
Moniqua: Modulo Quantized Communication in Decentralized SGD

Yucheng Lu 1 Christopher De Sa 1

Abstract
Running Stochastic Gradient Descent (SGD) in
a decentralized fashion has shown promising re-
sults. In this paper we propose Moniqua, a tech-
nique that allows decentralized SGD to use quan-
tized communication. We prove in theory that
Moniqua communicates a provably bounded num-
ber of bits per iteration, while converging at the
same asymptotic rate as the original algorithm
does with full-precision communication. Moni-
qua improves upon prior works in that it (1) re-
quires zero additional memory, (2) works with
1-bit quantization, and (3) is applicable to a va-
riety of decentralized algorithms. We demon-
strate empirically that Moniqua converges faster
with respect to wall clock time than other quan-
tized decentralized algorithms. We also show that
Moniqua is robust to very low bit-budgets, allow-
ing 1-bit-per-parameter communication without
compromising validation accuracy when training
ResNet20 and ResNet110 on CIFAR10.

1. Introduction
Stochastic gradient descent (SGD), as a widely adopted opti-
mization algorithm for machine learning, has shown promis-
ing performance when running in parallel (Zhang, 2004;
Bottou, 2010; Dean et al., 2012; Goyal et al., 2017). How-
ever, the communication bottleneck among workers1 can
substantially slow down the training (Alistarh, 2018). State-
of-the-art frameworks such as TensorFlow (Abadi et al.,
2016), CNTK (Seide & Agarwal, 2016) and MXNet (Chen
et al., 2015) are built in a centralized fashion, where workers
exchange gradients either via a centralized parameter server

1Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, United States. Correspondence
to: Yucheng Lu <yl2967@cornell.edu>, Christopher De Sa
<cdesa@cs.cornell.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1A worker could refer to any computing unit that is capable of
computing, communicating and has local memory such as CPU,
GPU, or even a single thread, etc.

(Li et al., 2014a;b) or the MPI AllReduce operation (Gropp
et al., 1999). Such a design, however, puts heavy pressure
on the central server and strict requirements on the underly-
ing network. In other words, when the underlying network
is poorly constructed, i.e. high latency or low bandwidth, it
can easily cause degradation of training performance due to
communication congestion in the central server or stragglers
(slow workers) in the system.

There are two general approaches to deal with these prob-
lems: (1) decentralized training (Lian et al., 2017a;b; Tang
et al., 2018b; Hendrikx et al., 2018) and (2) quantized com-
munication2 (Zhang et al., 2017; Alistarh et al., 2017; Wen
et al., 2017). In decentralized training, all the workers
are connected to form a graph and each worker commu-
nicates only with neighbors by averaging model parameters
between two adjacent optimization steps. This balances
load and is robust to scenarios where workers can only be
partially connected or the communication latency is high.
On the other hand, quantized communication reduces the
amount of data exchanged among workers, leading to faster
convergence with respect to wall clock time (Alistarh et al.,
2017; Seide et al., 2014; Doan et al., 2018; Zhang et al.,
2017; Wang et al., 2018). This is especially useful when the
communication bandwidth is restricted.

At this point, a natural question is: Can we apply quantized
communication to decentralized training, and thus bene-
fit from both of them? Unfortunately, directly combining
them together negatively affects the convergence rate (Tang
et al., 2018a). This happens because existing quantization
techniques are mostly designed for centralized SGD, where
workers communicate via exchanging gradients (Alistarh
et al., 2017; Seide et al., 2014; Wangni et al., 2018). Gra-
dients are robust to quantization since they get smaller in
magnitude near local optima and in some sense carry less
information, causing quantization error to approach zero
(De Sa et al., 2018). In contrast, decentralized workers
are communicating the model parameters, which do not
necessarily get smaller around local optima and thus the
quantization error does not approach zero without explicitly
increasing precision (Tang et al., 2018c). Previous work

2For brevity, in this paper we generally refer to lossy com-
pression methods including quantization, sparsification, etc, as
“quantization.”

Moniqua: Modulo Quantized Communication in Decentralized SGD

solved this problem by adding an error tracker to compen-
sate for quantization errors (Tang et al., 2019) or adding
replicas of neighboring models and focusing on quantiz-
ing model-difference which does approach zero (Koloskova
et al., 2019; Tang et al., 2018a). However, these methods
have limitations in that: (1) the extra replicas or error track-
ing incurs substantial memory overhead that is proportional
to size of models and the graph (more details in Section 2);
and (2) these methods are either limited to constant step
size or biased quantizers (Koloskova et al., 2019; Tang et al.,
2018a; 2019).

To address these problems, in this paper we propose Moni-
qua, an additional-memory-free method for decentralized
training to use quantized communication. Moniqua sup-
ports non-constant step size and biased quantizers. Our
contribution can be summarized as follows:

� We show by example that naively quantizing commu-
nication in decentralized training can fail to converge
asymptotically. (Section 3)

� We proposeMoniqua, a general algorithm that uses
modular arithmetic for communicationquantization
in decentralized training. We prove applying Moni-
qua achieves the same asymptotic convergence rate as
the baseline full-precision algorithm (D-PSGD) while
supporting extreme low bit-budgets. (Section 4)

� We apply Moniqua to decentralized algorithms with
variance reduction and asynchronous communication
(D 2 and AD-PSGD) and prove Moniqua enjoys the
same asymptotic rate as with full-precision communi-
cation when applied to these cases. (Section 5)

� We empirically evaluate Moniqua and show it outper-
forms all the related algorithms given an identical quan-
tizer. We also show Moniqua is scalable and works
with 1-bit quantization. (Section 6)

Intuition behind Moniqua. In decentralized training,
workers communicate to average their model parameters
(Lian et al., 2017a). As the algorithm converges, all the
workers will approach the same stationary point as they
reach consensus (Tang et al., 2018a). As a result, the dif-
ference in the same coordinate of models on two workers
is becoming small. Supposex andy are thei th coordinates
of models on workerswx andwy , respectively. If we some-
how know in advance thatjx � yj < � , then ifwy needs to
obtainx, it suf�ces to fetchx mod 2� rather thanx from
wx . Note thatx mod 2� is generally a smaller number than
x, which means to obtain the same absolute error, fewer bits
are needed compared to fetchingx directly. Formally, this
intuition is captured in the following lemma.

Lemma 1. De�ne the modulo operationmod as the fol-
lows. For anyz 2 R anda 2 R+ ,

f z mod ag = f z + najn 2 Ng \ [� a=2; a=2) (1)

then for anyx; y 2 R, if jx � yj < � , then

x = (x mod 2� � y mod 2�) mod 2� + y:

2. Related Work

Decentralized Stochastic Gradient Descent (SGD).De-
centralized algorithms (Mokhtari & Ribeiro, 2015; Sirb &
Ye, 2016; Lan et al., 2017; Wu et al., 2018b) have been
widely studied with consideration of communication ef�-
ciency, privacy and scalability. In the domain of large-scale
machine learning, D-PSGD was the �rst Decentralized SGD
algorithm that was proven to enjoy the same asymptotic con-
vergence rateO(1=

p
Kn) (whereK is the number of total

iterations andn is the number of workers) as centralized
algorithms (Lian et al., 2017a). After D-PSGD cameD 2,
which improves D-PSGD and is applicable to the case where
workers are not sampling from identical data sources (Tang
et al., 2018b). Another extension was AD-PSGD, which
lets workers communicateasynchronouslyand has a con-
vergence rate ofO(1=

p
K) (Lian et al., 2017b). Other

relevant work includes: He et al. (2018), which investigates
decentralized learning on linear models; Nazari et al. (2019),
which introduces decentralized algorithms with online learn-
ing; Zhang & You (2019), which analyzes the case when
workers cannot mutually communicate; and Assran et al.
(2018), which investigates Decentralized SGD speci�cally
for deep learning.

Quantized Communication in Centralized SGD. Prior
research on quantized communication is often focused
on centralized algorithms, such as randomized quantiza-
tion (Doan et al., 2018; Suresh et al., 2017; Zhang et al.,
2017) and randomized sparsi�cation (Wangni et al., 2018;
Stich et al., 2018; Wang et al., 2018; Alistarh et al., 2018).
Many examples of prior work focus on studying quantiza-
tion in the communication of deep learning tasks specif-
ically (Han et al., 2015; Wen et al., 2017; Grubic et al.,
2018). Alistarh et al. (2017) proposes QSGD, which uses
an encoding-ef�cient scheme, and discusses its communi-
cation complexity. Another method, 1bitSGD, quantizes
exchanged gradients with one bit per parameter and shows
great empirical success on speech recognition (Seide et al.,
2014). Other work discusses the convergence rate under
sparsi�ed or quantized communication (Jiang & Agrawal,
2018; Stich et al., 2018). Acharya et al. (2019) theoretically
analyzes sublinear communication for distributed training.

Quantized Communication in Decentralized SGD.
Quantized communication for decentralized algorithms is
a rising topic in the optimization community. Previous
work has proposed decentralized algorithms with quan-
tized communication for strongly convex objectives (Rei-
sizadeh et al., 2018). Following that, Tang et al. (2018a)
proposes DCD/ECD-PSGD, which quantizes communica-
tion via estimating model difference. Furthermore, Tang

Moniqua: Modulo Quantized Communication in Decentralized SGD

Table 1.Comparison among Moniqua and baseline algorithms, where workers form a graph withn vertices andm edges.d refers to
the model dimension. Detailed discussion can be found in Section 2. The additional memory refers to the space complexity required
additional to the baseline full-precision communication decentralized training algorithm (D-PSGD).

DCD-PSGD ECD-PSGD ChocoSGD DeepSqueezeMoniqua

Supports biased quantizers No No Yes Yes Yes

Supports 1-bit quantization No No Yes No Yes

Works beyond D-PSGD No No No No Yes

Non-constant Step Size No No No No Yes

Additional Memory �(md) �(md) �(md) �(nd) 0

et al. (2019) proposes DeepSqueeze, which applies an error-
compensation method (Wu et al., 2018a) to decentralized
setting. Koloskova et al. (2019) proposed ChocoSGD, a
method that lets workers estimate remote models with a
local estimator, which supports arbitrary quantization by
tuning the communication matrix.

How Moniqua improves on prior works. We summa-
rize the comparison among Moniqua and other baseline
algorithms in Table 2. Speci�cally, Moniqua works with a
wider range of quantizers (those with biased estimation or
extremely restricted precision, e.g. 1bit per parameter) with
theoretical guarantees. It enjoys several statistical bene�ts
such as supporting non-constant step sizes and can be ex-
tended to different scenarios that are beyond synchronous
setting (D-PSGD). Most importantly, it prevents the algo-
rithms from trading memory with bandwidth, requiring zero
additional memory in the implementation.

3. Setting and Notation

In this section, we introduce our notation and the general as-
sumptions we will make about the quantizers for our results
to hold. Then we describe D-PSGD (Lian et al., 2017a), the
basic algorithm for Decentralized SGD, and we show how
naive quantization can fail in decentralized training.

Quantizers. Throughout this paper, we assume that we use
a quantizerQ� that has bounded error

kQ� (x) � x k1 � � when x 2
�
� 1

2 ; 1
2

� d
(2)

where� is some constant. Note that in this assumption, we
do not assume any bound forx outside

�
� 1

2 ; 1
2

� d
: as will

be shown later, a bound in this region is suf�cient for our
theory to hold. This assumption holds for both linear (Gupta
et al., 2015; De Sa et al., 2017) and non-linear (Stich, 2018;
Alistarh et al., 2017) quantizers. In general, a smaller�
denotes more �ne-grained quantization requiring more bits.
For example, a biased linear quantizer can achieve (2) by

rounding any coordinate ofx to the nearest number in the
setf 2�n j n 2 Zg; this will require about� � 1 quantization
points to cover the interval[� 1=2; 1=2), so such a linear
quantizer can satisfy (2) using only

�
log2

�
1
2� + 1

��
bits (Li

et al., 2017; Gupta et al., 2015).

Decentralized parallel stochastic gradient descent (D-
PSGD). D-PSGD (Lian et al., 2017a) is the �rst and most
basic Decentralized SGD algorithm. In D-PSGD,n workers
are connected to form a graph. Each workeri stores a copy
of modelx 2 Rd and a local datasetD i and collaborates to
optimize

minx 2 Rd f (x) = 1
n

P n
i =1 E� �D i f i (x ; �)

| {z }
f i (x)

: (3)

where� is a data sample fromD i . In each iteration of D-
PSGD, workeri computes a local gradient sample usingD i .
Then itaveragesits model parameters with its neighbors
according to a symmetric and doubly stochastic matrixW ,
whereW ij denotes the ratio workerj averages from worker
i . Formally: Letx k;i and ~gk;i denote local model and
sampled gradient on workeri at k-th iteration, respectively.
Let � k denote the step size. The update rule of D-PSGD
can be expressed as:

x k+1 ;i =
X n

j =1
x k;j W ji � � k ~gk;i

= x k;i �
X n

j =1
(x k;i � x k;j)W ji

| {z }
communicate to reduce difference

� � k ~gk;i| {z }
gradient step

From (3) we can see the update of a single local model con-
tains two parts: communication to reduce model difference
and a gradient step. Lian et al. (2017a) shows that all local
models in D-PSGD reach the same stationary point.

Failure with naive quantization. Here, we illustrate why
naively quantizing communication in decentralized training
—directly quantizing the exchanged data—can fail to con-
verge asymptotically even on a simple problem. This naive

Moniqua: Modulo Quantized Communication in Decentralized SGD

approach with quantizerQ� can be represented by

x k+1 ;i = x k;i W ii +
X

j 6= i
Q� (x k;j)W ji � � k ~gk;i (4)

Based on Equation 4, we obtain the following theorem.

Theorem 1. For some constant� , suppose that we use
an unbiased linear quantizerQ� with representable points
f �n j n 2 Zg to learn on the quadratic objective function
f (x) = (x � � 1=2)> (x � � 1=2)=2 with the direct quanti-
zation approach (4). Let� denote the smallest value of a
non-zero entry inW . Regardless of what step size we adopt,
it will always hold for all iterationsk and local model in-
dicesi that E kr f (x k;i)k2 � � 2 � 2

8(1+ � 2) . That is, the local
iterates will fail to asymptotically converge to a region of
small gradient magnitude in expectation.

Theorem 1 shows that naively quantizing communication
in decentralized SGD, even with an unbiased quantizer,
any local model can fail to converge on a simple quadratic
objective. This is not satisfying, since, it implies we would
need more advanced quantizers which are likely to require
more system resources such as memory. In the following
section, we propose a technique, Moniqua, that solves this
problem.

4. Moniqua

In Section 1, we described the basic idea behind Moniqua:
to use modular arithmetic to decrease the magnitude of the
numbers we are quantizing. We now describe how Moniqua
implements this intuition with a given quantizerQ� . Con-
sider the two-scalar example from Section 1. Suppose we
knowy andjx � yj < � and need to fetchx from a remote
host via a quantizerQ� to recoverx. We've shown in Sec-
tion 3 that fetching and usingQ� (x) leads to divergence. In-
stead, we de�ne a parameterB � = (2 �)=(1 � 2�) and then
use the modulo operation and fetchQ� ((x=B �) mod 1)
from the remote host, from which we can approximately
recoverx as

x̂ = (B � Q� ((x=B �) mod 1) � y) mod B � + y: (5)

Note that inside the quantizer we rescalex to x=B � , which
is required for (2) to apply. This approach has quantization
error bounded proportional to the original bound� , as shown
in the following lemma.

Lemma 2. For any scalarsx; y 2 R, if jx � yj < � and if
� < 1

2 , then if we setB � = (2 �)=(1 � 2�) andx̂ as in (5),

jx̂ � xj � �B � = � � (2�)=(1 � 2�):

Importantly, since the quantization error is decreasing with
� , if we are able to prove a decentralized algorithm ap-
proaches consensus and use this proof to give a bound of

Algorithm 1 Pseudo-code of Moniqua on workeri
Require: initial point x 0;i = x 0, step sizef � k gk � 0, the

a priori boundf � k gk � 0, communication matrixW ,
number of iterationsK , quantizerQ� , neighbor listN i

1: for k = 0 ; 1; 2; � � � ; K � 1 do
2: Compute a local stochastic gradient~gk;i with data

sample� k;i and current weightx k;i

3: Send modulo-ed model to neighbors:
qk;i = Q� ((x k;i =B� k) mod 1)

4: Compute local biased term̂x k;i as:
x̂ k;i = qk;i B � k � x k;i mod B � k + x k;i

5: Recover model received from workerj as:
x̂ k;j =

�
qk;j B � k � x k;i

�
mod B � k + x k;i

6: Average with neighboring workers:

x k+ 1
2 ;i x k;i +

X

j 2N i

(x̂ k;j � x̂ k;i)W ji

7: Update the local weight with local gradient:
x k+1 ;i x k+ 1

2 ;i � � k ~gk;i

8: end for
9: return averaged modelX K = 1

n

P n
i =1 x K;i

the formjx � yj < � , this bound will give us a compression
procedure (5) with smaller error as our consensus bound
improves. We formalize this approach as Moniqua (Algo-
rithm 1). (Note that all the division and mod operations in
Algorithm 1 act element-wise.)

Note that in line 4 and 6, we compute and cancel out a local
biased term, this is to cancel out the extra noise which may
be brought to the averaged model. As we will show in the
supplementary material, cancelling out this local biased term
reduces extra noise to the algorithm. And in Algorithm 1,
we consider the general case where� can be a iteration
dependent bound. As will be shown later, a constant� also
guarantees convergence.

We now proceed to analyze the convergence rate of Algo-
rithm 1. We use the following common assumptions for
analyzing decentralized optimization algorithms (Lian et al.,
2017a; Tang et al., 2018a; Koloskova et al., 2019).

(A1) Lipschitzian gradient. All the functionsf i haveL-
Lipschitzian gradients.

kr f i (x) � r f i (y)k � Lkx � yk; 8x ; y 2 Rd

(A2) Spectral gap. The communication matrixW is a
symmetric doubly stochastic matrix and

maxfj � 2(W)j; j� n (W)jg = � < 1;

where� i (W) denotes the thei th largest eigenvalue of
W .

(A3) Bounded variance. There exist non-negative con-

Moniqua: Modulo Quantized Communication in Decentralized SGD

stants� and&2 R such that

E� i �D i

 r ~f i (x ; � i) � r f i (x)

2
� � 2

Ei �f 1;��� ;n g kr f i (x) � r f (x)k2 � &2

where r ~f i (x ; � i) denotes the gradient sample on
workeri computed via data sample� i .

(A4) Initialization. All the local models are initialized with
the same weight:x 0;i = x 0 for all i , and without loss
of generalityx 0 = 0d.

(A5) Bounded gradient magnitude. For some constant
G1 , the norm of a sampled gradient is bounded by

 ~gk;i

1
� G1 , for all i andk.

Lemma 2 states that the error bound from quantization is pro-
portional to� . In other words, a tight estimation or choice
on the� will lead to smaller quantization error in the algo-
rithm. We present these parameter choices in Theorem 2,
along with the resulting convergence rate for Moniqua.
Theorem 2. Consider adopting a non-increasing step size
schemef � t gt � 0 such that there exists constantC� > 0
and � (0 < � � 1) that for anyk; t � 0, � k

� k + t
� C� � t ,

set� k = 2� k G1 C � log(16 n)
1� �� and� = 1� ��

8C 2
� � log(16 n)+2(1 � ��) ,

then Algorithm 1 converges at the following rate:

K � 1X

k =0

� k E

 r f (X k)

 2

� 4(Ef (0) � Ef �) +
2� 2L

n

K � 1X

k =0

� 2
k

+
8(� 2 + 3 &2)L 2

(1 � �)2

K � 1X

k =0

� 3
k +

8G2
1 dL 2

(1 � �)2C2
�

K � 1X

k =0

� 3
k

wheref � = inf x f (x).

Theorem 2 shows that the priori bound� k is proportional
to the step size and increases at the logarithmic speed when
system sizen increases. The two-constant assumption on
the step size prevents it from decreasing too fast. As a
rapidly decreasing step size would prevent us from obtaining
such a priori bound in theory. This assumption generally
holds for most of the step size schemes. Just as baseline
algorithms, by setting step size to a constant, we can obtain
a concrete convergence bound as shown in the following
corollary.
Corollary 1. If we adopt a step size scheme where� k =

1
&2= 3 K 1= 3 + �

p
K=n +2 L

in Theorem 2, then the output of Al-

gorithm 1 converges at the asymptotic rate

1
K

K � 1X

k =0

E

 r f (X k)

 2

.
1
K

+
�

p
nK

+
&

2
3

K
2
3

+
(� 2 + G2

1 d)n
� 2K + n

:

Consistent with D-PSGD. Note that D-PSGD converges
at the asymptotic rate ofO(�=

p
nK + &

2
3 =K

2
3 + n=K),

and thus Moniqua has the same asymptotic rate as D-
PSGD (Lian et al., 2017a). That is, the asymptotic conver-
gence rate is not negatively impacted by the quantization.

Robust to large d. In Assumptions (A3) and (A5), we
usel2-norm andl1 -norm to bound sample variance and
gradient magnitude, respectively. Note that, whend gets
larger, the variance� 2 will also tend to grow proportionally.
So, the last term will tend to remainn=K asymptotically
with larged.

Bound on the Bits. The speci�c number of bits required
by Moniqua depends on the underlying quantizer (Q�). If
we use nearest neighbor rounding (Gupta et al., 2015) with
a linear quantizer asQ� in Theorem 2, it suf�ces to use at
each step a number of bitsB for each parameter sent, where

B �
�
log2

�
1
2� + 1

��
=

l
log2

�
4 log 2 (16 n)

1� � + 3
�m

Note that this bound is independent of model dimension
d. When the system scales up, the number of required
bits grows at a rate ofO (log logn). Note that, this is a
general bound on the number of bits required by Moniqua
using the same communication matrixW as the baseline.
To enforce a even more restricted bit-budget (e.g. 1 bit),
Moniqua can still converge at the same rate by adjusting the
communication matrix.

1-bit Quantization. We can also add a consensus step
(Tang et al., 2019; Koloskova et al., 2019) to allow Moniqua
to use 1 bit per number. Speci�cally, we adopt a slack
communication matrixW =
 W + (1 �
)I and tune
 as
a hyperparameter. We formalize this result in the following
Theorem.
Theorem 3. Consider using a communication matrix in
the form ofW =
 W + (1 �
)I . If we set� =
2�G 1 log(16 n)

 (1 � �) ,
 = 2
1� � + 16 � 2

(1 � 2 �) 2 � 64 log(4 n) log(K)
1 � �

, and � =

1

&
2
3 K

1
3 + �

p
K
n +2 L

, then the output of Algorithm 1 converges

at the asymptotic rate

1
K

K � 1X

k =0

E

 r f (X k)

 2

.
�

p
nK

+
1
K

+
&

2
3 � 4 log2(n) log2(K)

K
2
3 (1 � 2�)4

+
� 2n� 4 log2(n) log2(K)
(� 2K + n)(1 � 2�)4

+
n� 6 log4(n) log2(K)
(� 2K + n)(1 � 2�)6

Note that the dominant term in Lemma 3 is still
O(�=

p
nK), which means Moniqua converges at the

asymptotic rate the same as full precision D-PSGD (Lian
et al., 2017a) even with more restricted bits-budget. Note
that in Theorem 3, the only requirement on the quantizer is
� < 1

2 . Considering the properties of our quantizer (2), this
version of Moniqua allowes us to use 1 bit in general per
parameter.

5. Scalable Moniqua

So far, we have discussed how Moniqua, along with base-
line algorithms, modi�es D-PSGD to use communication

Moniqua: Modulo Quantized Communication in Decentralized SGD

quantization. Note that the basic idea of using modular
arithmetic in quantized communication is invariant to the al-
gorithm being used. In light of this, in this section we show
Moniqua is general enough to be applied on other decen-
tralized algorithms that are beyond D-PSGD. Previous work
has extended D-PSGD toD 2 (Tang et al., 2018b) (to make
Decentralized SGD applicable to workers sampling from dif-
ferent data sources) and AD-PSGD (Lian et al., 2017b) (an
asynchronous version of D-PSGD). In this section, we prove
Moniqua is applicable to both of these algorithms.

Moniqua with Decentralized Data Decentralized data
refers to the case where all the local datasetsD i are not
identically distributed (Tang et al., 2018b). More explicitly,
the outer varianceEi �f 1;��� ;n g kr f i (x) � r f (x)k2 is no
longer bounded by&2 as assumed in D-PSGD (Assump-
tion (A3)). We apply Moniqua toD 2 (Tang et al., 2018b), a
decentralized algorithm designed to tackle this problem by
reduing the variance over time. Applying Moniqua onD 2

can be explicitly expressed3 as:

X k + 1
2

= 2 X k � X k � 1 � � k ~G k + � k � 1 ~G k � 1

X k +1 = X k + 1
2

W + (X̂ k + 1
2

� X k + 1
2

)(W � I)

whereX k , ~G k andX̂ k+ 1
2

are matrix in the shape ofRd� n ,
where theiri -th column arex k;i , ~gk;i andx̂ k+ 1

2 ;i respec-

tively. And X � 1 and ~G � 1 are0d� n by convention. Based
on this, we obtain the following convergence theorem.

Theorem 4. If we apply Moniqua onD 2 in a setting where
� = (6 D1n + 8) �G 1 , � = 1

12nD 2 +2 and � k = � =
1

�
p

K=n +2 L
whereD1 andD2 are two constants4, applying

Moniqua onD 2 has the following asymptotic convergence
rate:

1
K

K � 1X

k =0

E

 r f (X k)

 2

.
1
K

+
�

p
nK

+
(� 2 + G2

1 d)n
� 2K + n

:

Note that D 2 (Tang et al., 2018b) with full-precision
communication has the asymptotic convergence rate of

O
�

1
K + �p

nK
+ n

K

�
, Moniqua onD 2 has the same asymp-

totic rate.

Moniqua with Asychronous Communication Both D-
PSGD andD 2 are synchronous algorithms as they require
global synchronization at the end of each iteration, which
can become a bottleneck when such synchronization is not
cheap. Another algorithm, AD-PSGD, avoids this over-
head by letting workers communicate asynchronously (Lian
et al., 2017b). In the analysis of AD-PSGD, an iteration

3For brevity, the detailed pseudo code can be found in the
supplemenraty material, Section G.

4they only depend on the eigenvalues ofW (de�nition can be
found in supplementary material, section G)

represents asinglegradient update ononerandomly-chosen
worker, rather than a synchronous bulk update of all the
workers. This single-worker-update analysis models the
asynchronous nature of the algorithm. Applying Moniqua
on AD-PSGD can be explicitly expressed5 as:

X k+1 = X k W k + (X̂ k � X k)(W k � I) � � k ~G k � � k

whereW k describes the communication behaviour between
thekth and(k +1) th gradient update, and� k denotes the de-
lay (measured as a number of iterations) between when the
gradient is computed and updated to the model. Note that
unlike D-PSGD, hereW k can be different at each update
step and usually each individually has� = 1 , so we can't
expect to get a bound in terms of a bound on the spectral
gap, as we did in Theorems 2 and 4. Instead, we require
the following condition, which is inspired by the literature
on Markov chain Monte Carlo methods: for some constant
tmix and for anyk, 8� 2 Rn ; if e>

i � i � 0 and1> � =

1; it must hold that

� Q t mix

i =1 W k+ i

�
� � 1

n

1
� 1

2 : We

call this constanttmix because it is effectively themixing
timeof the time-inhomogeneous Markov chain with transi-
tion probability matrixW k at timek (Levin & Peres, 2017).
Note that this condition is more general than those used in
previous work on AD-PSGD because it does not require
that theW k are sampled independently or in an unbiased
manner. Using this, we obtain the following convergence
theorem.
Theorem 5. If we apply Moniqua on AD-PSGD in a setting
where� = 16tmix �G 1 , � = 1

64t mix +2 and � k = � =
n

2L +
p

K (� 2 +6 &2)
, applying Moniqua on AD-PSGD has the

following asymptotic convergence rate:

1
K

K � 1X

k =0

E

 r f (X k)

 2

.
1
K

+

p
� 2 + 6 &2

p
K

+
(� 2 + 6 &2)t2

mix n2

(� 2 + 6 &2)K + 1

+
n2 t2

mix G2
1 d

(� 2 + 6 &2)K + 1

Note that AD-PSGD (Lian et al., 2017b) with full-precision
communication has the asymptotic convergence rate of

O
�

1
K +

p
� 2 +6 &2
p

K
+ n 2

K

�
, Moniqua obtains the same

asymptotic rate.

Since adopting a slack matrix to enable 1-bit quantization in
these two algorithms will be similar to the case in Theorem 3,
we omit the discussion here for brevity.

6. Experiments

In this section, we evaluate Moniqua empirically. First, we
compare Moniqua and other quantized decentralized train-

5For brevity, the detailed pseudo code can be found in the
supplemenraty material, section H.

Moniqua: Modulo Quantized Communication in Decentralized SGD

(a) Train Loss vs Time(s), Bandwidth=200Mbps, Latency=0.15ms(b) Train Loss vs Time(s), Bandwidth=100Mbps, Latency=0.15ms

(c) Train Loss vs Time(s), Bandwidth=100Mbps, Latency=1.0ms(d) Train Loss vs Time(s), Bandwidth=1.0Mbps, Latency=1.0ms

Figure 1.Performance of different algorithms under different network con�gurations

ing algorithms' convergence under different network con�g-
urations. Second, we compare the validation performance
of them under extreme bit-budget. Then we investigate
Moniqua's scalability onD 2 and AD-PSGD. Finally, we
introduce several useful techniques for running Moniqua
ef�ciently.

Setting and baselines. All the models and training scripts
in this section are implemented in PyTorch and run on
Google Cloud Platform. We launch one instance as one
worker in previous formulation, each con�gured with a
2-core CPU with 4 GB memory and an NVIDIA Tesla
P100 GPU. We use MPICH as the communication back-
end. All the instances are running Ubuntu 16.04, and la-
tency and bandwidth on the underlying network are con-
�gured using thetc command in Linux. Throughout our
experiments, we adopt the commonly used (Gupta et al.,
2015; Li et al., 2017) stochastic rounding6. We compare

6Since several baselines are not applicable to biased quantizer,
for fair comparison we consistently use stochastic rounding (unbi-
ased).

Moniqua with the following baselines: Centralized (imple-
mented as MPI AllReduce operation), D-PSGD (Lian et al.,
2017a) with full-precision communication, DCD/ECD-
PSGD (Tang et al., 2018a), ChocoSGD (Koloskova et al.,
2019) and DeepSqueeze (Tang et al., 2019). In the experi-
ment, we adopt the following hyperparameters for Moniqua:
f Momentum= 0 :9; Weight Decay= 5e� 4; Batch Size=
128; Initial Step Size= 0 :1; � k = 2 :0g. In the extreme-bit-
budget experiment, we further use adopt the average ratio
f
 = 5e � 3g.

Wall-clock time evaluation. We start by evaluating the per-
formance of Moniqua and other baseline algorithms under
different network con�gurations. We launch 8 workers con-
nected in a ring topology and train a ResNet20 (He et al.,
2016) model on CIFAR10 (Krizhevsky et al., 2014). For
all the algorithms, we quantize each parameter into 8-bit
representation.

We plot our results in Figure 1. We can see from Figures 1(a)
to 1(b) that when the network bandwidth decreases, the
curves begin to separate. AllReduce and full-precision D-

