
Normalized Loss Functions for Deep Learning with Noisy Labels

A. Proofs for Lemma 1, Lemma 2 and Lemma 3
Our proofs are inspired by (Ghosh et al., 2017).

Lemma 1. In a multi-class classification problem, any normalized loss function Lnorm is noise tolerant under symmetric (or
uniform) label noise, if noise rate η < K−1

K .

Proof. For symmetric label noise, the noise risk can be defined as:

Rη(f) = Ex,ŷLnorm(f(x), ŷ) = ExEy|xEŷ|x,yLnorm(f(x), ŷ)

= ExEy|x
[
(1− η)Lnorm(f(x), y) +

η

K − 1

∑
k 6=y

Lnorm(f(x), k)
]

= (1− η)R(f) + η

K − 1

(
Ex,y

[ K∑
k=1

Lnorm(f(x), k)

]
−R(f)

)
= R(f)

(
1− ηK

K − 1

)
+

η

K − 1
,

where the last equality holds due to
∑K
k=1 Lnorm(f(x), k) = 1, following Eq. (1). Thus,

Rη(f∗)−Rη(f) = (1− ηK

K − 1
)(R(f∗)−R(f)) ≤ 0,

because η < K−1
K and f∗ is a global minimizer of R(f). This proves f∗ is also the global minimizer of risk Rη(f), that is,

Lnorm is noise tolerant to symmetric label noise.

Lemma 2. In a multi-class classification problem, given R(f∗) = 0 and 0 ≤ Lnorm(f
∗(x), k) ≤ 1

K−1 , any normalized
loss function Lnorm is noise tolerant under asymmetric (or class-conditional) label noise, if noise rate ηjk < 1− ηy .

Proof. For asymmetric or class-conditional noise, 1− ηy is the probability of a label being correct (i.e., k = y), and the
noise condition ηyk < 1− ηy generally states that a sample x still has the highest probability of being in the correct class y,
though it has probability of ηyk being in an arbitrary noisy (incorrect) class k 6= y. Considering the noise transition matrix
between classes [ηij ],∀i, j ∈ {1, 2, · · · ,K}, this condition only requires that the matrix is diagonal dominated by ηii (i.e.,
the correct class probability 1− ηy). Following the symmetric case, here we have,

Rη(f) = Ex,ŷLnorm(f(x), ŷ) = ExEy|xEŷ|x,yLnorm(f(x), ŷ)

= ExEy|x
[
(1− ηy)Lnorm(f(x), y) +

∑
k 6=y

ηykLnorm(f(x), k)
]

= Ex,y

[
(1− ηy)

( K∑
k=1

Lnorm(f(x), k)−
∑
k 6=y

Lnorm(f(x), k)
)]

+ Ex,y

[∑
k 6=y

ηykLnorm(f(x), k)
]

= Ex,y

[
(1− ηy)

(
1−

∑
k 6=y

Lnorm(f(x), k)
)]

+ Ex,y

[∑
k 6=y

ηykLnorm(f(x), k)
]

= Ex,y(1− ηy)− Ex,y

[∑
k 6=y

(1− ηy − ηyk)Lnorm(f(x), k)
]
.

(7)

As f∗η is the minimizer of Rη(f), Rη(f∗η )−Rη(f∗) ≤ 0. So, from 7 above, we have,

Ex,y

[∑
k 6=y

(1− ηy − ηyk)
(
Lnorm(f∗(x), k)︸ ︷︷ ︸

L∗
norm

−Lnorm(f∗η (x), k)︸ ︷︷ ︸
Lη∗norm

)]
≤ 0. (8)

Next, we prove, f∗η = f∗ holds following Eq. (8). First, (1 − ηy − ηyk) > 0 as per the assumption that ηyk < 1 − ηy . Thus,
L∗norm − Lη∗norm ≤ 0 for Eq. (8) to hold. Since we are given R(f∗) = 0, we have L(f∗(x), y) = 0. Thus, following the definition of
Lnorm in Eq. (1) and assumption Lnorm(f

∗(x), k) ≤ 1
K−1

, we have Lnorm(f∗(x), k) = L(f∗(x)=0,k)∑K
j L(f

∗(x),j)
= 1

K−1
, for all k 6= y. Also,

we have Lnorm(f∗η (x), k) =
L(f∗η (x),k)∑K
j L(f

∗
η (x),j)

≤ 1
K−1

, ∀k 6= y. Thus, for Eq. (8) to hold (e.g. Lnorm(f∗η (x), k) ≥ Lnorm(f∗(x), k)),

it must be the case that pk = 0, ∀k 6= y, that is, Lnorm(f∗η (x), k) = Lnorm(f∗(x), k) for all k ∈ {1, 2, · · · ,K}, thus f∗η = f∗ which
completes the proof.
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Lemma 3. ∀α,∀β, if LActive and LPassive are noise tolerant, then LAPL = α · LActive + β · LPassive is noise tolerant.

Proof. Let α, β ∈ R, then
∑K
j LAPL(f(x), j) = α ·

∑K
j LActive(f(x), j) + β ·

∑K
j LPassive(f(x), j) = α · CActive + β ·

CPassive = C. Following our proof for Lemma 1, for symmetric noise, we have,

Rη(f) = R(f)

(
1− ηK

K − 1

)
+

(α · CActive + β · CPassive)η

K − 1
.

Thus, Rη(f∗) − Rη(f) = (1 − ηK
K−1 )(R(f

∗) − R(f)) ≤ 0. Given η < K−1
K and f∗ is a global minimizer of R(f),

R(f∗)−R(f), that is, f∗ is also the global minimizer of risk Rη(f). Thus, LAPL is noise tolerant to symmetric label noise.

Following our proof for Lemma 2, for asymmetric noise, we have,

Rη(f) = (α · CActive + β · CPassive)Ex,y(1− ηy)− Ex,y

[∑
k 6=y

(1− ηy − ηyk)Lnorm(f(x), k)
]
. (9)

As f∗η is the minimizer of Rη(f), Rη(f∗η )−Rη(f∗) ≤ 0. So, from 9 above, we can derive the same equation as Eq. (8),

Ex,y

[∑
k 6=y

(1− ηy − ηyk)
(
LAPL(f

∗(x), k)︸ ︷︷ ︸
L∗

APL

−LAPL(f
∗
η (x), k)︸ ︷︷ ︸
Lη∗APL

)]
≤ 0. (10)

Thus, we can follow the same proof from Eq. (8), to f∗η = f∗, that is, LAPL is also noise tolerant to asymmetric noise.




