D
which contains two modes with the same variance and different covariance.

Table 6. Specifications of P and Q of synthetic datasets. µb
1 = [0, 0], µb

2 = [0, 1], µb
3 = [0, 2], . . . , µb

8 = [2, 1], µb
9 = [2, 2] (same

with Figure 1a). µh
1 = 0d, µh

2 = 0.5 ⇥ 1d, Id is an identity matrix with size d. �b
i = �0.02 � 0.002 ⇥ (i � 1) if i < 5 and

�b
i = 0.02 + 0.002⇥ (i� 6) if i > 5. if i = 5, �b

i = 0 (same with Figure 1a). �h
1 and �h

2 are set to 0.5 and �0.5, respectively.

Datasets P Q

Blob-S
P

9

i=1

1

9

N (µb

i

, 0.03⇥ I
2

)

P
9

i=1

1

9

N (µb

i

, 0.03⇥ I
2

)

Blob-D
P

9

i=1

1

9

N (µb

i

, 0.03⇥ I
2

)

P
9

i=1

1

9

N
✓
µb

i

,

0.03 �

b

i

�

b

i

0.03

�◆

HDGM-S
P

2

i=1

1

2

N (µh

i

, I
d

)

P
2

i=1

1

2

N (µh

i

, I
d

)

HDGM-D
P

2

i=1

1

2

N (µh

i

, I
d

)

P
2

i=1

1

2

N

0

@µh

i

,

2

4
1 �

h

i

0
d�2

�

h

i

1 0
d�2

0T
d�2

0T

d�2

I
d�2

3

5

1

A

Learning Deep Kernels for Non-Parametric Two-Sample Tests

B.2. Dataset visualization

Figure 4 shows images from real-MNIST and “fake”-MNIST, while Figure 5 shows samples from CIFAR-10 and CIFAR-10.1.

(a) Real-MNIST (b) “Fake”-MNIST

Figure 4. Images from real-MNIST and “fake”-MNIST. “Fake”-MNIST is generated by DCGAN (Radford et al., 2016).

B.3. Configurations

We implement all methods on Python 3.7 (Pytorch 1.1) with a NIVIDIA Titan V GPU. We run ME and SCF using the official
code (Jitkrittum et al., 2016), and implement C2ST-S, C2ST-L, MMD-D and MMD-O by ourselves. We use permutation test
to compute p-values of C2ST-S and C2ST-L, MMD-D, MMD-O and tests in Table 4. We set ↵ = 0.05 for all experiments.
Following Lopez-Paz & Oquab (2017), we use a deep neural network F as the classifier in C2ST-S and C2ST-L, and train
the F by minimizing cross entropy. To fairly compare MMD-D with C2ST-S and C2ST-L, the network �

!

in MMD-D has
the same architecture with feature extractor in F . Namely, F = g � �

!

, where g is a two-layer fully-connected network.
The network g is a simple binary classifier that takes extracted features (through �

!

) as input. For test methods shown in
Table 4, the network �

!

in them also has the same architecture with that in MMD-D.

For Blob, HDGM and Higgs, �
!

is a five-layer fully-connected neural network. The number of neurons in hidden and
output layers of �

!

are set to 50 for Blob, 3 ⇥ d for HDGM and 20 for Higgs, where d is the dimension of samples.
These neurons are with softplus activation function, i.e., log(1 + exp(x)). For MNIST and CIFAR, �

!

is a convolutional
neural network (CNN) that contains four convolutional layers and one fully-connected layer. The structure of the CNN
follows the structure of the feature extractor in the discriminator of DCGAN (Radford et al., 2016) (see Figures 6
and 8 for the structure of �

!

in MMD-D, and Figures 7 and 9 for the structure of classifier F in C2ST-S and C2ST-
L). The link of DCGAN code is https://github.com/eriklindernoren/PyTorch-GAN/blob/master/
implementations/dcgan/dcgan.py.

We use Adam optimizer (Kingma & Ba, 2015) to optimize 1) parameters of F in C2ST-S and C2ST-L, 2) parameters of �
!

in MMD-D and 3) kernel lengthscale in MMD-O. We set drop-out rate to zero when training C2ST-S, C2ST-L and MMD-D
on all datasets.

B.4. Detailed parameters of all test methods

In this subsection, we demonstrate detailed parameters of all test methods. Except for learning rate of Adam optimizer, we
use default parameters of Adam optimizer provided by Pytorch. We use one validation set (with the same size of training
set) to roughly search these parameters. Using these parameters, we compute test power of each test method on 100 test sets
(with the same size of training set).

For ME and SCF, we follow Chwialkowski et al. (2015) and set J = 10 for Higgs. For other datasets, we set J = 5.

https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py
https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py

Learning Deep Kernels for Non-Parametric Two-Sample Tests

(a) CIFAR-10 test set (b) CIFAR-10.1 test set

Figure 5. Images from CIFAR-10 test set and the new CIFAR-10.1 test set (Recht et al., 2019).

conv: 3x3x16;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x32;
S = 2; P = 1

LeakyReLU(0.2)

Batch
Norm

32

conv: 3x3x64;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x128;
S = 2; P = 1

LeakyReLU(0.2)

FC 512
units
ReLU

Batch
Norm

64

Batch
Norm
128

FC 100
units

Figure 6. The structure of �! in MMD-D on MNIST. The kernel size of each convolutional layer is 3; stride (S) is set to 2; padding (P) is
set to 1. We do not use dropout. Best viewed zoomed in.

conv: 3x3x16;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x32;
S = 2; P = 1

LeakyReLU(0.2)

Batch
Norm

32

conv: 3x3x64;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x128;
S = 2; P = 1

LeakyReLU(0.2)

FC 512
units
ReLU

Batch
Norm

64

Batch
Norm
128

FC 100
units

FC 2 units
Softmax

Figure 7. The structure of classifier F in C2ST-S and C2ST-L on MNIST. The kernel size of each convolutional layer is 3; stride (S) is set
to 2; padding (P) is set to 1. We do not use dropout. In the first layer, we will convert the CIFAR images from 32⇥ 32⇥ 3 to 64⇥ 64⇥ 3.
Best viewed zoomed in.

conv: 3x3x16;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x32;
S = 2; P = 1

LeakyReLU(0.2)

Batch
Norm

32

conv: 3x3x64;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x128;
S = 2; P = 1

LeakyReLU(0.2)

FC 2048
units
ReLU

Batch
Norm

64

Batch
Norm
128

FC 300
units

Image
Upscale
64x64x3

Figure 8. The structure of �! in MMD-D on CIFAR. The kernel size of each convolutional layer is 3; stride (S) is set to 2; padding (P) is
set to 1. We do not use dropout in all layers. In the first layer, we will convert the CIFAR images from 32⇥ 32⇥ 3 to 64⇥ 64⇥ 3. Best
viewed zoomed in.

conv: 3x3x16;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x32;
S = 2; P = 1

LeakyReLU(0.2)

Batch
Norm

32

conv: 3x3x64;
S = 2; P = 1

LeakyReLU(0.2)

conv: 3x3x128;
S = 2; P = 1

LeakyReLU(0.2)

FC 2048
units
ReLU

Batch
Norm

64

Batch
Norm
128

FC 300
units

FC 2 units
Softmax

Image
Upscale
64x64x3

Figure 9. The structure of classifier F in C2ST-S and C2ST-L on CIFAR. The kernel size of each convolutional layer is 3; stride (S) is set
to 2; padding (P) is set to 1. We do not use dropout. Best viewed zoomed in.

For C2ST-S and C2ST-L, we set batchsize to min{2⇥ n
b

, 128} for Blob, 128 for HDGM and Higgs, and 100 for MNIST
and CIFAR. We set the number of epochs to 500⇥ 18⇥ n

b

/batchsize for Blob, 1, 000 for HDGM, Higgs and CIFAR, and
2, 000 for MNIST. We set learning rate to 0.001 for Blob, HDGM and Higgs, and 0.0002 for MNIST and CIFAR (following
Radford et al. (2016)).

For MMD-O, we use full batch (i.e., all samples) to train MMD-O. we set the number of epochs to 1, 000 for Blob, HDGM,
Higgs and CIFAR, and 2, 000 for MNIST. We set learning rate to 0.0005 for Blob, MNIST and CIFAR, and 0.001 for HDGM.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Table 7. Results on Higgs (↵ = 0.05). We report average Type I error on Higgs dataset when increasing number of samples (N). Note
that, in Higgs, we have two types of Type I errors: 1) Type I error when two samples drawn from P (no Higgs bosons) and 2) Type I
error when two samples drawn from Q (having Higgs bosons). Type I reported here is the average value of 1) and 2). Since Type I error
reported here is the average value of two average Type I errors, we do not report standard errors of the average Type I error in this table.

N ME SCF C2ST-S C2ST-L MMD-O MMD-D

1000 0.048 0.040 0.043 0.048 0.059 0.037
2000 0.043 0.032 0.060 0.056 0.055 0.053
3000 0.049 0.043 0.046 0.053 0.051 0.069
5000 0.056 0.035 0.052 0.065 0.049 0.062
8000 0.050 0.034 0.065 0.067 0.056 0.037

10000 0.059 0.032 0.057 0.058 0.045 0.048

Avg. 0.051 0.036 0.054 0.058 0.050 0.051

Table 8. Results on MNIST given ↵ = 0.05. We report average Type I error±standard errors on real-MNIST vs. real-MNIST when
increasing number of samples (N).

N ME SCF C2ST-S C2ST-L MMD-O MMD-D

200 0.076±0.011 0.075±0.010 0.035±0.006 0.045±0.005 0.068±0.004 0.056±0.003
400 0.062±0.010 0.056±0.007 0.044±0.006 0.040±0.004 0.053±0.005 0.056±0.005
600 0.051±0.003 0.049±0.009 0.039±0.005 0.054±0.007 0.066±0.008 0.056±0.008
800 0.054±0.006 0.046±0.006 0.043±0.005 0.042±0.007 0.051±0.005 0.054±0.007
1000 0.047±0.006 0.045±0.010 0.038±0.006 0.046±0.005 0.041±0.007 0.062±0.006

Avg. 0.058 0.054 0.040 0.045 0.056 0.057

For MMD-D, we use full batch (i.e., all samples) to train MMD-D with samples from Blob, HDGM and Higgs. We use
mini-batch (batchsize is 100) to train MMD-D with samples from MNIST and CIFAR. We set the number of epochs to 1, 000
for Blob, HDGM, Higgs and CIFAR, and 2, 000 for MNIST. We set learning rate to 0.0005 for Blob and Higgs, 10�5 for
HDGM, 0.001 for MNIST and 0.0002 for and CIFAR (following Radford et al. (2016)).

B.5. Links to datasets

Higgs dataset can be downloaded from UCI Machine Learning Repository. The link is https://archive.ics.uci.
edu/ml/datasets/HIGGS.

MNIST dataset can be downloaded via Pytorch. See the code in https://github.com/eriklindernoren/
PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py.

CIFAR-10.1 is available from https://github.com/modestyachts/CIFAR-10.1/tree/master/
datasets (we use cifar10.1 v4 data.npy). This new test set contains 2, 031 images from TinyImages
(Torralba et al., 2008).

B.6. Type I errors on Higgs and MNIST

Table 7 shows average Type I error on Higgs dataset when increasing number of samples (N). Table 8 shows average Type I
error on real-MNIST vs. real-MNIST when increasing number of samples (N).

C. Interpretability on CIFAR-10 vs CIFAR-10.1

In Section 7.1, we have shown that images in CIFAR-10 and CIFAR-10.1 are not from the same distribution. Thus, it is
interesting to try to understand the major difference between the datasets. Mean Embedding tests (Chwialkowski et al.,
2015) compare the mean embeddings µP and µQ at test locations v

1

, . . . , v
L

, rather than through their overall norm. The
test statistic is

ˆ

⇤ = nz̄T
n

S�1z̄
n

, z
i

= (k(x
i

, v
j

)� k(y
i

, v
j

))

L

j=1

2 RL, z̄
n

=

1

n

nX

i=1

z
i

, S
n

=

1

n� 1

nX

i=1

(z
i

� z̄
n

)(z
i

� z̄
n

)

T
;

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py
https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py
https://github.com/modestyachts/CIFAR-10.1/tree/master/datasets
https://github.com/modestyachts/CIFAR-10.1/tree/master/datasets

Learning Deep Kernels for Non-Parametric Two-Sample Tests

the asymptotic null distribution of ˆ⇤ is �2

L

, and the estimator is computable in linear time rather than \
MMD

U

’s quadratic
time.

Jitkrittum et al. (2017) jointly learn the parameters v
j

and kernel parameters to optimize test power. The best such test
locations (L = 1) for a Gaussian kernel (with learned bandwidth) are shown in Figure 10. We could also try optimizing a
deep kernel (1) and the test locations together; this procedure, however, failed to find a useful test. We can find a better test,
though, with a two-stage scheme: first, learn a deep kernel to maximize ˆJ

�

, then choose v
i

to maximize ˆ

⇤ with that kernel
fixed. Results are shown in Figure 11.

Although these approaches give nontrivial test power, it is hard to interpret either set of images, as the test locations have
moved far outside the set of natural images. We can instead constrain v

1

2 SP [SQ, simply picking the single point from
the dataset which maximizes ˆ

⇤ (shown in Figure 12). This achieves similar test power, but lets us see that the difference
might lie in images with smaller objects of interest than the mean for CIFAR-10.

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Figure 10. The best test locations (learned by an ME test with L = 1) from 10 experiments on CIFAR-10 vs CIFAR-10.1. Average
rejection rate is 0.415.

Figure 11. The best test locations (learned by an ME test, L = 1, with a deep kernel optimized for an MMD test) from 10 experiments on
CIFAR-10 vs CIFAR-10.1. Average rejection rate is 0.637.

Figure 12. The best test locations (selected among existing images with our learned deep kernel, L = 1) from 10 experiments on CIFAR-10
vs CIFAR-10.1. Average rejection rate is 0.653.

