
Appendix of “A Mean Field Analysis Of Deep ResNet And Beyond:
Towards Provable Optimization Via Overparameterization From Depth”

Here is the supplementary material for the paper: “A Mean Field Analysis Of Deep ResNet And Beyond:
Towards Provable Optimization Via Overparameterization From Depth”. The supplementary material is
organized as following
• Appendix A: Properties of our continuous model.
• Appendix B: Detailed Proofs For Landscape Analysis.
• Appendix C: Properties of the loss function in the Wasserstein space.

First we introduce the notations and assumptions we used in the appendix.

Notations. Let δ(·) denote the Dirac mass and 1Ω be the indicator function on Ω. We denote by P2 the set
of probability measures endowed with the Wasserstein-2 distance (see below for definition). Let µ be the
population distribution of the input data and the induced norm by ‖f‖µ = Ex∼µ[f(x)>f(x)].

Fréchet Derivative. We extend the notion of the gradient to infinite dimensional space. For a functional
f : X → R defined on a Banach space X , the Fréchet derivative is an element in the dual space df ∈ X∗
that satisfies

lim
δ∈X,δ→0

f(x+ δ)− f(x)− df(δ)

‖δ‖
= 0, for all x ∈ X.

In this paper, δf
δX is used to denote the Fréchet derivative.

Wasserstein Space. The Wasserstein-2 distance between two probability measures µ, ν ∈ P(Rd) is de-
fined as

W2(µ, ν) :=

(
inf

γ∈T (µ,ν)

∫
|y − x|2dγ(x, y)

)1/2

.

Here T (µ, ν) denotes the set of all couplings between µ and ν, i.e., all probability measures γ ∈ P(Rd×Rd)
with marginals µ on the first factor and ν on the second.

Bounded Lipschitz norm. We say that a sequence of measures µn ∈ M(Rd) weakly (or narrowly)
converges to µ if, for all continuous and bounded function ϕ : Rd → R it holds

∫
ϕdµn →

∫
ϕdµ. For

sequences which are bounded in total variation norm, this is equivalent to the convergence in Bounded
Lipschitz norm. The latter is defined, for µ ∈M(Rd), as

‖µ‖BL := sup

{∫
ϕdµ ; ϕ : Rd → R, Lip(ϕ) ≤ 1, ‖ϕ‖∞ ≤ 1

}
(.1)

where Lip(ϕ) is the smallest Lipschitz constant of ϕ and ‖ · ‖∞ the supremum norm.
All proofs in this appendix are based on the following assumptions

Assumption 1. 1. (Boundedness of data and target distribution) The input data x lies µ-almost surely
in a compact ball, i.e. ‖x‖ ≤ R1 for some constant R1 > 0. At the same time the target function is
also bounded ‖y(·)‖∞ ≤ R2 for some constant R2 > 0.

2. (Lipschitz continuity of distribution with respect to depth) There exists a constant Cρ such that

‖ρ(·, t1)− ρ(·, t2)‖BL ≤ Cρ|t1 − t2|

for all t1, t2 ∈ [0, 1].
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3. The kernel k(x1, x2) := g(x1, x2) = σ(xᵀ1x2) is a universal kernel (Micchelli et al., 2006), i.e. the
span of {k(x, ·) : x ∈ Rd2} is dense in L2.

4. (Locally Lipschitz derivative with sub-linear growth (Chizat & Bach, 2018)) There exists a family
{Qr}r>0 of nested nonempty closed convex subsets of Ω that satisfies:
• {u ∈ Ω | dist(u,Qr) ≤ r′} ⊂ Qr+r′ for all r, r′ > 0.
• There exist constants C1, C2 > 0 such that

sup
θ∈Qr,x

‖∇xf(x, θ)‖ ≤ C1 + C2r

holds for all r > 0. Also the gradient of f(x, θ) with respect to x is a Lipschitz function with
Lipschitz constant Lr > 0.
• For each r, the gradient respect to the parameter θ is also bounded

sup
‖x‖≤R1,θ∈Qr

‖∇θf(x, θ)‖ ≤ C3,r

for some constant C3,r.

A Properties of our continuous model.

Our model is aimed to minimize the l2 loss function

E(ρ) = Ex∼µ
1

2

(
〈w1, Xρ(x, 1)〉 − y(x)

)2
. (A.1)

over parameter distributions ρ(θ, t) for θ in a compact set Ω and t ∈ [0, 1]. Here Xρ(x, t) is the solution of
the ODE

Ẋρ(x, t) =

∫
θ
f(Xρ(x, t), θ)ρ(θ, t)dθ,Xρ(x, 0) = 〈w2, x〉 (A.2)

Theorem 1. (Well-posedness of the Forward Model) Under Assumption 1 and we further assume that there
exists a constant r > 0 such that µ is concentrated on one of the nested sets Qr. Then, the ODE in (A.2)
has a unique solution in t ∈ [0, 1] for any initial condition x ∈ Rd1 . Moreover, for any pair of distributions
ρ1 and ρ2, there exists a constant C such that

‖Xρ1(x, 1)−Xρ2(x, 1)‖ < CW2(ρ1, ρ2), (A.3)

where W2(ρ1, ρ2) is the 2-Wasserstein distance between ρ1 and ρ2.

Proof. We first show the existence and uniqueness of Xρ(x, t). From now on, let

Fρ(X, t) =

∫
θ
f(X, t)ρ(θ, t)dθ. (A.4)

Then, the ODE (A.2) becomes

Ẋρ(x, t) = Fρ(Xρ(x, t), t), (A.5)

and by the condition of the theorem and assumption 1 we have

‖Fρ(X, t)‖ ≤ Crf
∣∣∣∣∫
θ
ρ(θ, t)dθ

∣∣∣∣ < CrfCρ. (A.6)
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This is because, for the continuous function f(x, θ) is now defined on the domain for which θ lies in a
compact set Qr and ‖x‖ < R1, which leads to an upper bound Crf such that sup‖x‖<R f(x, θ) < Crf holds
for all θ ∈ Qr. The notation Crf will continuously used in the following section.

Hence, Fρ(Xρ, t) is bounded. On the other hand, Fρ(X, t) is integrable with respect to t and Lipschitz
continuous with respect to X in any bounded region (by 2 of assumption 1). Therefore, consider the region
[X0−CrfCρ, X0 +CrfCρ]× [0, 1], whereX0 = Xρ(x, 0). By the existence and uniqueness theorem of ODE
(the Picard–Lindelöf theorem), the solution of (A.5) initialized from X0 exists and is unique on [0, 1].

Next, we show the continuity of Xρ(x, t) with respect to ρ. Letting ∆(x, t) = ‖Xρ1(x, t)−Xρ2(x, t)‖,
we have

∆(x, t) =

∥∥∥∥∫ t

0
Ẋρ1(x, s)− Ẋρ2(x, s)ds

∥∥∥∥
=

∥∥∥∥∫ t

0
Fρ1(Xρ1 , s)− Fρ1(Xρ2 , s)ds+

∫ t

0
Fρ1(Xρ2 , s)− Fρ2(Xρ2 , s)ds

∥∥∥∥
≤
∫ t

0
‖Fρ1(Xρ1 , s)− Fρ1(Xρ2 , s)‖ds+

∥∥∥∥∫ t

0
Fρ1(Xρ2 , s)− Fρ2(Xρ2 , s)ds

∥∥∥∥ . (A.7)

LetCm = max{Cρ1 , Cρ2}. For the first term in (A.7), since bothXρ1 andXρ2 are controlled byX0+CrfCm,
by 2 of Assumption 1 we have the following Lipschitz condition for

‖Fρ1(Xρ1 , s)− Fρ1(Xρ2 , s)‖ ≤ (C1 + C2X0 + C2C
r
fCm)Cm∆(x, s). (A.8)

For the second term of (A.7), we have∥∥∥∥∫ t

0
Fρ1(Xρ2 , s)− Fρ2(Xρ2 , s)ds

∥∥∥∥ =

∥∥∥∥∫ t

0

∫
θ
f(Xρ2 , θ)(ρ1(θ, s)− ρ2(θ, s))dθds

∥∥∥∥ . (A.9)

Since Xρ2 is CrfCm-Lipschitz continuous with respect to t and also bounded by X0 + CrfCm, we have
f(Xρ2 , θ) is (C1 + C2X0 + C2C

r
fCm)CrfCm-Lipschitz continuous w.r.t t. On the other hand, still by

Assumption 1, f(X, θ) isC3,r-Lipschitz with respect to θ. As a result, the function f(Xρ2 , θ) isC-Lipschitz
continuous on (t, θ) with C = (C1 + C2X0 + C2C

r
fCm)CrfCm + C3,r, which implies

∥∥∥∥∫ t

0

∫
θ
f(Xρ2 , θ)(ρ1(θ, s)− ρ2(θ, s))dθds

∥∥∥∥ ≤ CW2(ρ1, ρ2). (A.10)

Finally, by defining

Ĉ = max{(C1 + C2X0 + C2C
r
fCm)Cm, C}, (A.11)

we have by (A.7)

∆(x, t) ≤
∫ t

0
Ĉ∆(x, t) + ĈW2(ρ1, ρ2). (A.12)

Applying the Gronwall’s inequality gives

∆(x, t) ≤ ĈeĈtW2(ρ1, ρ2), (A.13)

and specifically for t = 1 we have

‖Xρ1(x, 1)−Xρ2(x, 1)‖ ≤ ĈeĈW2(ρ1, ρ2). (A.14)
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Theorem 2. (Gradient of the parameter) For ρ ∈ P2 let

δE

δρ
(θ, t) = Ex∼µf(Xρ(x, t), θ))pρ(x, t),

then for every ν ∈ P2 we have

E(ρ+ λ(ρ− ν)) = E(ρ) + λ

〈
δE

δρ
, (ρ− ν)

〉
+ o(λ)

Proof. To simplify the notation, we use ρ̂λ = ρ + λ(ρ − ν), From Theorem 1 (the well-poseness of the
model), we know that the function f(λ) = E(ρ̂λ)− E(ρ) is a continuous function with f(0) = 0 and thus

E(ρ̂λ)− E(ρ) = Ex∼µ| 〈w1, Xρ̂λ(x, 1)〉 − y(x)|2 − Ex∼µ| 〈w1, Xρ(x, 1)〉 − y(x)|2

= Ex∼µ(〈w1, Xρ〉 − y(x))(Xρ̂λ(x, 1)−Xρ(x, 1)) +O(Xρ̂λ(x, 1)−Xρ(x, 1))

Now we bound Xρ̂λ(x, 1)−Xρ(x, 1). First, notice that the adjoint equation is a linear equation:

ṗρ(x, t) = −δXHρ(pρ, x, t) = −pρ(x, t)
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

with solution

p(x, t) = p(x, 1) exp(

∫ 1

t

∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθdt).

Next, we bound ∆(x, t) = ‖Xρ̂λ(x, t)−Xρ(x, t)−λ
∫
t

∫
θ(ρ(x, θ)−ν(x, θ))pρ(x, t)‖ in order to show that

∆(x, t) = o(λ). The way to estimate the difference is to utilize the Duhamel’s principle.

d

dt

[
e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds(Xρ̂λ(x, s)−Xρ(x, s))

]
= e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds

[
Ẋρ̂λ(x, s)− Ẋρ(x, s)−

∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ(Xρ̂λ(x, s)−Xρ(x, s))

]
At the same time we have

Ẋρ̂λ(x, s)− Ẋρ(x, s) = Fρ(Xρ̂λ , s)− Fρ(Xρ, s) + Fρ̂λ(Xρ̂λ , s)− Fρ(Xρ̂λ , s)

=

(∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s)) + o(λ)

+ λ

∫
θ
f(Xρ̂λ(x, s), θ)(ρ− ν)(θ, s)dθ

=

(∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s)) + o(λ)

+ λ

(∫
θ
∇Xf(Xρ(x, s), θ)(ρ− ν)(θ, s)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s)) + o(λ)

+ λ

∫
θ
f(Xρ(x, s), θ)(ρ− ν)(θ, s)dθ

=

(∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s))

+ λ

∫
θ
f(Xρ(x, s), θ)(ρ− ν)(θ, s)dθ + o(λ).
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Here Fρ(X, t) =
∫
θ f(X, t)ρ(θ, t)dθ, and the last equality holds because ‖Xρ̂λ(x, s) − Xρ(x, s)‖ ≤

ĈeĈd(ρ1, ρ2) = O(λ). This leads us to

d

dt

[
e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds(Xρ̂λ(x, s)−Xρ(x, s))

]
= e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds

[
Ẋρ̂λ(x, s)− Ẋρ(x, s)

−
∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ(Xρ̂λ(x, s)−Xρ(x, s))

]
= e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds

[
λ

∫
θ
f(Xρ(x, s), θ) + o(λ)

]
.

Thus

Xρ̂λ(x, 1)−Xρ(x, 1) =

∫ 1

0

∫
θ
e
∫ 1
t

∫
∇Xf(Xρ(x,s),θ)ρ(θ,s)dθdsf(Xρ(x, s), θ)(ρ− ν)(θ, t)dθdt+ o(λ).

Combining with the definition of the adjoint equation p(x, t) = p(x, 1)e
∫ 1
t

∫
∇Xf(Xρ(x,t),θ)ρ(θ,t)dθdt and

pρ(x, 1) := ∂E(x;ρ)
∂Xρ(x,1) =

(
〈w1, Xρ(x, 1)〉 − y(x)

)
w1, we have

E(ρ+ λ(ρ− ν)) = E(ρ) + λ

〈
δE

δρ
, (ρ− ν)

〉
+ o(λ).

Corollary 2.1. (Ambrosio et al., 2008) For distribution ρ satisfies ρ(Qr) = 1, for any admissible transport
plan γ and a vector field v = ∇ δE

δρ , we have

E(π#ρ) ≥ E(ρ) +

∫
v(y) · (x− y)dγ(x, y) + o

((∫
|y − x|2dγ(x, y)

)1/2
)
.

B Detailed Proofs For Landscape Analysis.

Theorem 3. If E(ρ) > 0 for some probability distribution ρ ∈ P2 which concentrates on one of the nested
sets Qr, then there exists a descend direction v ∈ P2 s.t.〈

δE

δρ
, (ρ− v)

〉
> 0

Proof. First we lower bound the gradient respect to the feature map Xρ(·, t) by the loss function to show
that changing feature map can always leads to a lower loss. This is observed by (Bartlett et al., 2018, 2019)
where they mean by

Lemma 1. The norm of the solution to the adjoint equation can be bounded by the loss

‖pρ(·, t)‖2µ ≥ e−(C1+C2r)E(ρ), ∀ t ∈ [0, 1].

Proof. By definition,

‖pρ(·, 1)‖ = ‖
(
〈w1, Xρ(·, 1)〉 − y(·)

)
w1‖ = |〈w1, Xρ(·, 1)〉 − y(·)|,

which implies that ‖pρ(·, 1)‖2µ = 2E(ρ).
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By assumption there exist a constant Cρ > 0 such that∣∣∣ ∫ ρ(θ, t)dθ −
∫
ρ(θ, s)dθ

∣∣∣ ≤ ‖ρ(·, t− s)− ρ(·, s)‖BL ≤ Cρ|t− s|, ∀t, s ∈ [0, 1].

Integrating the inequality above with respect to s over [0, 1], and using the fact that
∫
θ

∫
t ρ(θ, t) = 1, one

obtains that
∫
ρ(θ, t)dθ ≤ 1 + Cρ

∫ 1
0 |t− s|ds ≤ 1 +

Cρ
2 .

Recall that pρ solves the adjoint equation

ṗρ(x, t) = −pρ(x, t)
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ (B.1)

where by the assumption on f and the above bound on
∫
ρ(θ, t)dθ, we have for any x

‖
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ‖ ≤ sup

x,θ
|∇Xf(Xρ(x, t), θ)|

∫
θ
ρ(θ, t)dθ ≤ (C1 + C2r).

It then follows from the Gronwall’s inequality that

‖pρ(·, t)‖µ ≥ e−
∫ 1
0 supx ‖

∫
∇Xf(Xρ(x,t),θ)ρ(θ,t)dθ‖dt‖pρ(·, 1)‖µ ≥ e−(C1+C2r)E(ρ)1/2.

The claim of the Lemma then follows by squaring the inequality (and redefining constants C1 and C2).

Thanks to the existence and uniqueness of the solution of the ODE model as stated in Theorem 1, the
solution map of the ODE is invertible so that there exists an inverse map X−1

ρ,t such that we can construct an
inversion function X−1

ρ,t (Xρ(x, t)) = x. With X−1
ρ,t , we define p̂ρ(x, t) = pρ(X

−1
ρ,t (x), t).

Since ρ(θ, t) is a probability density, i.e.,
∫ ∫

ρ(θ, t)dθdt = 1, there exists t∗ ∈ (0, 1) such that∫
θ ρ(θ, t∗)dθ > 1

2 . Since k(x1, x2) = f(x1, x2) is a universal kernel (Micchelli et al., 2006), for any
g(x) satisfying that ‖g‖µ̂ < ∞ for some probability measure µ̂ and for any fixed ε > 0, there exists a
probability distribution δν̂ ∈ P2(Rd2) such that

‖g(x)−
∫
θ
f(x, θ)δν̂(θ)dθ‖µ̂ ≤ ε, (B.2)

In particular, in what follows we consider the function g(x) and the measure µ̂ given by

g(x) := −p̂(x, t∗) +
1∫

θ ρ(θ, t∗)dθ

∫
θ
f(x, θ)ρ(θ, t∗)dθ and µ̂ = µ̂ρ,t∗ := Xρ(·, t∗)#µ.

The value of ε will be chosen later in the proof. Moreover, we also define the perturbed measure

δν =

(
δµ̂(θ)− ρ(θ, t∗)∫

θ ρ(θ, t∗)dθ

)
φ(t), (B.3)

where φ(t) is a smooth non-negative function integrates to 1 and compactly supported in the interval (0, 1),
so that it is clear that δν satisfies the regularity assumptions. We will consider the perturbed probability
density ν defined as

ν = ρ+ δrδν for some δr > 0.

Lemma 2. The constructed ν with ε sufficiently small gives a descent direction of our model with the
estimate〈

δE

δρ
, (ν − ρ)

〉
≤ −δr

2
e−2(C1+C2r)E(ρ) < 0. (B.4)
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Proof. An application of the Gronwall inequality to (B.1) implies that

pρ(x, t1)pρ(x, t2) ≥ e−|t1−t2|(C1+C2r)
(
pρ(x, t1)2 ∨ pρ(x, t2)2

)
(B.5)

for all x ∈ Rd, 1 ≥ t2 ≥ t1 ≥ 0.
As a result of (B.3),〈

δE

δρ
, (ν − ρ)

〉
= Ex∼µ 〈f(Xρ(x, t), ·))pρ(x, ·), δrδν〉

= δr

∫
Ex∼µ̂ρ,t p̂ρ(x, t)

∫
θ
f(x, θ)δν(θ, t)dθφ(t)dt

= δr

∫
Ex∼µ̂ρ,t

[
p̂ρ(x, t)

∫
θ
f(x, θ)δν̂(θ)dθ

]
φ(t)dt

− δr
∫

Ex∼µ̂ρ,t
[
p̂ρ(x, t)

∫
f(x, θ)ρ(θ, t∗)dθ∫
θ ρ(θ, t∗)dθ︸ ︷︷ ︸
=g+p̂(x,t∗)

]
dt

= δr

∫
Ex∼µ̂ρ,t

[
p̂ρ(x, t)

(∫
θ
f(x, θ)δν̂(θ)dθ − g(x)

)]
φ(t)dt

− δr
∫

Ex∼µ̂ρ,t
[
p̂ρ(x, t)p̂(x, t∗)

]
φ(t)dt

=: I1 + I2.

The last equation defines I1 and I2 which will be estimated separately below.
Thanks to (B.2), for I1, we have

I1 ≤ δr
∫
‖p̂ρ(·, t)‖µ̂ρ,t

∥∥∫
θ
f(x, θ)δν̂(θ)dθ − g(x)

∥∥
µ̂ρ,t

φ(t)dt

= δr

∫
‖pρ(·, t)‖µ

∥∥∫
θ
f(x, θ)δν̂(θ)dθ − g(x)

∥∥
µ̂ρ,t

φ(t)dt

≤ δr
∫
‖pρ(·, t)‖µ ε sup

x

∣∣∣ dµ̂ρ,t
dµ̂ρ,t∗

∣∣∣φ(t)dt

= δr

∫
‖pρ(·, t)‖µ ε sup

x

∣∣Jρ(x; t, t∗)
∣∣φ(t)dt,

where Jρ(x; t, s) is the Jacobian of the flow at time t with respect to time s assuming starting at x at time 0;
which is bounded by the Lipschitz assumption of the f . Thus, we have

I1 ≤ Cεδr
∫
‖pρ(·, t)‖µφ(t)dt. (B.6)

Thanks to (B.5), one has

I2 ≤ −δr
∫
e−|t−t∗|(C1+C2r)‖p̂ρ(·, t)‖2µ̂ρ,tφ(t)dt

= −δr
∫
e−|t−t∗|(C1+C2r)‖pρ(·, t)‖2µφ(t)dt

≤ −e−(C1+C2r)δr

∫
‖pρ(·, t)‖2µφ(t)dt.

(B.7)
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Combining the above together, and choosing ε sufficiently small that the right-hand-side of (B.6) is bounded
by a half of the right-hand-side of (B.7) (note that the constants and the integral in the right-hand-side of
(B.6) and (B.7) do not depend on ε), we arrive at

I1 + I2 ≤ −
1

2
e−(C1+C2r)δr

∫
‖pρ(·, t)‖2µφ(t)dt

≤ −1

2
e−(C1+C2r)δr

∫
e−(C1+C2r)E(ρ)φ(t)dt

= −δr1

2
e−2(C1+C2r)E(ρ),

where the last inequality follows from Lemma 1.

Now we go back to the proof of Theorem 3, as Lemma 2 illustrates, if the loss E(ρ) is not equal to zero,
then we can always find a direction to decrease the loss, this complete the proof.

C Properties of the loss function in the Wasserstein space.

In this section we analyze the objective function following the theory of the gradient flow developed in
(Ambrosio et al., 2008). First we will prove that our objective function shares the same regularity with the
two-layer neural network as shown in (Chizat et al., 2019). Then we will analyze the stationary solution of
the gradient flow, and show that they are given by global minima.

Regularity in the Wasserstein Space

To address the regularity of the Wasserstein gradient flow, following (Chizat & Bach, 2018), we first analyze
the regularity of E restricted to the set {ρ | ρ ∈ P2, ρ(Qr) = 1}, to make this explicit, we denote the
functional Fr as

Fr(ρ) =

{
E(ρ), if ρ(Qr) = 1;

∞, otherwise.

Theorem. (Geodesically semiconvex property of Fr in Wasserstein geometry) Further assume that f(x, θ)
have second order smoothness, i.e. f(x, θ) has a smooth Hessian. Then for all r > 0, Fr is proper and
continuous in W2 space on its closed domain, Moreover, for ∀ρ1, ρ2 ∈ P2 and an admissible transport plan
γ, denote the interpolation plan in Wasserstein space as µγt := ((1 − t)ρ1 + tρ2)#γ. There exists a λ > 0
such that the function on the Wasserstein geodesic t → Fr(µ

γ
t ) is differentiable with a λC(γ)-Lipschitz

derivative. Here C(γ) is the transport cost C(γ) =
(∫
|y − x|2dγ(x, y)

)1/2.

Proof. To prove the regularity of our objective in the Wasserstein space, we first provide some analysis of
the objective function.

Lemma 3. The gradient of the objective function has the following bound, i.e.

sup
θ∈Qr

∥∥∥∥δEδρ (θ, t)

∥∥∥∥ = sup
θ∈Qr

‖Ex∼µf(Xρ(x, t), θ))pρ(x, t)‖ ≤ e(C1+C2r)σ3(σ2R1 +R2 + Crf ).

Proof. First the output of the neural network satisfies

‖Xρ(x, 1)‖ ≤ ‖Xρ(x, 0)‖+ ‖
∫ 1

0

∫
θ
f(Xρ(x, t), θ)ρ(θ, t)dθdt‖ ≤ σ2R1 + Crf ,
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thus ‖pρ(x, 1)‖ := ‖ ∂E(x;ρ)
∂Xρ(x,1)‖ = ‖

(
〈w1, Xρ(x, 1)〉 − y(x)

)
‖ ≤ σ3(σ2R1 +R2 + Crf ).

At the same time, for the adjoint process pρ(x, t) satisfying the adjoint equation, using Gronwall in-
equality we have, similarly to the proof of Lemma 1

‖pρ(·, t)‖ ≤ e
∫ 1
0 ‖

∫
θ∇Xf(Xρ(x,t),θ)ρ(θ,t)dθ‖dt‖pρ(·, 1)‖ ≤ e(C1+C2r)σ3(σ2R1 +R2 + Crf ). (C.1)

The conclusion then follows as f is bounded on the compact space.

Lemma 4. The gradient of the objective function with respect to the feature Xρ(x, t) is Lipschitz in P2, i.e.,
there exists a constant Lg1 satisfies

sup
ρ1 6=ρ2

sup
s∈(0,1)

‖pρ1(x, s)− pρ2(x, s)‖
‖ρ1 − ρ2‖

≤ Lg1 .

Furthermore, the Frechet derivative δpρ
δρ exists.

Proof. As proved in Theorem 1, ‖Xρ1(x, 1)−Xρ2(x, 1)‖ ≤ ĈeĈdW (ρ1, ρ2) ≤ ĈeĈ

R2
r
‖ρ1−ρ2‖, which leads

to ‖pρ1(x, 1)−pρ2(x, 1)‖ = |(〈w1, Xρ1(x1, 1)〉−y(x))|−|(〈w1, Xρ2(x1, 1)〉−y(x))| ≤ ĈeĈdW (ρ1, ρ2) ≤
ĈeĈ

R2
r
‖ρ1 − ρ2‖. To propagate the estimates to t ≤ 1, we control

‖ṗρ1(x, s)− ṗρ2(x, s)‖ =

∥∥∥∥∥
(∫

θ
∇Xf(Xρ1(x, s), θ)ρ1(θ, s)dθ

)
pρ1(x, s)

−
(∫

θ
∇Xf(Xρ2(x, s), θ)ρ2(θ, s)dθ

)
pρ2(x, s)

∥∥∥∥∥
≤
∥∥∥∥(∫

θ
∇Xf(Xρ1(x, s), θ)ρ1(x, s)dθ

)
(pρ1(x, s)− pρ2(x, s))

∥∥∥∥
+

∥∥∥∥(∫
θ
∇Xf(Xρ2(x, s), θ)(ρ2(x, s)− ρ1(x, s))dθ

)
pρ2(x, s)

∥∥∥∥
≤ (C1 + C2r)

(∫
ρ1(θ, s)dθ

)
‖pρ1(x, s)− pρ2(x, s)‖

+ (C1 + C2r)‖pρ2(x, s)‖

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

(C.1)
≤ (C1 + C2r)

(∫
ρ1(θ, s)dθ

)
‖pρ1(x, s)− pρ2(x, s)‖

+ (C1 + C2r)e
(C1+C2r)σ3(σ2R1 +R2 + Crf )

×

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

.

Introduce the short hand M := (C1 + C2r)e
(C1+C2r)σ3(σ2R1 + R2 + Crf ) and applying the Gronwall
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inequality, we obtain

‖pρ1(x, s)− pρ2(x, s)‖ ≤ ĈeĈ+(C1+C2r)
∫ 1
0

∫
ρ1(θ,s)dθds

R2
r

‖ρ1 − ρ2‖

+

∫ 1

0
Me(C1+C2r)

∫ 1
t (

∫
ρ1(θ,s)dθ)ds

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

dt

≤ ĈeĈ+(C1+C2r)

R2
r

‖ρ1 − ρ2‖

+Me(C1+C2r)
∫ 1
0

∫
ρ1(θ,s)dθds

∫ 1

0

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

dt

≤
(
ĈeĈ+(C1+C2r)

R2
r

+Me(C1+C2r)

)
‖ρ1 − ρ2‖,

where last inequality follows from Jensen’s inequality

∫ 1

0

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

dt ≤

(∫ 1

0

∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθdt

)1/2

= ‖ρ1 − ρ2‖.

The existence of the Frechet derivative follows from the smoothness of the activation function, in par-
ticular the assumption that the Hessian is bounded.

Now we show the continuity of the objective function in the Wasserstein space. By denoting h(τ) =
Fr(µ

γ
τ )

h′(τ) =
d

dτ
Fr(µ

γ
τ )

=

〈
δE

δρ
[µγτ ],

d

dτ
µγτ

〉
=

∫
d
δE

δρ
[µγτ ]((1− τ)(θ1, t1) + τ(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2)). (C.2)

For any τ1, τ2 ∈ [0, 1], we have h′(τ1)− h′(τ2) = I + J with

I =

∫
d
δE

δρ
[µγτ1 ]((1− τ1)(θ1, t1) + τ1(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2))

−
∫
d
δE

δρ
[µγτ2 ]((1− τ1)(θ1, t1) + τ1(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2)), (C.3)

J =

∫
d
δE

δρ
[µγτ2 ]((1− τ1)(θ1, t1) + τ1(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2))

−
∫
d
δE

δρ
[µγτ2 ]((1− τ2)(θ1, t1) + τ2(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2)). (C.4)

For I , we have

|I| ≤ Lg1 · 2r‖µγτ1 − µ
γ
τ2‖

≤ 2rLg1C2(γ)|τ1 − τ2|. (C.5)
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Similarly, for J we have

|J | ≤ Lg1 |τ1 − τ2|
∫

((θ1, t1)− (θ2, t2))2dγ

= Lg1C
2
2 (γ)|τ1 − τ2|. (C.6)

Finally, combining the estimates for I and J shows that h′(τ) is Lipschitz continuous.

With the proved regularity, the short time well-posedness of Wasserstein gradient flow is a corollary of
Theorem 11.2.1 of (Ambrosio et al., 2008).

Corollary 3.1. There exists a Tmax such that there exists a unique solution {ρs}s∈[0,Tmax] to the Wasserstein

gradient flow
∂(θ,t)ρ

∂s = div(ρ,t)(ρ∇(ρ,t)
δE
δρ ) starting from any µ0 ∈ P2 concentrated on Qr.

Convergence Results For The Wasserstein Gradient Flow

We move on to prove that the stationary point of the Wasserstein gradient flow achieves the global optimum
with a support related assumption. Following (Chizat & Bach, 2018), we introduce an assumption of the
homogeneity of the activation function which is a central requirement for our global convergence results.

Homogeneity. A function f between vector spaces is positively p-homogeneous when for all λ > 0 and
argument x, f(λx) = λpf(x). We assume that the functions f(X, θ) that constitute the residual block
obtained through the lifting share the property of being positively p-homogeneous (p > 0) in the variable
θ. As (Chizat & Bach, 2018) remarked the ReLU function is a 1-homogeneity function which leads to
the 2-homogeneity respect to θ of f(X, θ) when the residual block is implemented via a two-layer neural
network.

Theorem 4. When the residual block f(X, θ) is positively p-homogeneous respective to θ. Let (ρs)s≥0 be
the solution of the the Wasserstein gradient

∂(θ,t)ρ

∂s = div(ρ,t)(ρ∇(ρ,t)
δE
δρ ) of our mean-field model (A.2).

Consider a stationary solution to the gradient flow ρ∞ which concentrates in one of the nested sets Qr and
separates the spheres raSd−1×[0, 1] and rbSd−1×[0, 1]. Then ρ∞ is a global minimum satisfiesE(ρ∞) = 0.

Proof. First we use the conclusion of (Nitanda & Suzuki, 2017) which characterize the condition of the
stationary points in the Wasserstein space, which concludes that the steady state ρ∞ of the Wasserstein
gradient flow

∂(θ,t)ρ

∂s
= div(ρ,t)(ρ∇(ρ,t)

δE

δρ
)

must satisfy∇(θ,t)
δE
δρ |ρ∞ = 0, ρ∞-a.e.

We will use the homogeneity of the activation function and the separation property of the support of ρ∞
to further prove that ∇(θ,t)

δE
δρ |ρ=ρ∞ = 0, a.e. (i.e., it also vanishes outside the support of ρ∞, which might

not be the full parameter space).
Due to the separation assumption of the support of the distribution, for any (θ, t) ∈ Rd1×d1 × [0, 1],

there exists r > 0 such that (rθ, t) ∈ supp(ρ∞). Due to the homogeneity assumption, we have

δE

δρ
(rθ, t) = Ex∼µf(Xρ(x, t), rθ))pρ(x, t) = rpEx∼µf(Xρ(x, t), θ))pρ(x, t) = rp

δE

δρ
(rθ, t),

which leads to ∇(θ,t)
δE
δρ (rθ, t) = rp∇(θ,t)

δE
δρ (θ, t). Thus, since ∇(θ,t)

δE
δρ |ρ=ρ∞ = 0, ρ∞-a.e., we know that

∇(θ,t)
δE
δρ |ρ=ρ∞ = 0, a.e. This further implies that the differential is a constant δEδρ |ρ=ρ∞ ≡ c.
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If E(ρ∞) 6= 0, according to Theorem 3, there exists another distribution ν ∈ P2 s.t.〈
δE

δρ
|ρ=ρ∞ , (ρ− ν)

〉
> 0.

However
〈
δE
δρ |ρ=ρ∞ , (ρ−ν)

〉
= c

(∫
ρ(θ, t)dθdt−

∫
ν(θ, t)dθdt

)
= 0 due to the normalization of the prob-

ability measure. This leads to a contradiction. Thus the stationary solution measure must satisfyE(ρ∞) = 0,
which means that it is a global optimum.
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