
Supplementary Material of

Finding trainable sparse networks through Neural Tangent Transfer

Tianlin Liu and Friedemann Zenke

Appendix A Proof of Proposition 1

Here we prove Proposition 1 in the main text.

Proposition 1. Consider a linear NTT teacher model f(x,a(0)) = a(0)>x, where x and a(0) ∈ Rd

are model input and initial parameters. Suppose that we are given a linear NTT student model
gm(x, ã(0)) = (m � ã(0))>x whose initial parameters ã(0) are NTT-optimal in the sense that
Ja(0)(m� ã(0)) = 0. Then upon continuous-time and quadratic-loss based gradient descent training,
the dense and sparse models’ outputs evolve in the same way:

f(x,a(t)) = gm(x, ã(t)),

for all training inputs x and time steps t ≥ 0.

Proof of Proposition 1. Let {xi, yi}ni=1 ⊂ Rd × R be a training dataset of n input-target pairs. We
first consider the dense linear model f(x,a) = a>x. We use the shorthand notation X = [xi]i∈[n] ∈
Rd×n as the column-wise concatenation of training inputs, f(X,a) = X>a ∈ Rn as the vector
whose entries are outputs of the dense linear model, and y = (yi)i∈[n] ∈ Rn as the corresponding
targets. As a special case of [Arora et al., 2019, Lemma 3.1], namely when the model is assumed to
be linear, the model output follows the evolution

df(X,a(t))

dt
= −H

[
f
(
X,a(t)

)
− y

]
, (1)

where H = X>X ∈ Rn×n. The solution of the linear ODE (1) is given by

f
(
X,a(t)

)
= e−tHf

(
X,a(0)

)
+
[
I − e−tH

]
y. (2)

We now turn to the case of the sparse linear model gm(ã,x) = (m� ã)>x. For convenience,

we write gm

(
X,a(t)

)
= X>diag(m)a ∈ Rn as a vector whose entries are outputs of the sparse

linear model, where diag(·) transforms the d-dimensional vector m into a d-by-d diagonal matrix.
Similar to the case of the dense model, the sparse model’s output dynamics are characterized by the
linear ODE

dgm
(
X,a(t)

)
dt

= −H̃
[
gm

(
X,a(t)

)
− y

]
, (3)

1



where H̃ = (diag(m)X)>diag(m)X ∈ Rn×n. Solving the linear ODE in Eqn. (3), we get

gm

(
X,a(t)

)
= e−tH̃gm

(
X, ã(0)

)
+ [I − e−tH̃ ]y. (4)

Note that the NTT objective (Eqn. (14)) achieves 0 only if H = H̃ and f
(
X,a(0)

)
=

gm

(
X, ã(0)

)
. Comparing Eqn. (2) and Eqn. (4), we see

f(x,a(t)) = gm(x, ã(t)),

for all x ∈ {xi}ni=1 and timesteps t ≥ 0 as claimed.

Appendix B Details of experiment setup

We proceed to introduce the details of experiments reported in the main text, including the model
architecture, optimization hyper-parameters, and baseline methods. All experiments were performed
using JAX [Bradbury et al., 2018] and the neural-tangents library [Novak et al., 2020].

B.1 Neural network architecture

For most of the MNIST and Fashion MNIST classification tasks, we use the standard Lenet-300-100
MLP and Lenet-5-caffe CNN architecture together with Relu activations for hidden layers and
softmax cross-entropy loss on logit outputs. One exception is the toy example reported in Sec. 4.1,
where we used 2 linear output neurons to perform regression.

For the CIFAR-10 and SVHN datasets, we used a CNN model consisting of 4 convolution layers
followed by 2 feedforward layers with dropout (Table 1). This can be considered as a slightly
scaled-up version of the CNN from the Keras tutorial1, in which the only modification we made was
to double the number of filters in each convolutional layer.

Operation Filter size # Filters Stride Dropout rate Activation

3x32x32 input – – – – –
Conv 3 × 3 64 1 × 1 – ReLu
Conv 3 × 3 64 1 × 1 – ReLu
MaxPool – – 2 × 2 0.25 –
Conv 3 × 3 128 1 × 1 – ReLu
Conv 3 × 3 128 1 × 1 – ReLu
MaxPool – – 2 × 2 0.25 –
FC – 512 – 0.5 ReLu
FC – 10 – – Softmax

Table 1: The Conv-4 architecture used for the CIFAR-10 and SVHN tasks. The dropout rate is
defined to be the fraction of the input units to drop.

1https://keras.io/examples/cifar10_cnn/

2

https://keras.io/examples/cifar10_cnn/


B.2 NTT hyperparameters

In Table 2 we summarize the hyperparameters used in the NTT optimization stage. For each
experiment, we initialized NTT teachers using the Glorot initialization scheme [Glorot & Bengio,
2010]; we then perform perform gradient-based optimization using the Adam optimizer [Kingma &
Ba, 2015] with various learning rates and batch sizes (see Table 2).

Task Model
Epoch
number

Batch
size

Learning
rate η

Mask update
frequency

Strength

parameter γ2
weight-decay
constant β

Visualization
Lenet-300-100 5000 (full-batch) 500 1e-03 100 iters 1e-5 0
Lenet-5-caffe 5000 (full-batch) 500 5e-04 100 iters 1e-6 0

MNIST
Lenet-300-100 20 64 5e-04 100 iters 1e-3 1e-4
Lenet-5-caffe 20 64 5e-04 100 iters 1e-3 1e-5

Fashion-MNIST
Lenet-300-100 20 64 5e-04 100 iters 1e-3 1e-4
Lenet-5-caffe 20 64 5e-04 100 iters 1e-3 1e-5

CIFAR-10 Conv-4 CNN (see Table 1) 20 32 5e-04 100 iters 1e-3 1e-8
SVHN Conv-4 CNN (see Table 1) 20 32 5e-04 100 iters 1e-3 1e-8

Table 2: Hyperparameters used for NTT in this paper.

The toy example in Section 4.1 of the main text deserves some additional comments. For this
task, we used 500 images from the MNIST dataset, containing 250 images of each digit 0 and 1. We
performed 5000 iterations of full-batch gradient descent for this task; for this reason, 5000 is also
the total number of epochs.

B.3 Supervised learning hyperparameters

Regarding the supervised learning experiments, we spared 10% of the training data for model
validation purposes and only used 90% for model training. We used the Adam optimizer with
learning rate 1e-3, β1 = 0.9, and β2 = 0.999 for all supervised learning tasks except for the
visualization task in Sec. 4.1, in which the stochastic gradient descent optimizer with learning
rate 0.01 was used. In addition, all experiments, except for the visualization task, used a minibatch-
size of 64. For MNIST and Fashion MNIST experiments, we performed optimization for 50 epochs.
On CIFAR-10, we trained for 600 epochs.

B.4 Baseline pruning methods

In this subsection, we first recap the SNIP pruning method [Lee et al., 2019] and introduce two
straightforward extensions of it, Layerwise-SNIP and Logit-SNIP, which were used as baselines for
NTT. Finally, we point out some technicalities of random pruning baselines.

SNIP and Layerwise-SNIP Recall that SNIP [Lee et al., 2019] assigns each neural network
parameter θ a sensitivity score S(θ) defined as

S(θ) =

∣∣∣∣θ · ∂Lθ∂θ
∣∣∣∣ ,

where Lθ =
∑nB

i=1 L(f(xi,θ),yi) is the loss evaluated over a batch of nB number of input-output
data pairs {xi,yi}nB

i=1 and θ is the vector of randomly initialized parameters. Lee et al. [2019]

3



proposed to remove neural network parameters with lowest sensitivity scores. That is, in its original
formulation, SNIP is a global pruning method. To be consistent with [Lee et al., 2019], we reserve
the terminology SNIP to only be used in global pruning context. A straightforward way to turn
SNIP into a layerwise pruning method is to remove a fixed fraction of the parameters having the
lowest sensitivity scores from each layer. We call this extension Layerwise-SNIP.

Logit-SNIP and layerwise Logit-SNIP The SNIP and Layerwise-SNIP methods described
above depend on labels. Here we provide a label-free extension: We modify the sensitivity score
S(θ) into a logit-based sensitivity score S̃(θ) defined as

S̃(θ) =

∣∣∣∣θ · ∂Zθ∂θ
∣∣∣∣ ,

where Zθ =
∑nB

i=1 ‖f(xi,θ)‖22. We can perform either global or layerwise pruning in reference to the
scores S̃(θ). We refer the global pruning criteria as Logit-SNIP and layerwise criteria as layerwise
Logit-SNIP. When the context is clear, we may use the terminology Logit-SNIP to refer to either its
layerwise or global variant.

Random pruning In the main text we have explained two ways to randomly sample sparse
neural networks. Note that for these random methods, their global pruning variant is equivalent to
their respective layerwise variant: In either formulation, each weight parameter receives an identical
chance to be removed and therefore the expected fraction of pruned parameters for each layer is the
same. In each run, we randomly remove such expected fraction of parameters from each layer.

Appendix C Additional experiments and results

C.1 Visualizing network output evolution in CNNs

We repeated the experiment introduced in Sec. 4.1 of the main text using a Lenet-5-like architecture
with two linear output neurons (Fig. 1). In good agreement with the MLP results, we found that
the NTT teacher and student follow a similar output evolution during supervised training.

0.0 0.5 1.0

Class-0 prediction

0.0

0.5

1.0

C
la

ss
-1

p
re

d
ic

ti
o

n

0.00 0.25 0.50

Class-0 prediction

0.0

0.5

1.0

Dense (teacher) NTT (student) Rand.

Figure 1: A CNN NTT student’s output evolution closely follows its dense teacher’s.

4



C.2 Experiments on global pruning

In the main text, we have focused on layerwise pruning. Here we provide experimental results on
global pruning methods using various datasets. The overall experiment procedure and hyperpa-
rameters used in this set global pruning experiments are identical to the settings in the layerwise
experiments, except at one place: During NTT, instead of initializing the binary mask based on
weight magnitudes as outlined in Sec 3.3, we found that the NTT optimization process converges
slightly faster if we use the Logit-SNIP produced mask as the initialization. Since Logit-SNIP masks
do not depend on labels, the NTT procedure remains label-independent.

5



20% 5% 1%
0.80

0.85

0.90

0.95

1.00
T

ra
in

a
c

c
u

ra
c

y

Rand.

Scaled Rand.

Logit-SNIP

SNIP

NTT

20% 5% 1%
0.80

0.85

0.90

0.95

1.00

T
e

st
a

c
c

u
ra

c
y

20% 5% 1%

Remaining weight %

0.000

0.002

0.004

V
a

r
o

f
tr

a
in

a
c

c
u

ra
c

y

20% 5% 1%

Remaining weight %

0.000

0.002

0.004

V
a

r
o

f
te

st
a

c
c

u
ra

c
y

(a) Lenet-300-100 on MNIST

20% 5% 1%

0.80

0.85

0.90

0.95

1.00

T
ra

in
a

c
c

u
ra

c
y

Rand.

Scaled Rand.

Logit-SNIP

SNIP

NTT

20% 5% 1%

0.80

0.85

0.90

0.95

1.00

T
e

st
a

c
c

u
ra

c
y

20% 5% 1%

Remaining weight %

0.00

0.01

0.02

V
a

r
o

f
tr

a
in

a
c

c
u

ra
c

y

20% 5% 1%

Remaining weight %

0.00

0.01

0.02

V
a

r
o

f
te

st
a

c
c

u
ra

c
y

(b) Lenet-5-caffe on MNIST

20% 5% 1%
0.80

0.85

0.90

0.95

1.00

T
ra

in
a

c
c

u
ra

c
y

Rand.

Scaled Rand.

Logit-SNIP

SNIP

NTT

20% 5% 1%
0.60

0.70
0.75
0.80
0.85
0.90

T
e

st
a

c
c

u
ra

c
y

20% 5% 1%

Remaining weight %

0.000

0.002

0.004

V
a

r
o

f
tr

a
in

a
c

c
u

ra
c

y

20% 5% 1%

Remaining weight %

0.000

0.002

V
a

r
o

f
te

st
a

c
c

u
ra

c
y

(c) Lenet-300-100 on Fashion MNIST

20% 5% 1%

0.80
0.85
0.90
0.95
1.00

T
ra

in
a

c
c

u
ra

c
y

Rand.

Scaled Rand.

Logit-SNIP

SNIP

NTT

20% 5% 1%

0.70

0.80
0.85
0.90
0.95

T
e

st
a

c
c

u
ra

c
y

20% 5% 1%

Remaining weight %

0.000

0.002

V
a

r
o

f
tr

a
in

a
c

c
u

ra
c

y

20% 5% 1%

Remaining weight %

0.000

0.002

V
a

r
o

f
te

st
a

c
c

u
ra

c
y

(d) Lenet-5-caffe on Fashion MNIST

20% 5% 1%
0.2

0.4

0.6

0.8

1.0

T
ra

in
a

c
c

u
ra

c
y

Rand.

Scaled Rand.

Logit-SNIP

SNIP

NTT

20% 5% 1%
0.2

0.5

0.8

T
e

st
a

c
c

u
ra

c
y

20% 5% 1%

Remaining weight %

0.0000

0.0002

0.0004

V
a

r
o

f
tr

a
in

a
c

c
u

ra
c

y

20% 5% 1%

Remaining weight %

0.0000

0.0002

0.0004

V
a

r
o

f
te

st
a

c
c

u
ra

c
y

(e) Conv-4 on CIFAR-10

Figure 2: Supervised performance of NTT and baseline methods under global pruning.

6



References

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. On exact computation
with an infinitely wide neural net. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 32, pp.
8139–8148. Curran Associates, Inc., 2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., and Wanderman-
Milne, S. JAX: composable transformations of Python+NumPy programs, 2018. URL http:

//github.com/google/jax.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M. (eds.), Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Bengio, Y. and LeCun,
Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Lee, N., Ajanthan, T., and Torr, P. H. S. SNIP: Single-shot network pruning based on connection
sensitivity. In ICLR, 2019.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-Dickstein, J., and Schoenholz, S. S. Neural
tangents: Fast and easy infinite neural networks in python. In International Conference on
Learning Representations, 2020. URL https://github.com/google/neural-tangents.

7

http://github.com/google/jax
http://github.com/google/jax
https://github.com/google/neural-tangents

	Proof of Proposition 1 
	Details of experiment setup 
	Neural network architecture 
	NTT hyperparameters 
	Supervised learning hyperparameters
	Baseline pruning methods 

	Additional experiments and results
	Visualizing network output evolution in CNNs 
	Experiments on global pruning 


