
Differentiating through the Fréchet Mean

Aaron Lou * 1 Isay Katsman * 1 Qingxuan Jiang * 1 Serge Belongie 1 Ser-Nam Lim 2 Christopher De Sa 1

Abstract
Recent advances in deep representation learning
on Riemannian manifolds extend classical deep
learning operations to better capture the geom-
etry of the manifold. One possible extension is
the Fréchet mean, the generalization of the Eu-
clidean mean; however, it has been difficult to
apply because it lacks a closed form with an eas-
ily computable derivative. In this paper, we show
how to differentiate through the Fréchet mean
for arbitrary Riemannian manifolds. Then, fo-
cusing on hyperbolic space, we derive explicit
gradient expressions and a fast, accurate, and
hyperparameter-free Fréchet mean solver. This
fully integrates the Fréchet mean into the hyper-
bolic neural network pipeline. To demonstrate
this integration, we present two case studies. First,
we apply our Fréchet mean to the existing Hyper-
bolic Graph Convolutional Network, replacing its
projected aggregation to obtain state-of-the-art re-
sults on datasets with high hyperbolicity. Second,
to demonstrate the Fréchet mean’s capacity to gen-
eralize Euclidean neural network operations, we
develop a hyperbolic batch normalization method
that gives an improvement parallel to the one ob-
served in the Euclidean setting1.

1. Introduction
Recent advancements in geometric representation learning
have utilized hyperbolic space for tree embedding tasks
(Nickel & Kiela, 2017; 2018; Yu & De Sa, 2019). This is
due to the natural non-Euclidean structure of hyperbolic

*Equal contribution 1Department of Computer Science, Cornell
University, NY, Ithaca, USA 2Facebook AI, NY, New York, USA.
Correspondence to: Aaron Lou <al968@cornell.edu>,
Isay Katsman <isk22@cornell.edu>, Qingxuan Jiang
<qj46@cornell.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1Our PyTorch implementation of the differentiable Fréchet
mean can be found at https://github.com/CUVL/Differentiable-
Frechet-Mean.

Figure 1. Depicted above is the Fréchet mean, µ, of three points,
x1, x2, x3 in the Lorentz model of hyperbolic space. As one
can see, the Fréchet mean conforms with the geometry of the
hyperboloid and is vastly different from the standard Euclidean
mean.

space, in which distances grow exponentially as one moves
away from the origin. Such a geometry is naturally equipped
to embed trees, since if we embed the root of the tree near
the origin and layers at successive radii, the geometry of hy-
perbolic space admits a natural hierarchical structure. More
recent work has focused specifically on developing neu-
ral networks that exploit the structure of hyperbolic space
(Ganea et al., 2018; Tifrea et al., 2019; Chami et al., 2019;
Liu et al., 2019).

A useful structure that has thus far not been generalized
to non-Euclidean neural networks is that of the Euclidean
mean. The (trivially differentiable) Euclidean mean is nec-
essary to perform aggregation operations such as attention
(Vaswani et al., 2017), and stability-enhancing operations
such as batch normalization (Ioffe & Szegedy, 2015), in the
context of Euclidean neural networks. The Euclidean mean
extends naturally to the Fréchet mean in non-Euclidean ge-
ometries (Fréchet, 1948). However, unlike the Euclidean
mean, the Fréchet mean does not have a closed-form solu-
tion, and its computation involves an argmin operation that
cannot be easily differentiated. This makes the important
operations we are able to perform in Euclidean space hard to

https://github.com/CUVL/Differentiable-Frechet-Mean
https://github.com/CUVL/Differentiable-Frechet-Mean

Differentiating through the Fréchet Mean

generalize to their non-Euclidean counterparts. In this paper,
we extend the methods in Gould et al. (2016) to differentiate
through the Fréchet mean, and we apply our methods to
downstream tasks. Concretely, our paper’s contributions are
that:

• We derive closed-form gradient expressions for the
Fréchet mean on Riemannian manifolds.

• For the case of hyperbolic space, we present a novel
algorithm for quickly computing the Fréchet mean and
a closed-form expression for its derivative.

• We use our Fréchet mean computation in place of the
neighborhood aggregation step in Hyperbolic Graph
Convolution Networks (Chami et al., 2019) and achieve
state-of-the-art results on graph datasets with high hy-
perbolicity.

• We introduce a fully differentiable Riemannian batch
normalization method which mimics the procedure and
benefit of standard Euclidean batch normalization.

2. Related Work
Uses of Hyperbolic Space in Machine Learning. The us-
age of hyperbolic embeddings first appeared in Kleinberg
(2007), in which the author uses them in a greedy embedding
algorithm. Later analyses by Sarkar (2011) and Sala et al.
(2018) demonstrate the empirical and theoretical improve-
ment of this approach. However, only recently in Nickel &
Kiela (2017; 2018) was this method extended to machine
learning. Since then, models such as those in Ganea et al.
(2018); Chami et al. (2019); Liu et al. (2019) have leveraged
hyperbolic space operations to obtain better embeddings
using a hyperbolic version of deep neural networks.

Fréchet Mean. The Fréchet mean (Fréchet, 1948), as the
generalization of the classical Euclidean mean, offers a
plethora of applications in downstream tasks. As a math-
ematical construct, the Fréchet mean has been thoroughly
studied in texts such as Karcher (1977); Charlier (2013);
Bacák (2014).

However, the Fréchet mean is an operation not without com-
plications; the general formulation requires an argmin oper-
ation and offers no closed-form solution. As a result, both
computation and differentiation are problematic, although
previous works have attempted to resolve such difficulties.

To address computation, Gu et al. (2019) show that a Rie-
mannian gradient descent algorithm recovers the Fréchet
mean in linear time for products of Riemannian model
spaces. However, without a tuned learning rate, it is too
hard to ensure performance. Brooks et al. (2019) instead
use the Karcher Flow Algorithm (Karcher, 1977); although
this method is manifold-agnostic, it is slow in practice. We

address such existing issues in the case of hyperbolic space
by providing a fast, hyperparameter-free algorithm for com-
puting the Fréchet mean.

Some works have addressed the differentiation issue by
circumventing it, instead relying on pseudo-Fréchet means.
In Law et al. (2019), the authors utilize a novel squared
Lorentzian distance (as opposed to the canonical distance
for hyperbolic space) to derive explicit formulas for the
Fréchet mean in pseudo-hyperbolic space. In Chami et al.
(2019), the authors use an aggregation method in the tangent
space as a substitute. Our work, to the best of our knowledge,
is the first to provide explicit derivative expressions for the
Fréchet mean on Riemannian manifolds.

Differentiating through the argmin. Theoretical founda-
tions of differentiating through the argmin operator have
been provided in Gould et al. (2016). Similar methods
have subsequently been used to develop differentiable opti-
mization layers in neural networks (Amos & Kolter, 2017;
Agrawal et al., 2019).

Given that the Fréchet mean is an argmin operation, one
might consider utilizing the above differentiation techniques.
However, a naı̈ve application fails, as the Fréchet mean’s
argmin domain is a manifold, and Gould et al. (2016) deals
specifically with Euclidean space. Our paper extends this
theory to the case of general Riemannian manifolds, thereby
allowing the computation of derivatives for more general
argmin problems, and, in particular, for computing the
derivative of the Fréchet mean in hyperbolic space.

3. Background
In this section, we establish relevant definitions and formu-
las of Riemannian manifolds and hyperbolic spaces. We
also briefly introduce neural network layers in hyperbolic
space.

3.1. Riemannian Geometry Background

Here we provide some of the useful definitions from Rie-
mannian geometry. For a more in-depth introduction, we
refer the interested reader to our Appendix C or texts such
as Lee (2003) and Lee (1997).

Manifold and tangent space: An n-dimensional manifold
M is a topological space that is locally homeomorphic to
Rn. The tangent space TxM at x is defined as the vec-
tor space of all tangent vectors at x and is isomorphic to
Rn. We assume our manifolds are smooth, i.e. the maps
are diffeomorphic. The manifold admits local coordinates
(x1; : : : ; xn) which form a basis (dx1; : : : ; dxn) for the tan-
gent space.

Riemannian metric and Riemannian manifold: For a
manifold M, a Riemannian metric � = (�x)x2M is a

Differentiating through the Fr échet Mean

Table 1.Summary of operations in the Poincaré ball model and the hyperboloid model (K < 0)

Poincaré Ball Hyperboloid
Manifold Dn

K = f x 2 Rn : hx; x i 2 < � 1
K g Hn

K = f x 2 Rn +1 : hx; x i L = 1
K g

Metric gDK
x = (� K

x)2gE where� K
x = 2

1+ K kx k2
2

andgE = I gHK
x = � , where� is I except� 0;0 = � 1

Distance dK
D (x; y) = 1p

jK j
cosh� 1

�
1 � 2K kx � yk2

2
(1+ K kx k2

2)(1+ K kyk2
2)

�
dK

H (x; y) = 1p
jK j

cosh� 1(K hx; yi L)

Exp map expK
x (v) = x � K

tanh
� p

jK j � K
x kvk2

2

�
vp

jK jk vk2

!

expK
x (v) = cosh(

p
jK jjj vjjL)x + v

sinh(
p

jK jjj v jj L)p
jK jjj v jj L

Log map logK
x (y) = 2p

jK j � K
x

tanh � 1(
p

jK jk � x � K yk2) � x � K y
k� x � K yk2

logK
x (y) = cosh� 1 (K hx;y i L)

sinh (cosh� 1 (K hx;y i L)) (y � K hx; yi L x)

Transport PTK
x ! y (v) = � K

x
� K

y
gyr[y; � x]v PTK

x ! y (v) = v � K hy;v i L

1+ K hx;y i L
(x + y)

Table 2.Summary of hyperbolic counterparts of Euclidean operations in neural networks

Operation Formula

Matrix-vector multiplication A
 K x = expK
0 (A logK

0 (x))
Bias translation x � K b = exp x (PTK

0! x (b))
Activation function � K 1 ;K 2 (x) = exp K 1

0 (� (logK 2
0 (x)))

smooth collection of inner products� x : Tx M� Tx M ! R
on the tangent space of everyx 2 M . The resulting
pair (M ; �) is called a Riemannian manifold. Note that
� induces a norm in each tangent spaceTx M , given by
k~vk� =

p
� x (~v;~v) for any~v 2 Tx M . We oftentimes as-

sociate� to its matrix form(� ij) where� ij = � (dxi ; dxj)
when given local coordinates.

Geodesics and induced distance function:For a curve

 : [a; b] ! M , we de�ne the length of
 to beL(
) =
Rb

a

 0(t)

� dt. For x; y 2 M , the distanced(x; y) =
inf L (
) where
 is any curve such that
 (a) = x;
 (b) = y.
A geodesic
 xy from x to y, in our context, should be
thought of as a curve that minimizes this length2.

Exponential and logarithmic map: For each pointx 2
M and vector~v 2 Tx M , there exists a unique geodesic
 :
[0; 1] ! M where
 (0) = x;
 0(0) = ~v. The exponential
mapexpx : Tx M ! M is de�ned asexpx (~v) =
 (1).
Note that this is an isometry, i.e.k~vk� = d(x; expx (~v)) .
The logarithmic maplogx : M ! Tx M is de�ned as the
inverse ofexpx , although this can only be de�ned locally3.

Parallel transport: For x; y 2 M , the parallel transport
PTx ! y : Tx M ! Ty M de�nes a way of transporting the

2Formally, geodesics are curves with 0 acceleration w.r.t. the
Levi-Civita connection. There are geodesics which are not mini-
mizing curves, such as the larger arc between two points on a great
circle of a sphere; hence this clari�cation is important.

3Problems in de�nition arise in the case of conjugate points
(Lee, 1997). However,exp is a local diffeomorphism by the inverse
function theorem.

local geometry fromx to y along the unique geodesic that
preserves the metric tensors.

3.2. Hyperbolic Geometry Background

We now examine hyperbolic space, which has constant
curvatureK < 0, and provide concrete formulas for
computation. The two equivalent models of hyperbolic
space frequently used are the Poincaré ball model and the
hyperboloid model. We denoteDn

K and Hn
K as then-

dimensional Poincaré ball and hyperboloid models with
curvatureK < 0, respectively.

3.2.1. BASIC OPERATIONS

Inner products: We de�nehx; yi 2 to be the standard Eu-
clidean inner product andhx; yi L to be the Lorentzian inner
product� x0y0 + x1y1 + � � � + xn yn .

Gyrovector operations: For x; y 2 Dn
K , the Möbius addi-

tion (Ungar, 2008) is

x � K y =
(1 � 2K hx; yi 2 � K kyk2

2)x + (1 + K kxk2
2)y

1 � 2K hx; yi 2 + K 2kxk2
2kyk2

2
(1)

This induces M̈obius subtraction	 K which is de�ned as
x 	 K y = x � K � y. In the theory of gyrogroups, the notion
of the gyration operator (Ungar, 2008) is given by

gyr[x; y]v = 	 K (x � K y) � K (x � K (y � K v)) (2)

Riemannian operations on hyperbolic space:We sum-
marize computations for the Poincaré ball model and the

Differentiating through the Fr échet Mean

hyperboloid model in Table 1.

3.3. Hyperbolic Neural Networks

Introduced in Ganea et al. (2018), hyperbolic neural net-
works provide a natural generalization of standard neural
networks.

Hyperbolic linear layer: Recall that a Euclidean linear
layer is de�ned asf : Rm ! Rn , f = � (Ax + b) where
A 2 Rn � m , x 2 Rm , b 2 Rn and� is some activation
function.

With analogy to Euclidean layers, a hyperbolic linear layer
g : Hm ! Hn is de�ned byg = � K;K (A
 K x � K b),
whereA 2 Rn � m , x 2 Hm , b 2 Hn , and we replace the
operations by hyperbolic counterparts outlined in Table 2.

Hyperbolic neural networks are de�ned as compositions of
these layers, similar to how conventional neural networks
are de�ned as compositions of Euclidean layers.

4. A Differentiable Fr échet Mean Operation
for General Riemannian Manifolds

In this section, we provide a few theorems that summarize
our method of differentiating through the Fréchet mean.

4.1. Background on the Fŕechet Mean

Fr échet mean and variance:On a Riemannian manifold
(M ; �), the Fŕechet mean� f r 2 M and Fŕechet variance
� 2

fr 2 R of a set of pointsB = f x (1) ; � � � ; x (t) g with each
x (l) 2 M are de�ned as the solution and optimal values of
the following optimization problem (Bacák, 2014):

� f r = arg min
� 2M

1
t

tX

l =1

d(x (l) ; �)2 (3)

� 2
fr = min

� 2M

1
t

tX

l =1

d(x (l) ; �)2 (4)

In Appendix A, we provide proofs to illustrate that this
de�nition is a natural generalization of Euclidean mean and
variance.

The Fŕechet mean can be further generalized with an ar-
bitrary re-weighting. In particular, for positive weights
f wl gl 2 [t], we can de�ne the weighted Fréchet mean as:

� f r = arg min
� 2M

tX

l =1

wl � d(x (l) ; �)2 (5)

This generalizes the weighted Euclidean mean to Rieman-
nian manifolds.

Figure 2. Depicted above is the Fréchet mean,� , of three points,
x1 ; x2 ; x3 in the Poincaŕe ball model of hyperbolic space,D2

� 1 , as
well as the negative gradients (shown in red) with respect to the
loss functionL = k� k2 .

4.2. Differentiating Through the Fréchet Mean

All known methods for computing the Fréchet mean rely
on some sort of iterative solver (Gu et al., 2019). While
backpropagating through such a solver is possible, it is com-
putationally inef�cient and suffers from numerical instabil-
ities akin to those found in RNNs (Pascanu et al., 2013).
To circumvent these issues, recent works compute gradi-
ents at the solved value instead of differentiating directly,
allowing for full neural network integration (Chen et al.,
2018; Pogan�cić et al., 2020). However, to the best of our
knowledge, no paper has investigated backpropagation on a
manifold-based convex optimization solver. Hence, in this
section, we construct the gradient, relying on the fact that
the Fŕechet mean is an argmin operation.

4.2.1. DIFFERENTIATING THROUGH THE ARGMIN

OPERATION

Motivated by previous works on differentiating argmin prob-
lems (Gould et al., 2016), we propose a generalization which
allows us to differentiate the argmin operation on the mani-
fold. The full theory is presented in Appendix D.

4.2.2. CONSTRUCTION OF THEFRÉCHET MEAN

DERIVATIVE

Since the Fŕechet mean is an argmin operation, we can apply
the theorems in Appendix D to obtain gradients with respect
to the input points. This operation (as well the resulting
gradients) are visualized in Figure 2.

Differentiating through the Fr échet Mean

For the following theorems, we denoteer as the total deriva-
tive (or Jacobian) for notational convenience.

Theorem 4.1. Let M be ann-dimensional Riemannian
manifold, and letf xg = (x (1) ; : : : ; x (t)) 2 (M)t be a set of
data points with weightsw1; : : : ; wt 2 R+ . Letf : (M)t �

M ! M be given byf (f xg; y) =
tP

l =1
wl � d(x (l) ; y)2 and

x = � f r (f xg) = arg min y2M f (f xg; y) be the Fŕechet
mean. Then with respect to local coordinates we have

er x (i) � f r (f xg) = � f Y Y (f xg; x) � 1f X (i) Y (f xg; x) (6)

where the functionsf X (i) Y (f xg; y) = er x (i) r y f (f xg; y)
andf Y Y (f xg; y) = r 2

yy f (f xg; x) are de�ned in terms of
local coordinates.

Proof. This is a special case of Theorem D.1 in the ap-
pendix. This is because the Fréchet objective functionf is
a twice differentiable real-valued function for speci�cx (i)

andy (under our geodesic formulation); thus we obtain the
desired formulation. The full explanation can be found in
Remark D.

While the above theorem gives a nice theoretical framework
with minimal assumptions, it is in practice too unwieldy to
apply. In particular, the requirement of local coordinates
renders most computations dif�cult. We now present a ver-
sion of the above theorem which assumes that the manifold
is embedded in Euclidean space4.

Theorem 4.2. Assume the conditions and values in Theo-
rem 4.1. Furthermore, assumeM is embedded (as a Rie-
mannian manifold) inRm with m � dim M , then we can
write

er x (i) � f r (f xg) = � f p
Y Y (f xg; x) � 1f p

X (i) Y (f xg; x) (7)

where f p
Y Y (f xg; y) = er y (proj Tx M �r y f)(f xg; y),

f p
X (i) Y (f xg; y) = er x (i) (proj Tx M �r y f)(f xg; y), and

projTx M : Rm ! Tx M �= Rn is the linear subspace
projection operator.

Proof. Similar to the relationship between Theorem 4.1 and
Theorem D.1, this is a special case of Theorem D.3 in the
appendix.

5. Hyperbolic Fréchet Mean

Although we have provided a formulation for differentiating
through the Fŕechet mean on general Riemannian manifolds,

4We also present a more general way to take the derivative that
drops this restriction via an exponential map-based parameteriza-
tion in Appendix D.

to properly integrate it in the hyperbolic setting we need to
address two major dif�culties:

1. The lack of a fast forward computation.

2. The lack of an explicit derivation of a backpropagation
formula.

Resolving these dif�culties will allow us to de�ne a Fréchet
mean neural network layer for geometric, and speci�cally
hyperbolic, machine learning tasks.

5.1. Forward Computation of the Hyperbolic Fréchet
Mean

Previous forward computations fall into one of two cat-
egories: (1) fast, inaccurate computations which aim to
approximate the true mean with a pseudo-Fréchet mean,
or (2) slow, exact computations. In this section we focus
on outperforming methods in the latter category, since we
strive to compute the exact Fréchet mean (pseudo-means
warp geometry).

5.1.1. FORMER ATTEMPTS AT COMPUTING THE

FRÉCHET MEAN

The two existing algorithms for Fréchet mean computation
are (1) Riemannian gradient-based optimization (Gu et al.,
2019) and (2) iterative averaging (Karcher, 1977). However,
in practice both algorithms are slow to converge even for
simple synthetic examples of points in hyperbolic space. To
overcome this dif�culty, which can cripple neural networks,
we propose the following algorithm that is much faster in
practice.

Algorithm 1 Poincaŕe model Fŕechet mean algorithm

Inputs: x (1) ; � � � ; x (t) 2 Dn
K � Rn +1 and weights

w1; : : : ; wt 2 R+ .
Algorithm :
y0 = x (1)

De�ne g(y) = 2 arccosh(1+2 y)p
y2 + y

for k = 0 ; 1; � � � ; T :
for l = 1 ; 2; � � � ; t:

� l = wl g
�

kx (l) � yk k2

(1+ K kx (l) k2)(1+ K kyk k2)

�
1

1+ K kx (l) k2

a =
tP

l =1
� l , b =

tP

l =1
� l x (l) , c =

tP

l =1
� l kx (l) k2

yk+1 =
�

(a� cK) �
p

(a� cK)2 +4 K �k bk2

2jK j�k bk2

�
b

returnyT

Differentiating through the Fr échet Mean

5.1.2. ALGORITHM FOR FRÉCHET MEAN

COMPUTATION VIA FIRST-ORDERBOUND

The core idea of our algorithm relies on the fact that the
square of distance metric is a concave function for both the
Poincaŕe ball and hyperboloid model. Intuitively, we select
an initial “guess” and use a �rst-order bound to minimize
the Fŕechet mean objective. The concrete algorithm for the
Poincaŕe ball model is given as Algorithm 1 above. Note
that the algorithm is entirely hyperparameter-free and does
not require setting a step-size. Additionally we introduce
three different initializations:

1. Settingy0 = x (1) .

2. Settingy0 = x (arg max i w i) .

3. Settingy0 to be the output of the �rst step of the
Karcher �ow algorithm (Karcher, 1977).

We tried these initializations for our test tasks (in which
weights were equal, tasks described in Section 6), and
found little difference between them in terms of perfor-
mance. Even for toy tasks with varying weights, these three
methods produced nearly the same results. However, we
give them here for completeness.

Moreover, we can prove that the algorithm is guaranteed to
converge.

Theorem 5.1. Let x (1) ; � � � ; x (t) 2 Dn
K bet points5 in the

Poincaŕe ball, w1; : : : ; wt 2 R+ be their weights, and let
their weighted Fŕechet mean be the solution to the following
optimization problem.

� f r = arg min
y2 Dn

K

f (y) (8)

wheref (y) =
tX

l =1

wl � dDn
K

(x (l) ; y)2

=
tX

l =1

wl

jK j
arccosh2

1 �
2K kx (l) � yk2

(1 + K kx (l) k2)(1 + K kyk2)

!

(9)
Then Algorithm 1 gives a sequence of pointsf yk g such that
their limit lim

k !1
yk = � f r converges to the Fréchet mean

solution.

Proof. See Theorem E.2 in the appendix.

The algorithm and proof of convergence for the hyperboloid
model are given in Appendix E.1 and are omitted here for
brevity.

5Here we present the version forK = � 1 for cleaner presen-
tation. The generalization to arbitraryK < 0 is easy to compute,
but clutters presentation.

5.1.3. EMPIRICAL COMPARISON TOPREVIOUS

FRÉCHET MEAN COMPUTATION ALGORITHMS

To demonstrate the ef�cacy of our algorithm, we com-
pare it to previous approaches on randomly generated data.
Namely, we compare against a na�̈ve Riemannian Gradi-
ent Descent (RGD) approach (Udrişte, 1994) and against
the Karcher Flow algorithm (Karcher, 1977). We test
our Fŕechet mean algorithm against these methods on syn-
thetic datasets of ten on-manifold randomly generated16-
dimensional points. We run all algorithms until they are
within � = 10 � 12 of the true Fŕechet mean in norm, and
report the number of iterations this takes in Table 3 for
both hyperboloid (H) and Poincaré (P) models of hyper-
bolic space. Note that we signi�cantly outperform the other
algorithms. We also observe that by allowing 200x more
computation, a grid search on the learning hyperparame-
ter6 in RGD obtains nearly comparable or better results
(last row of Table 3 for both models). However, we stress
that this requires much more computation, and note that
our algorithm produces nearly the same result while being
hyperparameter-free.

Table 3. Empirical computation of the Fréchet mean; the average
number of iterations, as well as runtime, required to become ac-
curate within� = 10 � 12 of the true Fŕechet mean are reported.
10 trials are conducted, and standard deviation is reported. The
primary baselines are the RGD (Udrişte, 1994) and Karcher Flow
(Karcher, 1977) algorithms. (H) refers to hyperboloid and (P)
refers to Poincaŕe.

.
Iterations Time (ms)7

H

RGD (lr = 0 :01) 801:0� 21:0 932:9� 130 :0

Karcher Flow 62:5� 6:0 50:9� 8:9

Ours 13:7� 0:9 6:1� 1:9

RGD + Grid Search onlr 27:7� 0:8 5333:5� 770 :7

P

RGD (lr = 0 :01) 773:8� 22:1 1157:3� 74:8

Karcher Flow 57:5� 9:1 59:8� 10:4

Ours 13:4� 0:5 9:1� 1:3

RGD + Grid Search onlr 10:5� 0:5 6050:6� 235 :2

We also �nd that this convergence improvement translates
to real world applications. Speci�cally, we �nd that for the
graph link prediction experimental setting in Section 6.1.3,
our forward pass takes anywhere from� 15� 25 iterations,
signi�cantly outperforming the1000+ needed with RGD
and� 120needed with Karcher Flow.

6The grid search starts fromlr = 0 :2 and goes tolr = 0 :4 in
increments of0:01 for the Poincaŕe ball model, and fromlr = 0 :2
to 0:28 for the hyperboloid model (same increment).

7Experiments were run with an Intel Skylake Core i7-6700HQ
2.6 GHz Quad core CPU.

Differentiating through the Fr échet Mean

5.2. Backward Computation of the Hyperbolic Fréchet
Mean

For the backward computation, we re-apply the general Rie-
mannian theory for differentiating through the Fréchet mean
in Section 4 to hyperbolic space. Since most autodiffer-
entiation packages do not support manifold-aware higher
order differentiation, we derive the gradients explicitly. We
begin with the Poincaré ball model by settingM = Dn

K
and applying Theorem 4.2.

Theorem 5.2. Let x (1) ; � � � ; x (t) 2 Dn
K � Rn bet points

in the Poincaŕe ball andw1; : : : ; wt 2 R+ be the weights.
Let their weighted Fŕechet mean� f r be solution to the
following optimization problem

� f r (x (1) ; � � � ; x (t)) = arg min
y2 Dn

K

f (f xg; y) (10)

wheref (f xg; y) =
tX

l =1

wl � dDn
K

(x (l) ; y)2 =

tX

l =1

wl

jK j
arccosh2

1 �
2K jjx (l) � yjj2

2

(1 + K jjx (l) jj2
2)(1 + K jjyjj2

2)

!

(11)
Then the derivative of� f r with respect tox (i) is given by

er x (i) � f r (f xg) = � f Y Y f (f xg; x) � 1f X (i) Y (f xg; x)
(12)

wherex = � f r (f xg) andf Y Y , f X (i) Y are de�ned in Theo-
rem 4.28.

The full concrete derivation of the above terms for the geom-
etry induced by this manifold choice is given in Appendix
Theorem F.3.

Proof. This is a concrete application of Theorem 4.2. In
particular since our manifold is embedded inRn (Dn

K �
Rn). Note that this is the total derivative in the ambient
Euclidean space9. For the full proof see Theorem F.3 in the
Appendix.

The derivation for the hyperboloid model is given in Ap-
pendix F.2.

6. Case Studies

To demonstrate the ef�cacy of our developed theory, we
investigate the following test settings. In the �rst setting, we
directly modify the hyperbolic aggregation strategy in Hy-
perbolic GCNs (Chami et al., 2019) to use our differentiable

8The projection operation is trivial sincedim Rn = dim Dn
K .

9To transform Euclidean gradients into Riemannian ones, sim-
ply multiply by inverse of the matrix of the metric.

Fréchet mean layer. This was the original intent10 but was
not feasible without our formulation. In the second setting,
we introduce Hyperbolic Batch Normalization (HBN) as
an extension of the regular Euclidean Batch Normalization
(EBN). When combined with hyperbolic neural networks
(Ganea et al., 2018), HBN exhibits bene�ts similar to those
of EBN with Euclidean networks.

6.1. Hyperbolic Graph Convolutional Neural Networks
(HGCNs)

6.1.1. ORIGINAL FRAMEWORK

Introduced in Chami et al. (2019), Hyperbolic Graph Con-
volutional Networks (GCNs) provide generalizations of Eu-
clidean GCNs to hyperbolic space. The proposed network
architecture is based on three different layer types: feature
transformation, activation, and attention-based aggregation.

Feature transformation: The hyperbolic feature transfor-
mation consists of a gyrovector matrix multiplication fol-
lowed by a gyrovector addition.

hl
i = (W l
 K l � 1 x l � 1

i) � K l � 1 bl (13)

Attention-based aggregation:Neighborhood aggregation
combines local data at a node. It does so by projecting the
neighbors using the logarithmic map at the node, averaging
in the tangent space, and projecting back with the exponen-
tial map at the node. Note that the weightswij are positive
and can be trained or de�ned by the graph adjacency matrix.

AGGK (x i) = exp K
x i

0

@
X

j 2N (i)

wij logK
x i

x j

1

A (14)

Activation: The activation layer applies a hyperbolic acti-
vation function.

x l
i = �
 K l � 1 ;K l (yl

i) (15)

6.1.2. PROPOSEDCHANGES

The usage of tangent space aggregation in the HGCN frame-
work stemmed from the lack of a differentiable Fréchet
mean operation. As a natural extension, we substitute our
Fréchet mean in place of the aggregation layer.

6.1.3. EXPERIMENTAL RESULTS

We use precisely the same architecture as in Chami et al.
(2019), except we substitute all hyperbolic aggregation lay-
ers with our differentiable Fréchet mean layer. Furthermore,

10We quote directly from the paper Chami et al. (2019): “An
analog of mean aggregation in hyperbolic space is the Fréchet
mean, which, however, has no closed form solution. Instead, we
propose to...”

Differentiating through the Fr échet Mean

we test with precisely the same hyperparameters (learning
rate, test/val split, and the like) as Chami et al. (2019) for a
fair comparison. Our new aggregation allows us to achieve
new state-of-the-art results on the Disease and Disease-M
graph datasets (Chami et al., 2019). These datasets induce
ideal test tasks for hyperbolic learning since they have very
low Gromov� -hyperbolicity (Adcock et al., 2013), which
indicates the structure is highly tree-like. Our results and
comparison to the baseline are given in Table 4. We run
experiments for 5 trials and report the mean and standard
deviation. Due to practical considerations, we only test with
the Poincaŕe model11. For reference, the strongest base-
line results with the hyperboloid model are reported from
Chami et al. (2019) (note that we outperform these results as
well). On the rather non-hyperbolic CoRA (Sen et al., 2008)
dataset, our performance is comparable to that of the best
baseline. Note that this is similar to the performance exhib-
ited by the vanilla HGCN. Hence we conjecture that when
the underlying dataset is not hyperbolic in nature, we do
not observe improvements over the best Euclidean baseline
methods.

Table 4. ROC AUC results for Link Prediction (LP) on various
graph datasets, averaged over 5 trials (with standard deviations).
Graph hyperbolicity values are also reported (lower� is more
hyperbolic). Results are given for models learning in Euclidean
(E), Hyperboloid (H), and Poincaré (P) spaces. Note that the best
Euclidean method is GAT (Veli�cković et al., 2018) and is shown
below for fair comparison on CoRA. We highlight the best result
only if our result gives a p-value< 0:01 after running a paired-
signi�cance t-test.

Disease Disease-M CoRA
� = 0 � = 0 � = 11

E MLP 72:6� 0:6 55:3� 0:5 83:1� 0:5

GAT 69:8� 0:3 69:5� 0:4 93:7� 0:1

H HNN 75:1� 0:3 60:9� 0:4 89:0� 0:1

HGCN 90:8� 0:3 78:1� 0:4 92:9� 0:1

P HGCN 76:4� 8:9 81:4� 3:4 93:4� 0:4

Ours 93:7� 0:4 91:0� 0:6 92:9� 0:4

6.2. Hyperbolic Batch Normalization

Euclidean batch normalization (Ioffe & Szegedy, 2015) is
one of the most widely used neural network operations that
has, in many cases, obviated the need for explicit regulariza-
tion such as dropout (Srivastava et al., 2014). In particular,
analysis demonstrates that batch normalization induces a
smoother loss surface which facilitates convergence and

11The code for HGCN included only the Poincaré model imple-
mentation at the time this paper was submitted. Hence we use the
Poincaŕe model for our experiments, although our contributions
include derivations for both hyperboloid and Poincaré models.

yields better �nal results (Santurkar et al., 2018). Generaliz-
ing this for Riemannian manifolds is a natural extension, and
such a computation would involve a differentiable Fréchet
mean.

6.2.1. THEORETICAL FORMULATION AND ALGORITHM

In this section we formulate Riemannian Batch Normal-
ization as a natural extension of standard Euclidean Batch
Normalization. This concept is, to the best of our knowl-
edge, only touched upon by Brooks et al. (2019) in the
speci�c instance of the manifold of positive semide�nite
matrices. However, we argue in Appendix G that, unlike our
method, their formulation is incomplete and lacks suf�cient
generality to be considered a true extension.

Algorithm 2 Riemannian Batch Normalization

Training Input : Batches of data pointsf x (t)
1 ; � � � ; x (t)

m g �
M for t 2 [1; : : : ; T], testing momentum� 2 [0; 1]
Learned Parameters: Target mean� 0 2 M , target vari-
ance(� 0)2 2 R
Training Algorithm :
� test FrechetMean(f x (1)

1 ; : : : ; x (1)
m g)

� test 0
for t = 1 ; : : : ; T :

� = FrechetMean(f x (t)
1 ; : : : ; x (t)

m g)

� 2 = 1
m

mP

i =1
d(x (t)

i ; �)2

� test = FrechetMean(f � test ; � g; f �; 1 � � g)
� test = (t � 1) � test + �

t
for i = 1 ; � � � ; m:

~x i
(t) exp� 0

�
� 0

� PT� ! � 0(log� x (t)
i)

�

return normalized batch~x1
(t) ; � � � ; ~xm

(t)

Testing Input: Test data pointsf x1; � � � ; xsg � M , �nal
running mean� test and running variance� test

Testing Algorithm:
� = FrechetMean(f x1; � � � ; xsg)

� 2 = 1
m

mP

i =1
d(x i ; �)2

for i = 1 ; � � � ; s:
~x i exp� test

�
� test

� PT� ! � test (log� x i)
�

return normalized batch~x1; � � � ; ~xs

Our full algorithm is given in Algorithm 2. Note that in
practice we use

p
� 2 + � in place of� as in the original

formulation to avoid division by zero.

6.2.2. EXPERIMENTAL RESULTS

We apply Riemannian Batch Normalization (speci�cally
for hyperbolic space) to the encoding Hyperbolic Neural
Network (HNN) (Ganea et al., 2018) in the framework of

Differentiating through the Fr échet Mean

Figure 3.The graphs above correspond to a comparison of the HNN baseline, which uses a two-layer hyperbolic neural network encoder,
and the baseline augmented with hyperbolic batch normalization after each layer. The columns correspond to the CoRA (Sen et al., 2008),
Disease (Chami et al., 2019), and Disease-M (Chami et al., 2019) datasets, respectively. The top row shows the comparison in terms of
validation loss, and the bottom row shows the comparison in terms of validation ROC AUC. The �gures show that we converge faster and
attain better performance in terms of both loss and ROC. Note that although CoRA is not hyperbolic (as previously mentioned), we �nd it
encouraging that introducing hyperbolic batch normalization produces an improvement regardless of dataset hyperbolicity.

Chami et al. (2019). We run on the CoRA (Sen et al., 2008),
Disease (Chami et al., 2019), and Disease-M (Chami et al.,
2019) datasets and present the validation loss and ROC AUC
diagrams in Figure 3.

In terms of both loss and ROC, our method results in both
faster convergence and a better �nal result. These improve-
ments are expected as they appear when applying standard
batch normalization to Euclidean neural networks. So, our
manifold generalization does seem to replicate the useful
properties of standard batch normalization. Additionally,
it is encouraging to see that, regardless of the hyperbolic
nature of the underlying dataset, hyperbolic batch normal-
ization produces an improvement when paired with a hyper-
bolic neural network.

7. Conclusion and Future Work

We have presented a fully differentiable Fréchet mean opera-
tion for use in any differentiable programming setting. Con-
cretely, we introduced differentiation theory for the general
Riemannian case, and for the demonstrably useful case of
hyperbolic space, we provided a fast forward pass algorithm
and explicit derivative computations. We demonstrated that
using the Fŕechet mean in place of tangent space aggrega-
tion yields state-of-the-art performance on link prediction
tasks in graphs with tree-like structure. Additionally, we ex-

tended batch normalization (a standard Euclidean operation)
to the realm of hyperbolic space. On a graph link prediction
test task, we showed that hyperbolic batch normalization
gives bene�ts similar to those experienced in the Euclidean
setting.

We hope our work paves the way for future developments in
geometric representation learning. Potential future work can
focus on speeding up our computation of the Fréchet mean
gradient, �nding applications of our theory on manifolds
beyond hyperbolic space, and applying the Fréchet mean to
generalize more standard neural network operations.

8. Acknowledgements

We would like to acknowledge Horace He for his helpful
comments regarding implementation. In addition, we would
like to thank Facebook AI for funding equipment that made
this work possible.

References

Adcock, A. B., Sullivan, B. D., and Mahoney, M. W. Tree-
like structure in large social and information networks.
2013 IEEE 13th International Conference on Data Min-
ing, pp. 1–10, 2013.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,

