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Abstract

Recent advances in deep representation learning
on Riemannian manifolds extend classical deep
learning operations to better capture the geom-
etry of the manifold. One possible extension is
the Fréchet mean, the generalization of the Eu-
clidean mean; however, it has been difficult to
apply because it lacks a closed form with an eas-
ily computable derivative. In this paper, we show
how to differentiate through the Fréchet mean
for arbitrary Riemannian manifolds. Then, fo-
cusing on hyperbolic space, we derive explicit
gradient expressions and a fast, accurate, and
hyperparameter-free Fréchet mean solver. This
fully integrates the Fréchet mean into the hyper-
bolic neural network pipeline. To demonstrate
this integration, we present two case studies. First,
we apply our Fréchet mean to the existing Hyper-
bolic Graph Convolutional Network, replacing its
projected aggregation to obtain state-of-the-art re-
sults on datasets with high hyperbolicity. Second,
to demonstrate the Fréchet mean’s capacity to gen-
eralize Euclidean neural network operations, we
develop a hyperbolic batch normalization method
that gives an improvement parallel to the one ob-
served in the Euclidean setting'.

1. Introduction

Recent advancements in geometric representation learning
have utilized hyperbolic space for tree embedding tasks
(Nickel & Kiela, 2017; 2018; Yu & De Sa, 2019). This is
due to the natural non-Euclidean structure of hyperbolic
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Figure 1. Depicted above is the Fréchet mean, p, of three points,
r1, 22,23 in the Lorentz model of hyperbolic space. As one
can see, the Fréchet mean conforms with the geometry of the
hyperboloid and is vastly different from the standard Euclidean
mean.

space, in which distances grow exponentially as one moves
away from the origin. Such a geometry is naturally equipped
to embed trees, since if we embed the root of the tree near
the origin and layers at successive radii, the geometry of hy-
perbolic space admits a natural hierarchical structure. More
recent work has focused specifically on developing neu-
ral networks that exploit the structure of hyperbolic space
(Ganea et al., 2018; Tifrea et al., 2019; Chami et al., 2019;
Liu et al., 2019).

A useful structure that has thus far not been generalized
to non-Euclidean neural networks is that of the Euclidean
mean. The (trivially differentiable) Euclidean mean is nec-
essary to perform aggregation operations such as attention
(Vaswani et al., 2017), and stability-enhancing operations
such as batch normalization (Ioffe & Szegedy, 2015), in the
context of Euclidean neural networks. The Euclidean mean
extends naturally to the Fréchet mean in non-Euclidean ge-
ometries (Fréchet, 1948). However, unlike the Euclidean
mean, the Fréchet mean does not have a closed-form solu-
tion, and its computation involves an argmin operation that
cannot be easily differentiated. This makes the important
operations we are able to perform in Euclidean space hard to
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generalize to their non-Euclidean counterparts. In this paper,
we extend the methods in Gould et al. (2016) to differentiate
through the Fréchet mean, and we apply our methods to
downstream tasks. Concretely, our paper’s contributions are
that:

* We derive closed-form gradient expressions for the
Fréchet mean on Riemannian manifolds.

 For the case of hyperbolic space, we present a novel
algorithm for quickly computing the Fréchet mean and
a closed-form expression for its derivative.

* We use our Fréchet mean computation in place of the
neighborhood aggregation step in Hyperbolic Graph
Convolution Networks (Chami et al., 2019) and achieve
state-of-the-art results on graph datasets with high hy-
perbolicity.

* We introduce a fully differentiable Riemannian batch
normalization method which mimics the procedure and
benefit of standard Euclidean batch normalization.

2. Related Work

Uses of Hyperbolic Space in Machine Learning. The us-
age of hyperbolic embeddings first appeared in Kleinberg
(2007), in which the author uses them in a greedy embedding
algorithm. Later analyses by Sarkar (2011) and Sala et al.
(2018) demonstrate the empirical and theoretical improve-
ment of this approach. However, only recently in Nickel &
Kiela (2017; 2018) was this method extended to machine
learning. Since then, models such as those in Ganea et al.
(2018); Chami et al. (2019); Liu et al. (2019) have leveraged
hyperbolic space operations to obtain better embeddings
using a hyperbolic version of deep neural networks.

Fréchet Mean. The Fréchet mean (Fréchet, 1948), as the
generalization of the classical Euclidean mean, offers a
plethora of applications in downstream tasks. As a math-
ematical construct, the Fréchet mean has been thoroughly
studied in texts such as Karcher (1977); Charlier (2013);
Bacdk (2014).

However, the Fréchet mean is an operation not without com-
plications; the general formulation requires an argmin oper-
ation and offers no closed-form solution. As a result, both
computation and differentiation are problematic, although
previous works have attempted to resolve such difficulties.

To address computation, Gu et al. (2019) show that a Rie-
mannian gradient descent algorithm recovers the Fréchet
mean in linear time for products of Riemannian model
spaces. However, without a tuned learning rate, it is too
hard to ensure performance. Brooks et al. (2019) instead
use the Karcher Flow Algorithm (Karcher, 1977); although
this method is manifold-agnostic, it is slow in practice. We

address such existing issues in the case of hyperbolic space
by providing a fast, hyperparameter-free algorithm for com-
puting the Fréchet mean.

Some works have addressed the differentiation issue by
circumventing it, instead relying on pseudo-Fréchet means.
In Law et al. (2019), the authors utilize a novel squared
Lorentzian distance (as opposed to the canonical distance
for hyperbolic space) to derive explicit formulas for the
Fréchet mean in pseudo-hyperbolic space. In Chami et al.
(2019), the authors use an aggregation method in the tangent
space as a substitute. Our work, to the best of our knowledge,
is the first to provide explicit derivative expressions for the
Fréchet mean on Riemannian manifolds.

Differentiating through the argmin. Theoretical founda-
tions of differentiating through the argmin operator have
been provided in Gould et al. (2016). Similar methods
have subsequently been used to develop differentiable opti-
mization layers in neural networks (Amos & Kolter, 2017;
Agrawal et al., 2019).

Given that the Fréchet mean is an argmin operation, one
might consider utilizing the above differentiation techniques.
However, a naive application fails, as the Fréchet mean’s
argmin domain is a manifold, and Gould et al. (2016) deals
specifically with Euclidean space. Our paper extends this
theory to the case of general Riemannian manifolds, thereby
allowing the computation of derivatives for more general
argmin problems, and, in particular, for computing the
derivative of the Fréchet mean in hyperbolic space.

3. Background

In this section, we establish relevant definitions and formu-
las of Riemannian manifolds and hyperbolic spaces. We
also briefly introduce neural network layers in hyperbolic
space.

3.1. Riemannian Geometry Background

Here we provide some of the useful definitions from Rie-
mannian geometry. For a more in-depth introduction, we
refer the interested reader to our Appendix C or texts such
as Lee (2003) and Lee (1997).

Manifold and tangent space: An n-dimensional manifold
M is a topological space that is locally homeomorphic to
R". The tangent space TxM at X is defined as the vec-
tor space of all tangent vectors at X and is isomorphic to
R". We assume our manifolds are smooth, i.e. the maps
are diffeomorphic. The manifold admits local coordinates

gent space.

Riemannian metric and Riemannian manifold: For a
manifold M, a Riemannian metric = ( x)x2m i8S a
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Table 1.Summary of operations in the Poinédrall model and the hyperboloid mod&l € 0)

Poincaré Ball Hyperboloid
Manifold D = fx2R":hxip < g HR = fx 2 R™ :hgxip = 29
Metric g2« =( K)?gF where K = m andgf = | W« = where isl except o= 1
. K k2 .
Distance ds (x;y) = p% cosh ' 1 @K Ekag))((lr KKykD) ds (x;y) = P% cosh Y(K hx;yiL)
Exp map expk (v) = x tanh " jKjokve p v expk (v) = cosh(IO K vijL)x + v K Vi)
« 2 K jkvks t i Vil
Logmap logt (y) = P—2— tanh l(IO Kk x ko) XY Jogf (y) = S0 KMV g peyi x)
g p Ox (Y m5 Il K YK2) i~ K YKz Ox (Y sinh(cosh 1(Khx;yi._)) y Yo
K i
Transport PTS y(V)= —ayrly; xlv PTS y(W) =V ihal—(x+Y)

Table 2.Summary of hyperbolic counterparts of Euclidean operations in neural networks

Operation Formula
Matrix-vector multiplication A X x = expX (A logh (x))
Bias translation x K b=exp (PTE ()
Activation function KiKz(x) = expgt( (logh2(x)))

smooth collection of inner productg : TyM T,M! R local geometry fronx to y along the unique geodesic that
on the tangent space of evexy2 M . The resulting preserves the metric tensors.
pair (M ; ) is called a Riemannian manifold. Note that

inducgs a norm in each tangent spdgé/ , given by  3.2. Hyperbolic Geometry Background

kvk = x(¥; %) for anyv 2 TyM . We oftentimes as- . _ _
sociate to its matrix form( ;) where j = (dx;;dx;) We now examine hyperbolic space, which has constant

when given local coordinates. curvatureK < 0, and provide concrete formulas for
computation. The two equivalent models of hyperbolic

Geodesics and induced distance functionfor a curve  space frequently used are the Poirgchall model and the

[a;bf ' M, we de ne the length of tobeL( ) =  hyperboloid model. We denot®} andH} as then-

b At) dt. Forx;y 2 M, the distanced(x;y) = dimensional Poincérball and hyperboloid models with

a .
inf L( ) where isanycurvesuchthat(a) = x; (b= y. curvatureK < O, respectively.

A geodesic ,, from x toy, in our context, should be
thought of as a curve that minimizes this lerfgth 3.2.1. BasIC OPERATIONS

Exponential and logarithmic map: For each poink 2 Inner products: We de nehx;yi, to be the standard Eu-

M and vectow 2 T, M , there exists a unique geodesic  clidean inner product anigk; yi, to be the Lorentzian inner

[0;1]!'M where (0) = x; 90) = v. The exponential product XoYo + X1y1+  + XnpYn.

map exp, - TxM : M is de _ned asexp(v) = (1). Gyrovector operations: Forx;y 2 Dy , the Mobius addi-

Note that this is an isometry, i.évk = d(X;exp(¥)). i (Ungar, 2008) is

The logarithmic magpog, : M! T¢M is de ned as the ' , ,

inverse ofexp, , although this can only be de ned locatly « y= 1 2Khyia Kkyky)x +(1+ Kkxk3)y
KYy=

v 2,102

Parallel transport: Forx;y 2 M , the parallel transport 1 2Khqyis + K2kxkykyk; 1
PTu y:TxM!  TyM de nes away of transporting the @)
2Formally, geodesics are curves with 0 acceleration w.r.t theThis Induces Nsbius subtraction « which is de ned as
Levi-Civita connection. There are geodesics which are not miniX KY=X k . In the theory of gyrogroups, the notion
mizing curves, such as the larger arc between two points on a gre&f the gyration operator (Ungar, 2008) is given by
circle of a sphere; hence this clari cation is important. . _

3Problems in de nition arise in the case of conjugate points ybiylv= kX ky) kX kly «V) (2
(Lee, 1997). Howeveexpis a local diffeomorphism by the inverse | . ) .
function theorem. Riemannian operations on hyperbolic spaceWe sum-

marize computations for the Poinédball model and the
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hyperboloid model in Table 1.

3.3. Hyperbolic Neural Networks

Introduced in Ganea et al. (2018), hyperbolic neural net-
works provide a natural generalization of standard neural
networks.

Hyperbolic linear layer: Recall that a Euclidean linear
layerisdenedad : R™! R",f = (Ax + b) where
A2R" ™ x2R" b2 R"and is some activation
function.

With analogy to Euclidean layers, a hyperbolic linear layer
g:H™! H"isdenedbyg= KK (A Kx Kp),
whereA 2 R" M x 2 H™, b2 H", and we replace the
operations by hyperbolic counterparts outlined in Table 2.

Hyperbolic neural networks are de ned as compositions of

these layers, similar to how conventional neural networks ) . .
are de ned as compositions of Euclidean layers Figure 2. Depicted above is the Echet mean, , of three points,
X1;X2; X3 in the Poincak ball model of hyperbolic spac,2 1,as

) . } . well as the negative gradients (shown in red) with respect to the
4. A Differentiable Fréchet Mean Operation loss functionL = k k.

for General Riemannian Manifolds

In this section, we provide a few theorems that summarize
our method of differentiating through the&ehet mean. 4.2. Differentiating Through the Fréchet Mean
4.1. Background on the Fchet Mean All known methods for computing the &chet mean rely

. i ) ) ) on some sort of iterative solver (Gu et al., 2019). While
Frechet mean and variance:On a Riemannian manifold - packpropagating through such a solver is possible, it is com-
(M ), the Fechet meany, 2 M and Féchet variance ptationally inef cient and suffers from numerical instabil-

2 H — 1) . . H .. . .

% 2 Rofasetofpoint8 = fx®;  ;x(Ugwith each jiies akin to those found in RNNs (Pascanu et al., 2013).
x() 2 M are de ned as the solution and optimal values of To circumvent these issues, recent works compute gradi-
the following optimization problem (Béd, 2014): ents at the solved value instead of differentiating directly,

allowing for full neural network integration (Chen et al.,

1 X 2018; Pogaaic et al., 2020). However, to the best of our
f =argmin = d(x®; )2 (3)  knowledge, no paper has investigated backpropagation on a
amt I=1 manifold-based convex optimization solver. Hence, in this
1 X section, we construct the gradient, relying on the fact that
2 = mzlv&l T d(x®: H)? (4) the Féchet mean is an argmin operation.
1=
4.2.1. DFFERENTIATING THROUGH THE ARGMIN
In Appendix A, we provide proofs to illustrate that this OPERATION
de nition is a natural generalization of Euclidean mean and
variance. Motivated by previous works on differentiating argmin prob-

i ) ) lems (Gould et al., 2016), we propose a generalization which
The Fechet mean can be further generalized with an ary|jows us to differentiate the argmin operation on the mani-

bitrary re-weighting. In particular, for positive weights fo|d. The full theory is presented in Appendix D.
fwig, . we can de ne the weighted Echet mean as:
4.2.2. ®NSTRUCTION OF THEFRECHET MEAN

Xt
fr =argmin W d(x('); )2 (5) DERIVATIVE
2M

I=1 Since the Fechet mean is an argmin operation, we can apply

the theorems in Appendix D to obtain gradients with respect

This generalizes the weighted Euclidean mean to Riemare the input points. This operation (as well the resulting
nian manifolds. gradients) are visualized in Figure 2.
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For the following theorems, we denafeas the total deriva- to properly integrate it in the hyperbolic setting we need to
tive (or Jacobian) for notational convenience. address two major dif culties:

Theorem 4.1. Let M be ann-dimensional Riemannian

1. The lack of a fast forward computation.

5)
MIM begivenby (fxg;y)= w d(x®;y)?and S .
I=1 2. The lack of an explicit derivation of a backpropagation
X = (fxg) = argmin,y, f(fxg;y) be the Fechet formula.
mean. Then with respect to local coordinates we have

By (Fxg) = fyy (fxg:X) fyov(fxg;X) (6)  Resolving these dif culties will allow us to de ne a Bchet
mean neural network layer for geometric, and speci cally

where the functiony )y (fxg;y) = €, r yf (Fxg;y) hyperbolic, machine learning tasks.

andfvy (fxg;y)=r §yf (fxg;X) are de ned in terms of
local coordinates. 5.1. Forward Computation of the Hyperbolic Fréchet

Mean

Proof. This is a special case of Theorem D.1 in the apprevious forward computations fall into one of two cat-

pendix. This is because thedghet objective functiofi is egories: (1) fast, inaccurate computations which aim to

a twice differentiable real-valued function for speck¢ approximate the true mean with a pseudédfet mean,

andy (under our geodesic formulation); thus we obtain theg, (2) slow, exact computations. In this section we focus

desired formulation. The full explanation can be found ingp, outperforming methods in the latter category, since we

Remark D. L strive to compute the exact&het mean (pseudo-means
warp geometry).

While the above theorem gives a nice theoretical framework

with minimal assumptions, it is in practice too unwieldy to 5.1.1. FORMERATTEMPTS AT COMPUTING THE

apply. In particular, the requirement of local coordinates FRECHET MEAN

renders most computations dif cult. We now present a ver-

sion of the above theorem which assumes that the manifoldne two existing algorithms for Echet mean computation
is embedded in Euclidean spéce are (1) Riemannian gradient-based optimization (Gu et al.,

2019) and (2) iterative averaging (Karcher, 1977). However,

Theorem 4.2. Assume the condit_ions and values in Theo-m practice both algorithms are slow to converge even for
rem 4.1. Furthermore, assuni¢ is embedded (as a Rie-

) . LT i simple synthetic examples of points in hyperbolic space. To
m:.atnman manifold) irR™ withm — dimM , then we can o\ arcome this dif culty, which can cripple neural networks,
write

we propose the following algorithm that is much faster in
_ P con lep L practice.
'ex(l) fr (fXg)— fYY(fngX) fx(i)y(fxglx) (7)

Algorithm 1 Poincaé model Fechet mean algorithm

where P, (fxg: = €y(projr.y r vE)FXg:y),
D YY_( g_y) ¥(p ITem Ty ),( 9:y) Inputs: x®; ;x® 2 D R"*1 and weights
fxoy(fxg:y) = €orojru 1 yf)(fxgsy), and — F0 0 .
projr.y : R™ ! TxM = R" is the linear subspace .’ "'~ '
ot ¢ Algorithm :
projection operator. Vo = x®
- 2arc&sh(1+2 y)
Proof. Similar to the relationship between Theorem 4.1 andDe ne g(y) y2+y
Theorem D.1, this is a special case of Theorem D.3inthéork =0;1; ;T
appendix. 0 forl=1;2, ;t:
_ kx () y k2 1
) ; 1= WO @k kx(')kz)(l:- KKygkZ) 1+ K kx(DkZ
5. Hyperbolic Frechet Mean . = . P O o P Ok
Although we have provided a formulation for differentiating =1 I= ’ I=1
through the Fechet mean on general Riemannian manifolds, _ (a cK)  (a cK)Z+4K kbk?
Yisr = 2K Tk Bk b

“We also present a more general way to take the derivative th%turnyT
drops this restriction via an exponential map-based parameteriza
tion in Appendix D.
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5.1.2. ALGORITHM FOR FRECHET MEAN
COMPUTATION VIA FIRST-ORDERBOUND

5.1.3. BuPIRICAL COMPARISON TOPREVIOUS
FRECHET MEAN COMPUTATION ALGORITHMS

The core idea of our algorithm relies on the fact that theTo demonstrate the ef cacy of our algorithm, we com-

square of distance metric is a concave function for both theare it to previous approaches on randomly generated data.

Poincaé ball and hyperboloid model. Intuitively, we select Namely, we compare against a've Riemannian Gradi-

an initial “guess” and use a rst-order bound to minimize ent Descent (RGD) approach (Ustd, 1994) and against

the Fechet mean objective. The concrete algorithm for thehe Karcher Flow algorithm (Karcher, 1977). We test

Poincaé ball model is given as Algorithm 1 above. Note our Fiechet mean algorithm against these methods on syn-

that the algorithm is entirely hyperparameter-free and doethetic datasets of ten on-manifold randomly generatd

not require setting a step-size. Additionally we introducedimensional points. We run all algorithms until they are

three different initializations: within = 10 2 of the true Fechet mean in norm, and
report the number of iterations this takes in Table 3 for

1. Settingyo = x®. both hyperboloid (H) and Poindar(P) models of hyper-
) » bolic space. Note that we signi cantly outperform the other
2. Settingyo = x(@8max W), algorithms. We also observe that by allowing 200x more

computation, a grid search on the learning hyperparame-
ter® in RGD obtains nearly comparable or better results

(last row of Table 3 for both models). However, we stress

that this requires much more computation, and note that
ur algorithm produces nearly the same result while being

yperparameter-free.

3. Settingyo to be the output of the rst step of the
Karcher ow algorithm (Karcher, 1977).

We tried these initializations for our test tasks (in which
weights were equal, tasks described in Section 6), ana
found little difference between them in terms of perfor-

mance. Even for toy tasks with varying weights, these three
methods produced nearly the same results. However, we

give them here for completeness.

Moreover, we can prove that the algorithm is guaranteed t

converge.

Theorem 5.1. Letx®;  ;x(® 2 D} bet points in the
Poinca ball,wy;:::;w; 2 R* be their weights, and let
their weighted Fechet mean be the solution to the following
optimization problem.

fr = argmin f (y)

y2Dp (8)
wheref (y) = w dpy (x(V;y)?
=1 |
X w 2K kx() yk?2 .
Ky s L+ KkxWK2)(L+ K kyk?)
9)
Then Algorithm 1 gives a sequence of pointgg such that
their limit kI|i1rn Yk = ¢ converges to the [echet mean
solution.

Proof. See Theorem E.2 in the appendix.

The algorithm and proof of convergence for the hyperboloidand 120needed with Karcher Flow.
"

model are given in Appendix E.1 and are omitted here fo
brevity.

®Here we present the version fiir = 1 for cleaner presen-
tation. The generalization to arbitraky< 0 is easy to compute,
but clutters presentation.

Table 3. Empirical computation of the Echet mean; the average
number of iterations, as well as runtime, required to become ac-

Qurate within = 10 2 of the true Fechet mean are reported.

10 trials are conducted, and standard deviation is reported. The
primary baselines are the RGD (Ugtg, 1994) and Karcher Flow
(Karcher, 1977) algorithms. (H) refers to hyperboloid and (P)
refers to Poincd.

lterations  Time (m<)
RGD (r =0:01) 8010 21:0 9329 13000
- Karcher Flow 62:5 60 50:9 s:9
Ours 13:7 o9 6:1 19
RGD + Grid Search ofr 277 os 53335 770:7
RGD (r =0:01) 7738 22:1 11573 7a8
o Karcher Flow 575 91 59:8 10:4
Ours 13:4 os 9:1 13
RGD + Grid Search ofr 105 o5 60506 235:2

We also nd that this convergence improvement translates

to real world applications. Speci cally, we nd that for the
graph link prediction experimental setting in Section 6.1.3,
our forward pass takes anywhere froml5 25iterations,
signi cantly outperforming thel000+ needed with RGD

5The grid search starts from = 0:2 and goes tdr = 0:4in
increments 0D:01 for the Poincak ball model, and fronr = 0:2
to 0:28 for the hyperboloid model (same increment).
"Experiments were run with an Intel Skylake Core i7-6700HQ
2.6 GHz Quad core CPU.
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5.2. Backward Computation of the Hyperbolic Frechet ~ Fréchet mean layer. This was the original int€iut was
Mean not feasible without our formulation. In the second setting,

. . we introduce Hyperbolic Batch Normalization (HBN) as
For the backward computation, we re-apply the general Rlev—v I " yp ! ization ( )

. . o ! an extension of the regular Euclidean Batch Normalization
mannian theory for differentiating through theeEhet mean g

. . . . ... (EBN). When combined with hyperbolic neural networks
in Section 4 to hyperbolic space. Since most EwtOd"’-rer'Ganea et al., 2018), HBN exhibits bene ts similar to those

entiation packages do not support manifold-aware highe f EBN with Euclidean networks.
order differentiation, we derive the gradients explicitly. We
begin with the Poincér ball model by settindd = Dy
and applying Theorem 4.2.

Theorem 5.2. Letx®;  ;x(V 2 D} R" bet points
in the Poincaé ball andwy;:::;w; 2 R* be the weights. ©-1-1. QRIGINAL FRAMEWORK

Let their weighted Fechet mean + be solution to the  |pyroduced in Chami et al. (2019), Hyperbolic Graph Con-
following optimization problem volutional Networks (GCNs) provide generalizations of Eu-
clidean GCNs to hyperbolic space. The proposed network
architecture is based on three different layer types: feature
transformation, activation, and attention-based aggregation.

6.1. Hyperbolic Graph Convolutional Neural Networks
(HGCNSs)

r (x®; S xW)y=argmin f (fxgy)  (10)
y2 Dy

Feature transformation: The hyperbolic feature transfor-

wheref (fxgiy) = w dpp (xV;y)? = mation consists of a gyrovector matrix multiplication fol-
1=1 I lowed by a gyrovector addition.
X w 2Kjix" v
— arccostf 1 A Z__ hi=(w! Kraoxg 1t Kiag (13)
o, 1K 1+ KiixWjiz)A + Kjjyii3) ' !
(11)

Attention-based aggregation:Neighborhood aggregation
combines local data at a node. It does so by projecting the
neighbors using the logarithmic map at the node, averaging

Then the derivative of;, with respect tox(") is given by

Eeir 1 (fxg) = fyyf(fxgi®) My (fxg:X) in the tangent space, and projecting back with the exponen-
12) tial map at the node. Note that the weighks are positive
wherex = ¢ (fxg) andfyy,fy )y are de nedin Theo- and can be trained or de ned by the graph adjacency matrix.
rem 4.28, 0 « 1
The full concrete derivation of the above terms for the geom-  AGGX (x;) = exp )’fi @ Wij Iog)'fi Xj A (14)
etry induced by this manifold choice is given in Appendix j2N (i)
Theorem F.3.

Activation: The activation layer applies a hyperbolic acti-

Proof. This is a concrete application of Theorem 4.2. InVation function.
particular since our manifold is embeddedRf (Dg

R™). Note that this is the total derivative in the ambient
Euclidean space For the full proof see Theorem F.3 in the
Appendix. O

| Ko1Ky

X = D) (15)

6.1.2. ROPOSEDCHANGES

The usage of tangent space aggregation in the HGCN frame-
The derivation for the hyperboloid model is given in Ap-Work stemmed from the lack of a differentiableghet
pendix F.2. mean operation. As a natural extension, we substitute our
Frechet mean in place of the aggregation layer.
6. Case Studies 6.1.3. EXPERIMENTAL RESULTS
To demonstrate the ef cacy of our developed theory, wewe use precisely the same architecture as in Chami et al.
investigate the following test settings. In .the rst setting, we (2019), except we substitute all hyperbolic aggregation lay-
directly modify the hyperbolic aggregation strategy in Hy-grs with our differentiable Eichet mean layer. Furthermore,
perbolic GCNs (Chami et al., 2019) to use our differentiable
- %We quote directly from the paper Chami et al. (2019): “An
8The projection operation is trivial sinaém R" = dim D} . analog of mean aggregation in hyperbolic space is tléelat

9To transform Euclidean gradients into Riemannian ones, simmean, which, however, has no closed form solution. Instead, we
ply multiply by inverse of the matrix of the metric. propose to...”
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we test with precisely the same hyperparameters (learningields better nal results (Santurkar et al., 2018). Generaliz-
rate, test/val split, and the like) as Chami et al. (2019) for ang this for Riemannian manifolds is a natural extension, and
fair comparison. Our new aggregation allows us to achievesuch a computation would involve a differentiabl&é&mnet
new state-of-the-art results on the Disease and Disease-Mean.

graph datasets (Chami et al., 2019). These datasets induce

ideal test tasks for hyperbolic learning since they have very.2.1. THEORETICAL FORMULATION AND ALGORITHM

low Gromov -hyperbolicity (Adcock et al., 2013), which

indicates the structure is highly tree-like. Our results andn this section we formulate Riemannian Batch Normal-

comparison to the baseline are given in Table 4. We ru zation as a natural extension of standard Euclidean Batch

experiments for 5 trials and report the mean and standaregrr;agrzﬁt'ct’:l'];:'j Eogiegt 'SB’r;%II(Zee?ejt c(); 8 f S;)kir:’\O\tl;l]Ié
deviation. Due to practical considerations, we only test with ge, only P y '

the Poincai modet’. For reference, the strongest base-SPeci € instance of the manifold of positive semide nite

line results with the hyperboloid model are reported frommatrlces. quever, We argue in Appendix G that, unllke_ our
Chami et al. (2019) (note that we outperform these results a@ethOdi their formulapon Is incomplete aqd lacks suf cient
well). On the rather non-hyperbolic CoRA (Sen et al., 2008)generallty to be considered a true extension.
dataset, our performance is comparable to that of the best
baseline. Note that this is similar to the performance exhibAlgorithm 2 Riemannian Batch Normalization
ited by the vanilla HGCN. Hence we conjecture that whenTyaining Input : Batches of data poinfs((lt); xWPg
the underlying dataset is not hyperbolic in nature, we dayi fort 2 [1;:::;T], testing momentum 2 [0; 1]
not observe improvements over the best Euclidean baselinéearned Parameters Target mean © 2 M , target vari-
methods. ance( 922 R

Training Algorithm :

@..... (1)
Table 4. ROC AUC resullts for Link Prediction (LP) on various test ~ FrechetMeaffx;”;:::;xm’ g)

graph datasets, averaged over 5 trials (with standard deviations)test 0
Graph hyperbolicity values are also reported (lowds more  fort=1;:::;T:
hyperbolic). Results are given for models learning in Euclidean = FrechetMea(f x(lt); xPg)
(E), Hyperboloid (H), and PoincarP) spaces. Note that the best s _ 1 m dex®- )2
Euclidean method is GAT (Vatkovic et al., 2018) and is shown = (x5 )
below for fair comparison on CoRA. We highlight the best result st = FrechetMealf st; G;f ; 1 9)
only if our result gives a p-value 0:01 after running a paired- ot 1) st +
signi cance t-test. test — t
fori=1; ;m:

Disease Disease-M CoRA
=0 =0 =11

MLP 726 o6 55.3 o5 831 os
GAT 698 o3 695 o4 93:7 o1

x®  expo —PT, oflog x)

return normalized batcky (V; i xg, (¥

Testing Input: Test data pointéxy; ;Xsg M , nal

T HNN 751 o3 60:9 o4 89.0 o1 running mean st and running varianceest
HGCN 9038 o: 781 o4 92:9 o1 Testing Algorithm:
HGCN 764 s 814 34 934 o = FrechetMea(fxs;  i%s0)
ours 93:7 o4 91:0 06 929 o4 2= L1 d(xq;)?
i=1
fori =1; ;S
. . . X exp ¢ fest PT*! test (Iogfﬁ)
6.2. Hyperbolic Batch Normalization e
return normalized batcky; (X3

Euclidean batch normalization (loffe & Szegedy, 2015) is
one of the most widely used neural network operations thab

has, in many cases, obviated the need for explicit regulariza—ur full algorlthrgn 'ZS given in Algorithm 2 Note Fh.at n
ractice we use 2+ in place of as in the original

fgrmulation to avoid division by zero.

tion such as dropout (Srivastava et al., 2014). In particula
analysis demonstrates that batch normalization induces
smoother loss surface which facilitates convergence ang

.2.2. EXPERIMENTAL RESULTS

"The code for HGCN included only the Poinéanodel imple- v Ri ian Batch N lizati i call
mentation at the time this paper was submitted. Hence we use th\é/e apply Riemannian tatc ormalization (speci cally

Poincaé model for our experiments, although our contributionsfor hyperbolic space) to the encoding Hyperbolic Neural
include derivations for both hyperboloid and Poir&earodels. Network (HNN) (Ganea et al., 2018) in the framework of
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Figure 3.The graphs above correspond to a comparison of the HNN baseline, which uses a two-layer hyperbolic neural network encoder,
and the baseline augmented with hyperbolic batch normalization after each layer. The columns correspond to the CoRA (Sen et al., 2008),
Disease (Chami et al., 2019), and Disease-M (Chami et al., 2019) datasets, respectively. The top row shows the comparison in terms of
validation loss, and the bottom row shows the comparison in terms of validation ROC AUC. The gures show that we converge faster and
attain better performance in terms of both loss and ROC. Note that although CoRA is not hyperbolic (as previously mentioned), we nd it
encouraging that introducing hyperbolic batch normalization produces an improvement regardless of dataset hyperbolicity.

Chami et al. (2019). We run on the CoRA (Sen et al., 2008)tended batch normalization (a standard Euclidean operation)
Disease (Chami et al., 2019), and Disease-M (Chami et altg the realm of hyperbolic space. On a graph link prediction
2019) datasets and present the validation loss and ROC AU@st task, we showed that hyperbolic batch normalization
diagrams in Figure 3. gives bene ts similar to those experienced in the Euclidean

In terms of both loss and ROC, our method results in bothsettmg'

faster convergence and a better nal result. These improveéAle hope our work paves the way for future developments in
ments are expected as they appear when applying standagdometric representation learning. Potential future work can
batch normalization to Euclidean neural networks. So, oufocus on speeding up our computation of thédfret mean
manifold generalization does seem to replicate the usefujradient, nding applications of our theory on manifolds
properties of standard batch normalization. Additionallybeyond hyperbolic space, and applying thedfret mean to
it is encouraging to see that, regardless of the hyperboligeneralize more standard neural network operations.
nature of the underlying dataset, hyperbolic batch normal-
izat'ion produces an improvement when paired with a hyper8_ Acknowledgements
bolic neural network.
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tasks in graphs with tree-like structure. Additionally, we ex- )
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