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A. Proof of Lemma 2
Cross-Entropy loss According to (Masnadi-Shirazi & Vasconcelos, 2009), since the `CE is non-negative, minimizing
the conditional risk Ep(y|x)[`CE(g(X), Y )|X],∀X ∈ X is an alternative of minimizingR(g). The conditional risk can be
written as

C(g) = −
c∑

i=1

p(Y = i|X) log(gi(X)), s.t.

c∑
i=1

gi(X) = 1.

By the Lagrange Multiplier method (Bertsekas, 1997), we have

L = −
c∑

i=1

p(Y = i|X) log(gi(X)) + λ(

c∑
i=1

gi(X)− 1).

To minimize L, we take the partial derivative of L with respect to gi and set it be 0:

g∗i (X) =
1

λ
p(Y = i|X).

Because
∑c

i=1 g
∗
i (X) = 1 and

∑c
i=1 g

∗
i (X) = 1, we have

c∑
i=1

g∗i (X) =
1

λ

c∑
i=1

p(Y = i|X) = 1.

Therefore, we can obtain λ = 1 that ensures g∗i (X) = p(Y = i|X),∀i ∈ [c],∀X ∈ X , which concludes the proof.

Mean squared error loss Analogously, if the mean squared error loss is used, we can write the optimization problem as

C(g) =
c∑

i=1

(p(Y = i|X)− gi(X))2, s.t.

c∑
i=1

gi(X) = 1.

By the Lagrange Multiplier method, we have

L =

c∑
i=1

(p(Y = i|X)− gi(X))2 − λ′(
c∑

i=1

gi(X)− 1).

By setting the derivative to 0, we obtain

g∗i (X) =
λ′

2
+ p(Y = i|X).
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to: Xin Geng <xgeng@seu.edu.cn>.
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Because
∑c

i=1 g
∗
i (X) = 1 and

∑c
i=1 g

∗
i (X) = 1, we have

c∑
i=1

g∗i (X) =
λ′c

2
+

c∑
i=1

p(Y = i|X).

Since c 6= 0, we can obtain λ′ = 0. In this way, g∗i (X) = p(Y = i|X),∀i ∈ [c],∀X ∈ X , which concludes the proof.

B. Proof of Theorem 1
First we prove g∗ is the optimal classifier for PLL by substituting the g∗ into the PLL risk estimator Eq. (5):

RPLL(g
∗) = E(X,S)∼p(x,s)[min

i∈S
`(g∗(X), ei)] =

∫ ∑
S∈S

min
i∈S

`(g∗(X), ei)p(s|x)p(x)dX

=

∫ ∑
S∈S

min
i∈S

`(g∗(X), ei)
∑
Y ∈Y

p(s, y|x)p(x)dX

=

∫ ∑
Y ∈Y

∑
S∈S

min
i∈S

`(g∗(X), ei)p(s|x, y)p(y|x)p(x)dX

=

∫ ∑
Y ∈Y

∑
S∈S

`(g∗(X), eYX )p(s|x, y)p(y|x)p(x)dX

=

∫ ∑
Y ∈Y

`(g∗(X), eYX )
∑
S∈S

p(s|x, y)p(y|x)p(x)dX

=

∫ ∑
Y ∈Y

`(g∗(X), eYX )p(x, y)dX = R(g∗) = 0.

where we have used mini∈S `(g
∗(X), ei) = `(g∗(X), eYX ) because ` is a proper loss and the derministic assumption is

made. This indicates that the PLL risk has been minimized by g∗.

On the other hand, we prove g∗ is the only solution to Eq. (5) by contradiction, namely, there is at least one other solution h
enablesRPLL(h) = 0, and predicts different label Y h 6= YX for at least one instance X . Hence for any S 3 YX we have

min
i∈S

`(h(X), ei) = `(h(X), eY
h

) = 0.

Nevertheless, the above equality is always true unless Y h is invariably included in the candidate label set of X , i.e.,
PrS∼p(s|x,y)(Y

h ∈ S) = 1. Obviously, this contradicts the small ambiguity degree condition. Therefore, there is one, and
only one minimizer of the PLL risk estimator, which is the same as the minimizer learned from ordinarily labeled data. The
proof is complete.

C. Proof of Theorem 2
First, we show the uniform deviation bound, which is useful to derive the estimation error bound.

Lemma 3. For any δ > 0, we have with probability at least 1− δ,

supg∈G

∣∣∣RPLL(g)− R̂PLL(g)
∣∣∣ ≤ 2Rn(`PLL ◦ G) +M

√
log(2/δ)

2n

Proof. Consider the one-side uniform deviation supg∈G RPLL(g)− R̂PLL(g). Since the loss function ` is upper-bounded
by M , the change of it will be no more than M/n after replacing some x. Then, by McDiarmid’s inequality (McDiarmid,
1989), for any δ > 0, with probability at least 1− δ/2, the following holds:

supg∈G RPLL(g)− R̂PLL(g) ≤ E
[
supg∈G RPLL(g)− R̂PLL(g)

]
+M

√
log(2/δ)

2n
.
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By symmetrization (Vapnik, 1998), it is a routine work to show that

E
[
supg∈G RPLL(g)− R̂PLL(g)

]
≤ 2Rn(`PLL ◦ G).

The one-side uniform deviation supg∈G R̂PLL(g)−RPLL(g) can be bounded similarly.

Then we upper bound Rn(`PLL ◦ G).
Lemma 4. Suppose `PLL is defined as Eq. (4), it holds that

Rn(`PLL ◦ G) ≤ cRn(` ◦ G) ≤
√
2cL`

c∑
y=1

Rn(Gy).

Proof. By definition of `PLL, `PLL ◦ G(xi, Si) = miny∈S ` ◦ G(xi, y) = miny∈[c] ` ◦ G(xi, y). Given sample sized n, we
first prove the result in the case c = 2. The min operator can be written as

min{z1, z2} =
1

2

[
z1 + z2 − |z1 − z2|

]
.

In this way, we can write

Rn(`PLL ◦ G) = Eσ

[
sup
g∈G

1

n

n∑
i=1

σi`(g(xi), si))

]
(11)

= Eσ

[
sup
g∈G

1

n

n∑
i=1

σi min{`(g(xi), y1), `(g(xi), y2)}

]

= Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi

[
`(g(xi), y1) + `(g(xi), y2)− |`(g(xi), y1)− `(g(xi), y2)|

]]

≤ Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi`(g(xi), y1)

]
+ Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi`(g(xi), y2)

]

+ Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi

∣∣∣`(g(xi), y1)− `(g(xi), y2)∣∣∣]

=
1

2

(
Rn(` ◦ G) +Rn(` ◦ G)

)
+ Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi

∣∣∣`(g(xi), y1)− `(g(xi), y2))∣∣∣] .
Since x 7→ |x| is a 1-Lipschitz function, by Talagrand’s contraction lemma (Ledoux & Talagrand, 2013), the last term can
be bounded:

Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi

∣∣∣`(g(xi), y1)− `(g(xi), y2))∣∣∣] (12)

≤Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi

(
`(g(xi), y1)− `(g(xi), y2))

)]
≤ 1

2

(
Rn(` ◦ G) +Rn(` ◦ G)

)
.

Combining Eq. (11) and Eq. (12) yields Rn(`PLL ◦ G) ≤ Rn(` ◦ G) +Rn(` ◦ G). The general case can be derived from the
case c = 2 using min{z1, . . . , zc} = min{z1,min{z2, . . . , zc}} and an immediate recurrence.

Then we apply the Rademacher vector contraction inequality (Maurer, 2016),

Rn(` ◦ G) ≤
√
2L`

c∑
y=1

Rn(Gy).

The proof is completed.
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Table 4. Summary of benchmark datasets and models.

Dataset # Train # Test # Feature # Class Model g(x; Θ)

MNIST 60,000 10,000 784 10 Linear model, MLP (depth 5)
Fashion-MNIST 60,000 10,000 784 10 Linear model, MLP (depth 5)

Kuzushiji-MNIST 60,000 10,000 784 10 Linear model, MLP (depth 5)
CIFAR-10 50,000 10,000 3,072 10 ConvNet (Laine & Aila, 2017), ResNet (He et al., 2016)

Based on Lemma 3 and 4, the estimation error bound Eq. (7) is proven through

RPLL(ĝPLL)−RPLL(g
∗
PLL) =

(
RPLL(ĝPLL)− R̂PLL(ĝPLL)

)
+
(
R̂PLL(ĝPLL)− R̂PLL(g

∗
PLL)

)
+
(
R̂PLL(g

∗
PLL)−RPLL(g

∗)
)

≤
(
RPLL(ĝPLL)− R̂PLL(ĝPLL)

)
+
(
R̂PLL(g

∗
PLL)−RPLL(g

∗
PLL)

)
≤ 2 sup

g∈G

∣∣∣RPLL(g)− R̂PLL(g)
∣∣∣

≤ 4
√
2cL`

c∑
y=1

Rn(Gy) + 2M

√
log(2/δ)

2n
.

D. Supplementary Theorem on Section 4
Theorem 3. The learning objective in Jin & Ghahramani (2003) is a special case of Eq. (8).

Proof. Recall the learning objective in Jin & Ghahramani (2003) is formulated as:

R̂PLL =
1

n

n∑
i=1

KL
[
zi||g(xi)

]
=

1

n

n∑
i=1

zi log
zi

g(xi)
, (13)

where KL divergence is used and zi represents the prior probability of xi.

Then in Eq. (8), the loss function can be specified as the cross-entropy loss: `CE(gj(xi), e
si
j ) = −esij log(gj(xi)), which is

linear in the second term, i.e.,

1

n

n∑
i=1

c∑
j=1

wij`CE(gj(xi), e
si
j ) =

1

n

n∑
i=1

c∑
j=1

`CE(gj(xi),wije
si
j ).

Thus, the weights w can be moved into the loss function and yields:

R̂PLL =
1

n

n∑
i=1

c∑
j=1

`CE(gj(xi), zij) = −
1

n

n∑
i=1

zi log g(xi), (14)

where zij = wijI(j ∈ si). The optimal g∗ of Eq. (14) is essentially equivalent to g∗ learned from Eq. (13). Therefore, our
method is a strict extension of (Jin & Ghahramani, 2003).

E. Benchmark Datasets
E.1. Setup

Tabel 4 describes the benchmark datasets and the corresponding models of them.
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MNIST This is a grayscale image dataset of handwritten digits from 0 to 9 where the size of the images is 28× 28.

The linear model is a linear-in-input model: d-10, and MLP refers to a 5-layer FC with ReLU as the activation function:
d-300-300-300-300-10. Batch normalization (Ioffe & Szegedy, 2015) was applied before hidden layers. For both models,
the softmax function was applied to the output layer, and `2-regularization was added. The two models were trained by
SGD with the default momentum parameter (β = 0.9), and the batch size was set to 256.

Fashion-MNIST This is a grayscale image dataset similarly to MNIST. In Fashion-MNIST, each instance is a 28× 28
grayscale image and associated with a label from 10 fashion item classes. The models and optimizer were the same as
MNIST.

Kuzushiji-MNIST This is another grayscale image dataset similarly to MNIST. In Kuzushiji-MNIST, each instance is
a 28× 28 grayscale image and associated with a label from 10 cursive Japanese (Kuzushiji) characters. The models and
optimizer were the same as MNIST.

CIFAR-10 This dataset consists of 60,000 32× 32× 3 colored image in RGB format in 10 classes.

The detailed architecture of ConvNet (Laine & Aila, 2017) is as follows.

0th (input) layer: (32*32*3)-
1st to 4th layers: [C(3*3, 128)]*3-Max Pooling-
5th to 8th layers: [C(3*3, 256)]*3-Max Pooling-

9th to 11th layers: C(3*3, 512)-C(3*3, 256)-C(3*3, 128)-
12th layers: Average Pooling-10

where C(3*3, 128) means 128 channels of 3*3 convolutions followed by Leaky-ReLU (LReLU) active function (Maas et al.,
2013), [ · ]*3 means 3 such layers, etc.

The detailed architecture of ResNet (He et al., 2016) was as follows.

0th (input) layer: (32*32*3)-
1st to 11th layers: C(3*3, 16)-[C(3*3, 16), C(3*3, 16)]*5-

12th to 21st layers: [C(3*3, 32), C(3*3, 32)]*5-
22nd to 31st layers: [C(3*3, 64), C(3*3, 64)]*5-

32nd layer: Average Pooling-10

where [ ·, · ] means a building block (He et al., 2016). These two models were trained by SGD with the default momentum
parameter and the batch size was 256.

An example of a binomial flipping with q = 0.1 and of a pair flipping with q = 0.5 used on MNIST are below, respectively:



1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1





1 0.5 0 0 0 0 0 0 0 0
0 1 0.5 0 0 0 0 0 0 0
0 0 1 0.5 0 0 0 0 0 0
0 0 0 1 0.5 0 0 0 0 0
0 0 0 0 1 0.5 0 0 0 0
0 0 0 0 0 1 0.5 0 0 0
0 0 0 0 0 0 1 0.5 0 0
0 0 0 0 0 0 0 1 0.5 0
0 0 0 0 0 0 0 0 1 0.5
0.5 0 0 0 0 0 0 0 0 1



E.2. Transductive Results

Figure 3 illustrates the transductive results on the benchmark datasets, i.e., the ability in identifying the true labels in the
training set. We can see that PRODEN has a strong ability to find the true labels.

E.3. Test Results in the Pair Case

Figure 4 illustrates the test results on the benchmark datasets in the pair case. They show a similar phenomenon to Figure 2
that PRODEN is affected slightly and CCN is affected severely when the ambiguity degree goes large.
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MNIST, Linear, q = 0.7
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MNIST, MLP, q = 0.7
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Fashion, Linear, q = 0.1
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Fashion, MLP, q = 0.1

0 100 200 300 400 500
Epoch

20

30

40

50

60

70

80

90

Tr
an

sd
uc

tiv
e 

Ac
cu

ra
cy

 (%
)

Fashion, Linear, q = 0.7
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Kuzushiji, Linear, q = 0.1
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Kuzushiji, Linear, q = 0.7
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CIFAR, ConvNet, q = 0.1
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CIFAR, ResNet, q = 0.1
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CIFAR, ConvNet, q = 0.7
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CIFAR, ResNet, q = 0.7

Figure 3. Transductive accuracy for various models and datasets. Dark colors show the mean accuracy of 5 trials and light colors show
standard deviation. Fashion is short for Fashion-MNIST, Kuzushiji is short of Kuzushiji-MNIST, CIFAR is short of CIFAR-10.

F. UCI datasets
F.1. Characteristic of the UCI Datasets and Setup

Table 5 summaries the characteristic of the UCI datasets. We normalized these dataset by the Z-scores by convention and
use the linear model trained by SGD with momentum 0.9.

F.2. Comparing Methods

The comparing PLL methods are listed as follows.

• SURE (Feng & An, 2019): an iterative EM-based method [suggested configuration: λ, β ∈
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Figure 4. Test accuracy on MNIST, Fashion-MNIST, and CIFAR-10 in the pair case.

{0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 1}].

• CLPL (Cour et al., 2011): a parametric method that transforms the PLL problem to the binary learning problem [suggested
configuration: SVM with squared hinge loss].

• ECOC (Zhang et al., 2017): a disambiguation-free method that adapts the binary decomposition strategy to PLL [suggested
configuration: L = log2(l)].

• PLSVM (Nguyen & Caruana, 2008): a SVM-based method that differentiates candidate labels from non-candidate labels
by maximizing the margin between them [suggested configuration: λ ∈ {10−3, . . . , 103}].

• PLkNN (Hullermeier & Beringer, 2006): a non-parametric approach that adapts k-nearest neighbors method to handle
partially labeled data [suggested configuration: k ∈ {5, 6, . . . , 10}].

• IPAL (Zhang & Yu, 2015): a non-parametric method that applies the label propagation strategy to iteratively update the
weight of each candidate label [suggested configuration: α = 0.95, k = 10, T = 100].

F.3. Results

Tabel 6 provides additional experiments to investigate the performances of each comparing methods on the UCI datasets
with the pair flipping strategy. It shows that PRODEN generally achieves superior performance against other parametric
comparing methods. Our advantage is a less obvious compared with the non-parametric method IPAL, whereas the
performance of PRODEN could be easily increased by employing a deeper network.
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Table 5. Summary of UCI datasets and models.

Dataset # Train # Test # Feature # Class Model g(x; Θ)

Yeast 1,335 149 8 10 Linear model
Texture 4,950 550 40 11 Linear model

Dermatology 329 37 34 6 Linear model
Synthetic-Control 540 60 60 6 Linear model

20Newsgroups 16,961 1,885 300 20 Linear model

Table 6. Test accuracy (mean±std) on the UCI datasets in the pair case.

q Yeast Texture Dermatology Synthetic Control 20Newsgroups

PRODEN
0.5 56.38±4.71% 99.71±0.12% 96.16±3.27% 98.05±1.58% 78.05±0.97%
0.9 44.03±4.12% 99.35±0.31% 93.68±6.80% 96.33±1.12% 70.71±0.72%

PRODEN-itera
0.5 56.26±4.74% 99.13±0.40%• 93.15±2.56% 87.40±7.25%• 76.90±0.92%
0.9 42.62±5.52% 78.74±4.09%• 68.14±6.89%• 57.90±5.08%• 57.15±0.71%•

GA
0.5 24.39±4.40%• 94.25±0.48%• 73.81±6.18%• 64.68±3.08%• 63.68±0.67%•
0.9 16.50±3.43%• 61.85±2.29%• 48.03±11.42%• 37.15±6.91%• 45.86±0.95%•

D2CNN
0.5 56.38±4.71% 98.71±0.28%• 95.89±3.75% 78.87±11.94%• 74.38±0.90%•
0.9 41.52±7.03% 86.45±4.87%• 87.84±6.58% 62.92±12.36%• 64.16±0.36%•

SURE
0.5 51.69±3.81% 98.18±0.17%• 95.71±2.49% 78.67±5.26%• 70.21±0.88%•
0.9 37.61±3.40%• 98.00±0.42%• 93.42±6.23% 52.33±6.49%• 61.01±0.93%•

CLPL
0.5 55.06±4.74% 98.80±0.22%• 94.52±3.36% 75.83±4.29%• 77.92±0.76%
0.9 40.66±4.69% 90.21±4.77%• 87.67±3.06% 52.33±4.65%• 65.03±0.32%•

ECOC
0.5 54.55±3.92% 99.47±0.17%• 94.71±2.29% 96.67±2.08% 78.67±1.11%
0.9 42.51±5.19% 69.69±4.82%• 92.97±6.61% 94.50±1.32% 70.11±1.63%

PLSVM
0.5 52.59±2.04% 93.38±2.22%• 93.97±4.50% 91.83±3.08%• 76.21±2.30%
0.9 41.89±3.90% 82.24±6.58%• 93.15±4.22% 80.67±9.42%• 70.76±2.16%

PLkNN
0.5 53.60±2.81% 97.11±0.28%• 94.52±3.06% 94.83±2.60%• 43.77±0.72%•
0.9 43.80±4.50% 92.98±0.64%• 92.05±4.38% 89.83±4.54%• 38.77±0.90%•

IPAL
0.5 51.80±5.08% 99.30±0.37% 95.89±2.74% 98.50±1.37% 76.83±0.51%
0.9 36.60±2.58%• 98.95±0.58%• 95.34±2.29%◦ 98.50±1.09%◦ 69.15±0.73%

G. Characteristic of the Real-world Datasets and Setup
Tabel 7 summarizes the characteristic of the real-world datasets and the corresponding models. The preprocessing, model
and optimizer were the same as UCI datasets.
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Table 7. Summary of real-world partial label datasets.

Dataset # Examples # Feature # Class # Avg. CLs Task Domain Model g(x; Θ)

Lost 1122 108 16 2.23 automatic face naming (Panis & Lanitis, 2014) Linear model
BirdSong 4998 38 13 2.18 bird song classification (Briggs et al., 2012) Linear model
MSRCv2 1758 48 23 3.16 object classification (Liu & Dietterich, 2012) Linear model

Soccer Player 17472 279 171 2.09 automatic face naming (Zeng et al., 2013) Linear model
Yahoo! News 22991 163 219 1.91 automatic face naming (Guillaumin et al., 2010) Linear model
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