
Efficient Continuous Pareto Exploration in Multi-Task Learning

Pingchuan Ma * 1 Tao Du * 1 Wojciech Matusik 1

Abstract

Tasks in multi-task learning often correlate, con-
flict, or even compete with each other. As a result,
a single solution that is optimal for all tasks rarely
exists. Recent papers introduced the concept of
Pareto optimality to this field and directly cast
multi-task learning as multi-objective optimiza-
tion problems, but solutions returned by existing
methods are typically finite, sparse, and discrete.
We present a novel, efficient method that gen-
erates locally continuous Pareto sets and Pareto
fronts, which opens up the possibility of contin-
uous analysis of Pareto optimal solutions in ma-
chine learning problems. We scale up theoretical
results in multi-objective optimization to mod-
ern machine learning problems by proposing a
sample-based sparse linear system, for which stan-
dard Hessian-free solvers in machine learning can
be applied. We compare our method to the state-
of-the-art algorithms and demonstrate its usage
of analyzing local Pareto sets on various multi-
task classification and regression problems. The
experimental results confirm that our algorithm
reveals the primary directions in local Pareto sets
for trade-off balancing, finds more solutions with
different trade-offs efficiently, and scales well to
tasks with millions of parameters.

1. Introduction
Conflicting objectives are common in machine learning
problems: designing a machine learning model takes into
account model complexity and generalizability, training a
model minimizes bias and variance errors from datasets, and
evaluating a model typically involves multiple metrics that
are, more often than not, competing with each other. Such
trade-offs among objectives often invalidate the existence of
one single solution optimal for all objectives. Instead, they

*Equal contribution 1MIT CSAIL. Correspondence to:
Pingchuan Ma <pcma@csail.mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

give rise to a set of solutions, known as the Pareto set, with
varying preferences on different objectives.

In this paper, we are interested in the topic of recovering
Pareto sets in deep multi-task learning (MTL) problems.
Despite that MTL is inherently a multi-objective problem
and trade-offs are frequently observed in theory and prac-
tice, most of prior work focused on obtaining one optimal
solution that is universally used for all tasks. To solve this
problem, prior approaches proposed new model architec-
tures (Misra et al., 2016) or developed new optimization
algorithms (Kendall et al., 2018; Sener & Koltun, 2018).
Work on exploring a diverse set of solutions with trade-
offs is surprisingly rare and limited to finite and discrete
solutions (Lin et al., 2019). In this work, we address this
challenging problem by proposing an efficient method that
reconstructs a first-order accurate continuous approximation
to Pareto sets in MTL problems.

The significant leap from finding a discrete Pareto set to dis-
covering a continuous one requires a fundamentally novel
algorithm. Typically, generating one solution in a Pareto
set is a time-consuming process that requires expensive
optimization (e.g., training a neural network). In order to
obtain an efficient algorithm for computing a continuous
Pareto set, it is necessary to exploit local information. Our
technical method is inspired by second-order methods in
multi-objective optimization (MOO) (Hillermeier, 2001;
Martı́n & Schütze, 2018; Schulz et al., 2018) which connect
the local tangent plane, the gradient information, and the
Hessian matrices at a Pareto optimal solution all in one con-
cise linear equation. This theorem allows us to construct a
continuous, first-order approximation of the local Pareto set.
However, naively applying this method to deep MTL scales
poorly with the number of parameters (e.g., the number of
weights in a neural network) due to its need to compute full
Hessian matrices. Motivated by other second-order methods
in deep learning (Martens, 2010; Vinyals & Povey, 2012),
we propose to resolve the scalability issue by using Krylov
subspace iteration methods, a family of matrix-free, iter-
ative linear solvers, and present a complete algorithm for
generating families of continuous Pareto sets in deep MTL.

We empirically evaluate our method on five datasets with
various size and model complexity, ranging from Mul-
tiMNIST (Sabour et al., 2017) that consists of 60k images

Efficient Continuous Pareto Exploration in Multi-Task Learning

and requires a network classifier with only 20k parameters,
to UTKFace (Zhang et al., 2017), an image dataset with 3
objectives and a modern network structure with millions of
parameters. The code and data are available online1. Ex-
perimental results demonstrate that our method generates
much denser Pareto sets and Pareto fronts than previous
work with small computational overhead compared to the
whole MTL training process. We also show in the experi-
ments the continuous Pareto sets can be reparametrized into
a low dimensional parameter space, allowing for intuitive
manipulation and traversal in the Pareto set. We believe
that our efficient and scalable algorithm can open up new
possibilities in MTL and foster a deeper understanding of
trade-offs between tasks.

2. Related work
Multi-task learning (MTL) is a learning paradigm that
jointly optimizes a set of tasks with shared parameters. It
is generally assumed that information across different tasks
can reinforce the training of shared parameters and improve
the overall performance in all tasks. However, since MTL
problems share some parameters, performances on different
tasks compete with each other. Therefore, trade-offs be-
tween performances on different tasks are usually prevalent
in MTL. A standard strategy to deal with these trade-offs is
to formulate a single-objective optimization problem which
assigns weights to each task (Kokkinos, 2017). Choos-
ing weights for each task is typically empirical, problem-
specific, and tedious. To simplify the process of selecting
weights, prior work suggests some heuristics on adaptive
weights (Chen et al., 2018; Kendall et al., 2018). However,
this family of methods aims to find one optimal solution for
all tasks and is not designed for exploring trade-offs.

Instead of solving a weighted sum of tasks as a single ob-
jective, some recent papers directly cast MTL as a multi-
objective optimization (MOO) problem and introduce mul-
tiple gradient-based methods (MGDA) (Fliege & Svaiter,
2000; Désidéri, 2012; Fliege & Vaz, 2016) to MTL. Sener
and Koltun (2018) formally formulate MTL as an MOO
problem and propose to use MGDA for training a single
optimal solution for all objectives. Another recent approach
(Lin et al., 2019), which is the most relevant to our setting,
pushes the frontier further by pointing out the necessity of
exploring Pareto fronts in MTL and presents an MGDA-
based method to generate a discrete set of solutions evenly
distributed on the Pareto front. Each solution in their method
requires full training from an initial network, which limits
its ability to generate a dense set of Pareto optimal solutions.

All the methods discussed so far are based on first-order
algorithms in MOO and generate either one solution or a

1https://github.com/mit-gfx/ContinuousParetoMTL

finite set of sparse solutions with trade-offs. A clear dis-
tinction between our paper and previous work is that we
propose replacing discrete solutions with continuous solu-
tion families, allowing for a much denser set of solutions and
continuous analysis on them. The advance from discrete
to continuous solutions requires a second-order analysis
tool in MOO (Hillermeier, 2001; Martı́n & Schütze, 2018;
Schulz et al., 2018), which embeds tangent planes, gradi-
ents, and Hessians in one concise linear system. Our work
is also related to Hessian-free methods in machine learning
(Martens, 2010; Vinyals & Povey, 2012) which rely heavily
on Hessian-vector products in neural networks (Pearlmutter,
1994) to solve Hessian systems efficiently.

3. Preliminaries
In this work, we consider an unconstrained multi-objective
optimization problem described by f(x) : Rn ! Rm

where each fi(x) : Rn ! R; i = 1; 2; � � � ;m represents
the objective function of the i-th task to be minimized. For
any x;y 2 Rn, x dominates y if and only if f(x) � f(y)
and f(x) 6= f(y). A point x is said to be Pareto optimal
if x is not dominated by any points in Rn. Similarly, x is
locally Pareto optimal if x is not dominated by any points
in a neighborhood of x. The Pareto set of this problem
consists of all Pareto optimal points, and the Pareto front is
the image of the Pareto set. In the context of deep MTL, x
represents the parameters of a neural network instance and
each fi(x) represents one learning objective, e.g., a certain
classification loss.

Similar to single-objective optimization, solving for local
Pareto optimality is better established than global Pareto
optimality. A standard way is to run gradient-based methods
to solve for local Pareto optimality then prune the results.
Hillermeier et al. (2001) describes the following necessary
condition:

Definition 3.1 (Hillermeier et al. 2001). Assuming each
fi(x) is continuously differentiable, a point x is called
Pareto stationary if there exists � 2 Rm such that �i � 0,Pm

i=1 �i = 1, and
Pm

i=1 �irfi(x) = 0.

Proposition 3.1 (Hillermeier et al. 2001). All Pareto opti-
mal points are Pareto stationary.

Once a Pareto optimal solution x� is found, previous papers
(Hillermeier, 2001; Martı́n & Schütze, 2018; Schulz et al.,
2018) have proven a strong result revealing the first-order
approximation of the local, continuous Pareto set:

Proposition 3.2 (Hillermeier 2001). Assuming that f(x)
is smooth and x� is Pareto optimal, consider any smooth
curve x(t) : (��; �)! Rn in the Pareto set and passing x�

at t = 0, i.e., x(0) = x�, then 9� 2 Rm such that:

H(x�)x0(0) = rf(x�)>� (1)

Ef�cient Continuous Pareto Exploration in Multi-Task Learning

whereH (x �) is de�ned as

H (x �) =
X m

i =1
� i r 2f i (x �) (2)

and� i is given by De�nition 3.1.

In other words, in the Pareto set, for any smooth curve pass-
ing x � , H (x �) transforms its tangent atx � to a vector in the
space spanned byfr f i (x �)g. By gradually changing the
curve, its tangent sweeps the tangent plane of the Pareto set
at x � . Essentially, the theorem states thatH (x �) connects
the whole tangent plane to the column space ofr f (x �)> .
Note that, however, this theorem is not directly applicable
to MTL because of its requirement of full Hessians.

4. Ef�cient Pareto Set Exploration

Given an initialx 0 2 Rn , our algorithm is executed in two
phases: phase 1 uses gradient-based methods to generate a
Pareto stationary solutionx �

0 from x 0. It then computes a
few exploration directions to spawn newf x i g. We execute
phase 1 recursively by feeding it with a newly generatedx i .
Phase 2 constructs continuous Pareto sets: we �rst build a
local linear subspace at each Pareto stationary solution by
linearly combining its exploration directions. We then check
whether two local Pareto fronts collide and stitch them to
form a larger continuous set. The major challenge brought
by deep MTL is thatRn is the space of neural network
parameters. Therefore, it is computationally prohibitive to
explicitly calculate Hessian matrices. We describe phase 1
below and phase 2 will be explained in Section 5.

4.1. Gradient-Based Optimization

Our algorithm is compatible with any gradient-based local
optimization methods as long as they can return a Pareto
stationary solution from any initialx 2 Rn . A standard
method in MTL is to minimize a weighted sum of objectives
with stochastic gradient descent (SGD) (Kokkinos, 2017;
Chen et al., 2018; Kendall et al., 2018). Recent papers
(Sener & Koltun, 2018; Lin et al., 2019) also proposed to
determine a gradient direction online by solving a small
convex problem. Essentially, they minimize a loss by com-
bining gradients with �xed or adaptive weights.

4.2. First-Order Expansion

Once a Pareto stationary pointx �
0 is found, we explore

its local Pareto set by spawning new pointsf x i g. This is
decomposed into two steps: computing� in De�nition 3.1
atx �

0 and estimatingf v i g, the basis directions of the tangent
plane, from Proposition 3.2. The new pointsf x i g are then
computed byx i = x �

0 + sv i wheres is an empirical step
size whose choice will be discussed in our experiments.

We acquire� atx �
0 by solving the following convex problem

(Désid́eri, 2012), as suggested by Sener and Koltun (2018):

min
�

k
X m

i =1
� i r f i (x �

0)k2

s:t: � � 0;
X m

i =1
� i = 1

(3)

Note that the objective can be written as a quadratic form
of dimensionm. Sincem is typically very small, solving it
takes little time even for large neural networks.

Given � , �nding f v i g on the tangent plane atx �
0 can be

transformed to �nding a solution(v; �) from Equation (1):

H (x �
0)v = r f (x �

0)> � (4)

Whenn is small, we can apply classicO(n3) methods like
Gram-Schmidt process or QR decomposition. However,
directly applying them in deep MTL is dif�cult for two
reasons: �rst,x �

0 is rarely a true Pareto stationary solution
because of the early termination in training to avoid over-
�tting. Second, and more importantly, the large parameter
space makes anyO(n3) method prohibitive.

To address the �rst issue, we propose a variant to Problem
(3) to �nd � as well as a correction vectorc:

min
� ;c

kck2

s:t: � � 0;
X m

i =1
� i = 1

X m

i =1
� i (r f i (x �

0) � c) = 0

(5)

In other words, we seek the minimal modi�cation to the
gradients such that if we user f i (x �

0) � c as if they were
the true gradients,x �

0 would be Pareto stationary. It is easy
to show that solving this new optimization problem brings
little overhead to the original problem (see supplemental
material for the proof):

Proposition 4.1. Let� � be the solution to Problem (3), then
the solution to Problem 5 is(� ; c) = (� � ; r f (x �

0)> � �).

To address scalability, we consider the following sparse
linear system with unknownsv:

H (x �
0)v = (r f (x �

0)> � c1>)� (6)

where1 is anm-dimensional column vector with all ele-
ments equal to1 and� 2 Rm is randomly sampled. In other
words, we solve a linear system with the right-hand side
sampled from the space spanned byfr f i (x �

0) � cg. Solv-
ing such a large linear system in MTL requires an ef�cient
matrix solver. We propose to use Krylov subspace iteration
methods because they are matrix-free and iterative solvers,
allowing us to solve the system without complete Hessians
and terminate with intermediate results. In our experiment,
we choose to use the minimal residual method (MINRES),
a classic Krylov subspace method designed for symmetric
inde�nite matrices (Choi et al., 2011).

Ef�cient Continuous Pareto Exploration in Multi-Task Learning

We now discuss MINRES in more detail to better explain
why it is the right tool for this problem. The time complexity
of MINRES depends on the time spent on each iteration and
the number of iterations. The cost of each iteration is domi-
nated by calculatingHv for arbitraryv, which is in general
O(n2). However, it is well known that Hessian-vector prod-
ucts can be implemented inO(n) time on computational
graphs (Pearlmutter, 1994), giving us the �rst strong reason
to use MINRES. Analyzing the number of iterations is hard
because it heavily depends on the rarely available eigenvalue
distribution. In practice, MINRES is known to converge
very fast for systems with fast decay of eigenvalues (Fong
& Saunders, 2012). In our experiments, we specify a maxi-
mum number of iterationsk. We observed thatk = 50 was
usually suf�cient to generate good exploration directions
even for networks with millions of parameters. Note that
early termination in MINRES still returns meaningful re-
sults because the residual error is guaranteed to decrease
monotonically with iterations.

To summarize, the ef�ciency of our exploration algorithm
comes from two sources: exploration on the tangent plane
and early termination from a matrix-free, iterative solver.
The time cost of getting one tangent direction isO(kn),
which scales linearly to the network size.

4.3. The Full Algorithm

We now state the complete algorithm for Pareto set explo-
ration in Algorithm 1. It takes as input a seed network
and spawnsN Pareto stationary networks in a breadth-
�rst style. Any networks put in the queue are returned
by ParetoOptimize (Section 4.1) and therefore Pareto
stationary by design. When such a network is popped out
from the queue,ParetoExpand generatesK exploration
directions (Section 4.2) and spawnsK child networks. The
algorithm then callsParetoOptimize to re�ne these net-
works before appending them to the queue, and terminates
afterM Pareto stationary networks are collected.

For each output network, we also return the objectives, the
gradients, and a reference to its parent. This information
is mostly used to construct a continuous linear subspace
approximating the local Pareto set, which we will describe in
Section 5. Another usage is to remove the sign ambiguity in
v i : by de�nition, bothv i and� v i are on the tangent plane,
and an arbitrary choice can lead to a retraction instead of the
desired expansion in the Pareto set. In this case, one can use
f (x i) � f (x �) = f (x � + sv i) � f (x �) � sr f (x �)v i

to predict the changes in the objectives and rule out the
undesired direction.

When Algorithm 1 is applied to MTL, it is worth noting
thatParetoOptimize andParetoExpand rarely re-
turn the precise solutions because of stochasticity, early
termination, and local minima. As a result, good choices

Algorithm 1 Ef�cient Pareto Set Exploration

Input: a random initial neural networkx 0 2 Rn

Output: N Pareto stationary networks
x �

0 ParetoOptimize (x 0)
Initialize a queueq [x �

0]
Initialize an empty list to store the output:output ;
repeat

Pop a neural networkx � from q
for i = 1 to K do

v i ParetoExpand (x �)
v i == kv i k2

x i x � + sv i

x �
i ParetoOptimize (x i)

if No points inoutput dominatesx �
i then

Appendx �
i to q

Append(x �
i ; f (x �

i); r f (x �
i); x �) to output

end if
end for

until The size ofoutput reachesN

of hyperparameters plays an important role. We discussed
in more detail two crucial hyperparameters (k ands) and
reported the ablation study in Section 6.

5. Continuous Parametrization

In this section, we describe a post-processing step that builds
a continuous approximation to the local Pareto set based on
the discrete pointsf x �

i g returned by Algorithm 1. For each
x �

i , we collect itsK childrenf x �
i 1

; � � � ; x �
i K

g and assign
a continuous variabler i ! i j 2 [0; 1] to a vectorv i ! i j =
x �

i j
� x �

i ; j = 1 ; 2; � � � ; K . The local Pareto set atx �
i is

then constructed by

S(x �
i) = f x �

i +
KX

i =1

r i ! i j v i ! i j jr i ! i j � 0;
KX

i =1

r i ! i j � 1g

(7)
In other words,S(x �) is the convex hull ofx �

i and its chil-
drenf x �

i 1
; � � � ; x �

i K
g. This construction is justi�ed by the

fact that a linear combination of tangent vectors is still on
the tangent plane. As a special case, when there are only 2
objectives andK = 1 , f x � g forms a chain, and therefore
S = [i S(x �

i) becomes a piecewise linear set inRn .

It is possible that two continuous families can collide in the
objective space, creating a larger continuous Pareto front.
In this case, we create a stitching point in both families and
crop solutions dominated by the other family. By repeatedly
applying this idea, a single continuous Pareto front covering
all families can possibly be created, providing the ultimate
solution to continuous traversal in the whole Pareto front.
We illustrate this idea on MultiMNIST with our experimen-
tal results in Section 6.4.

Ef�cient Continuous Pareto Exploration in Multi-Task Learning

Since the continuous approximation interpolates different
tangent directions, having more directions can enrich the
coverage of the continuous set and offer more options to
users. It is therefore natural to ask whether the set of tangent
directions discovered in the last section could be augmented
even further by adding more directions without downgrading
the quality of the Pareto front. For the special case of two
objectives (m = 2), it turns out that we can augment the
set of known tangent directions with anull vectorof the
Hessian matrix, as stated in the following proposition:

Proposition 5.1. Assumingf (x) : Rn ! R2 is suf�ciently
smooth. Letx � be a Pareto optimal point and consider a
curvecd (t) : R ! R2 de�ned ascd (t) = f (x � + td). If
x (t) : (� �; �) ! R2 is any smooth curve in Proposition 3.2
that satis�esH (x �)x 0(0) 6= 0, then for anyu 2 Rn :

1) cx 0(0) and cx 0(0)+ u have the same value and tangent
direction(� � 2; � 1) at t = 0 ;

2) Furthermore, if u is a null vector ofH (x �), i.e.,
H (x �)u = 0, thenu is not parallel tox 0(0), andcx 0(0) (t)
andcx 0(0)+ u (t) have the same curvature att = 0 .

In this proposition,cd (t) is a parametrized 2D curve: it
considers a straight-line trajectory inRn that passesx �

in the direction ofd and usesf to map this trajectory to
the space ofR2, generating a 2D curve. This proposition
states that if a tangent directionv is known and if we also
have a null vectoru , then the two curvescv andcv + u are
very similar atx � in the sense that they share the same
value, gradients, and curvature. This means that for each
tangent directionv found in the previous section,v + u
can also be used as a backbone direction together withv
for continuous parametrization without downgrading the
quality of the reconstructed Pareto front.

While this proposition is generally not applicable to real
problems due to its need for null vectors, it still has inter-
esting theoretical implications: the fact thatcv + u andcv

share the same gradients should not be surprising asv + u
also satis�es Equation (4), but it is less obvious to see that
they actually share the same curvature atf (x �), which we
illustrate in Section 6.4 and will prove in our supplemen-
tal material. In practice, we observed that neural networks
typically have a Hessian matrix with a null space whose
dimension is much higher thanm. This means a very large
set of bases, while not often accessible in real problems, can
in theory be used to greatly enrich the Pareto set.

6. Experimental Results

6.1. Datasets, Metrics, and Baselines

We applied our method to �ve datasets in three categories:
1) MultiMNIST (Sabour et al., 2017) and its two variants
FashionMNIST (Xiao et al., 2017) and MultiFashionM-

NIST, which are medium-sized datasets with two classi-
�cation tasks; 2) UCI Census-Income (Kohavi, 1996), a
medium-sized demographic dataset with three binary pre-
diction tasks; 3) UTKFace (Zhang et al., 2017), a large
dataset of face images. We used LeNet5 (LeCun et al.,
1998) (22,350 parameters) for MultiMNIST and its variants,
two-layered multilayer perceptron (158,598 parameters) for
UCI Census-Income, and ResNet18 (He et al., 2016) (tens
of millions of parameters) for UTKFace. Please refer to our
supplemental material for more information about the net-
work architectures, task descriptions, and implementation
details in each dataset.

We measure the performance of a method by two metrics:
the time cost and the hypervolume (Zitzler & Thiele, 1999).
We measure the time cost by counting the evaluations of
objectives, gradients, and Hessian-vector products. The hy-
pervolume metric, explained in Figure 1, is a classic MOO
metric for measuring the quality of exploration. More con-
cretely, this metric takes as input a set of explored solutions
in the objective space and returns a score. Larger hyper-
volume score indicates a better Pareto front. Using the
two metrics, we de�ne that a method is more ef�cient if,
within the same time budget, it generates a Pareto front with
a larger hypervolume, or equivalently, if it generates the
Pareto front with a similar hypervolume but within shorter
time. For all �gures in this section, we use the same ran-
dom seed whenever possible and report results from more
random seeds in the supplemental material.

Our method is not directly comparable to any baselines be-
cause no prior work aims to recover a continuous Pareto
front in MTL. Instead, we devised two experiments, which
we call the suf�ciency and necessity tests, to show its effec-
tiveness (Section 6.3). In the suf�ciency test, we consider
four previous methods: GradNorm (Chen et al., 2018), Un-
certainty (Kendall et al., 2018), MGDA (Sener & Koltun,
2018), and ParetoMTL (Lin et al., 2019). These methods
aim at pushing an initial guess to one or a few discrete
Pareto optimal solutions. For them, we show that our Pareto

Figure 1.De�nition of hypervolume. Given a set of sample points
(red circles) inRm , the hypervolume is computed by picking a
reference point (orange star), creating axis-aligned rectangles from
each point, and calculating the size of their union (orange polygon).

Ef�cient Continuous Pareto Exploration in Multi-Task Learning

Figure 2.Comparisons of different exploration directions at a
Pareto optimal solutionx � (red circle). Left: the analytic Pareto set
(the cylindrical surface) of ZDT2-variant, the gradientsr f 1(x �)
(blue) andr f 2(x �) (green), and our exploration directionsf v i g
(orange) predicted by MINRES. Middle: a top-down view to show
ours are almost tangent to the Pareto set. Right: plots off (x � + sd)
wheres 2 [� 0:1; 0:1] andd is r f 1(x �) (blue circles),r f 2(x �)
(green squares), and our directions (orange stars).

expansion procedure is a fast yet powerful complement by
comparing the time and hypervolume before and after run-
ning it as a post-processing step. We call this experiment
the suf�ciency test as it demonstrates our method is able to
quickly explore Pareto sets and Pareto fronts.

Our necessity test, which focuses on the value of the tangent
directions in exploring Pareto fronts, deserves some discus-
sions on its baselines. There is a trivial baseline for Pareto
expansion: rerunning an SGD-based method from scratch
to optimize a perturbed weight combination of objectives.
Since each new run requires full training, our method clearly
dominates this baseline (30 times faster on MultiMNIST).
Another trivial baseline is to use a random direction instead
of the tangent direction for Pareto expansion. We tested this
idea but do not include it in our experiments as its perfor-
mance is signi�cantly worse than any other methods, which
is understandable due to the high dimensionality of neural
network parameters: with the increase of dimensionality,
the chance of a random guess still staying on the tangent
plane decays exponentially. The baseline we considered in
this experiment is WeightedSum, which runs SGD from the
last Pareto optimal solution but with weights on objectives
different from the weights used in training. Speci�cally, we
choose weights from one-hot vectors for each task as well
as a vector assigning equal weights to every task. We call
this experiment the necessity test as we use this experiment
to establish that the choice of expansion strategies is not
arbitrary, and tangent directions are indeed the source of
ef�ciency in our method.

6.2. Synthetic Examples

6.2.1. ZDT2-VARIANT

Our �rst example, ZDT2-variant, was originated from ZDT2
(Zitzler et al., 2000), a classic benchmark problem in multi-
objective optimization withn = 3 andm = 2 . Both the

Figure 3.Comparisons of two expansion strategies in Algorithm
1. Starting with a given Pareto optimal point (red circle), the
algorithm iteratively callsParetoExpand (orange arrows from
circles to stars) andParetoOptimize (red arrows from stars to
circles), generating a series of explored points (orange stars) and
Pareto optimal solutions (red circles). Arrow thickness indicates
the time cost of each function. Top row: expansion using our
predicted tangent directions (top left) versus using gradients (top
right). Bottom row: running both strategies until 10 Pareto optimal
points were collected.

Pareto set and the Pareto front of this example can be com-
puted analytically. This makes ZDT2-variant an ideal exam-
ple for visualizing Proposition 3.2 and Algorithm 1. Figure
2 compares the gradients to our tangent directions when
used to explore the Pareto front. We used MINRES with
k = 1 to solve 5 tangent directions. It can be seen that our
directions are much closer to the Pareto set and tracked the
true Pareto front much better than the gradients. We further
compare their performances in Algorithm 1 with MGDA
(Désid́eri, 2012; Sener & Koltun, 2018) as the optimizer in
Figure 3. This �gure shows that the gradients expanded the
neighborhood not on the Pareto set but to the dominated
interior, resulting in a much more expensive correction step
to follow. On the other hand, expanding with our predicted
tangents steadily grew the solution set along the Pareto front.

6.2.2. MULTI MNIST SUBSET

To understand the behavior of our algorithm when neural
networks are involved, we picked a subset of2048images
from MultiMNIST and trained a simpli�ed LeNet (LeCun
et al., 1998) with 1500 parameters to minimize two clas-
si�cation errors. We generated an empirical Pareto front
by optimizing the weighted sum of the two objectives with

