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Abstract

In this paper, we present a novel and principled
approach to learn the optimal transport between
two distributions, from samples. Guided by the
optimal transport theory, we learn the optimal
Kantorovich potential which induces the optimal
transport map. This involves learning two convex
functions, by solving a novel minimax optimiza-
tion. Building upon recent advances in the field
of input convex neural networks, we propose a
new framework to estimate the optimal transport
mapping as the gradient of a convex function that
is trained via minimax optimization. Numerical
experiments confirm the accuracy of the learned
transport map. Our approach can be readily used
to train a deep generative model. When trained be-
tween a simple distribution in the latent space and
a target distribution, the learned optimal transport
map acts as a deep generative model. Although
scaling this to a large dataset is challenging, we
demonstrate two important strengths over stan-
dard adversarial training: robustness and discon-
tinuity. As we seek the optimal transport, the
learned generative model provides the same map-
ping regardless of how we initialize the neural
networks. Further, a gradient of a neural network
can easily represent discontinuous mappings, un-
like standard neural networks that are constrained
to be continuous. This allows the learned trans-
port map to match any target distribution with
many discontinuous supports and achieve sharp
boundaries.
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1. Introduction
Finding a mapping that transports mass from one distri-
bution Q to another distribution P is an important task in
various machine learning applications, such as deep genera-
tive models (Goodfellow et al., 2014; Kingma & Welling,
2013) and domain adaptation (Gopalan et al., 2011; Ben-
David et al., 2010). Among infinitely many transport maps
T that can map a random variableX fromQ such that T (X)
is distributed as P , several recent advances focus on dis-
covering some inductive bias to find a transport map with
desirable properties. Research in optimal transport has been
leading such efforts, in applications such as color transfer
(Ferradans et al., 2014), shape matching (Su et al., 2015),
data assimilation (Reich, 2013), and Bayesian inference
(El Moselhy & Marzouk, 2012). Searching for an optimal
transport encourages a mapping that minimizes the total cost
of transporting mass from Q to P , as originally formulated
in Monge (1781), and provides the inductive bias needed
in many such applications. However, finding the optimal
transport map in general is a challenging task, especially in
high dimensions where efficient approaches are critical.

Algorithmic solutions are well-established for discrete vari-
ables; the optimal transport can be found as a solution to
linear program. Building upon this mature area, typical
approaches for general distributions use quantization of the
space, which becomes computationally intensive for high-
dimensional variables we encounter in modern applications
(Evans & Gangbo, 1999; Benamou & Brenier, 2000; Pa-
padakis et al., 2014).

There has been a vast amount of works to extend the com-
putation of the optimal transport map to high-dimensional
setting (Seguy et al., 2017; Genevay et al., 2016; Xie et al.,
2019; Liu et al., 2018; Chen et al., 2019). In this paper, we
propose a novel minimax optimization approach to search
for the optimal transport under the quadratic distance (i.e. 2-
Wassertstein metric). A major challenge in a minimax for-
mulation of optimal transport is that the constraints in the
Kantorovich dual formulation (3) are notoriously challeng-
ing. They require the evaluation of the functions at every
point in the domain, which is not tractable. A common
straightforward heuristics sample some points and add those
sampled constraints as regularizers. Such regularizations
create biases that hinder learning the true optimal transport.
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(a) Data samples (b) Our transport map (c) Displacement vector field (d) Level sets

Figure 1. Results on Checkerboard dataset. (a) Samples from the source (orange) and target (green) distributions; (b) The learned transport
map and the generated distribution, via Algorithm 1; (c) The learned displacement vector field generated by∇g(y)− y; (d) The level sets
of the original dual variable g(y)− 1

2
|y|2. The experimental details are included in Section 4.1.

Our key innovation is to depart from this common practice;
we instead eliminate the constraints by restricting our search
to the set of all convex functions, building upon the funda-
mental connection from Brenier’s Theorem 3.1. This leads
to a novel minimax formulation in (5). Leveraging on recent
advances in input convex neural networks, we propose a
new architecture and a training algorithm for solving this
minimax optimization. We establish the consistency of our
proposed minimax formulation in Theorem 3.3. In particu-
lar, we show that the solution to this optimization problems
yields the exact optimal transport map. We provide stability
analysis for the proposed estimator in Theorem 3.6.

Further, when used to train deep generative models, our
approach can be viewed as a novel framework to train a gen-
erator that is modeled as a gradient of a convex function. We
provide a principled training rule based on the optimal trans-
port theory. This ensures that (i) the generator converges to
the optimal transport, independent of how we initialize the
neural network; and (ii) represent sharp boundaries when
the target has multiple disconnected supports. Gradient of a
neural network naturally represents discontinuous functions,
which is critical in mapping from a single connected support
to disconnected supports.

To model convex functions, we leverage Input Convex Neu-
ral Networks (ICNNs), a class of scalar-valued neural net-
works f(x; θ) such that the function x 7→ f(x; θ) ∈ R is
convex. These neural networks were introduced by Amos
et al. (2016) to provide efficient inference and optimiza-
tion procedures for structured prediction, data imputation
and reinforcement learning tasks. In this paper, we show
that ICNNs can be efficiently trained to learn the optimal
transport map between two distributions P and Q. To the
best of our knowledge, this is the first such instance where
ICNNs are leveraged for the well-known task of learning
optimal transport maps in a scalable fashion. This frame-
work opens up a new realm for understanding problems
in optimal transport theory using parametric convex neural
networks, both in theory and practice. Figure 1 provides an
example where the optimal transport map has been learned
via our proposed Algorithm 1 from the orange distribution

to the green distribution.

Notation. P(X ) denotes the set of probability measures
on a Polish space X , and B(X ) denotes the Borel sub-
sets of X . For P ∈ P(X ) and Q ∈ P(Y), P ⊗ Q de-
notes the product measure on X × Y . For measurable
map T : X → Y , T#P denotes the push-forward of P
under T , i.e. (T#P )(A) = P (T−1(A)), ∀A ∈ B(Y).
L1(P ) , {f is measurable &

∫
f dP < ∞} denotes the

set of integrable functions with respect to P . CVX(P ) de-
notes the set of all convex functions in L1(P ). Id : x 7→ x
denotes the identity function. 〈·, ·〉 and ‖ · ‖ denote the
inner-product and `2-Euclidean norm.

2. Background on optimal transport
Let P and Q be two probability distributions on Rd with
finite second order moments. The Monge’s optimal trans-
portation problem is to transport the probability mass under
Q to P with the least amount of cost1, i.e.

minimize
T :T#Q=P

1

2
EX∼Q‖X − T (X)‖2. (1)

Any transport map T achieving the minimum in (1) is called
optimal transport map. Optimal transport map may not
exist. In fact, the feasible set in the above optimization
problem may itself be empty, for example when Q is a
Dirac distribution and P is any non-Dirac distribution.

The Monge problem (1) is highly nonlinear and difficult to
analyze. Kantorovich introduced a relaxation of the prob-
lem,

W 2
2 (P,Q) , inf

π∈Π(P,Q)

1

2
E(X,Y )∼π‖X − Y ‖2, (2)

where Π(P,Q) denotes the set of all joint probability distri-
butions (or equivalently, couplings) whose first and second
marginals are P and Q, respectively. The optimal value

1In general, Monge’s problem is defined in terms of cost func-
tion c(x, y). This paper is concerned with quadratic cost function
c(x, y) = 1

2
‖x − y‖2 because of its nice geometrical properties

and connection to convex analysis (Villani, 2003, Ch. 2).
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in (2) is the 2-Wasserstein distance W2(·, ·) squared. Any
coupling π achieving the infimum is called the optimal cou-
pling. Optimization problem (2) is also referred to as the
primal formulation for 2-Wasserstein distance.

Kantorovich also provided a dual formulation for (2), known
as the Kantorovich duality (Villani, 2003, Theorem 1.3),

W 2
2 (P,Q) = sup

(f,g)∈Φc

EP [f(X)] + EQ[g(Y )], (3)

where Φc denotes the constrained space of functions, de-
fined as Φc ,

{
(f, g) ∈ L1(P )× L1(Q) : f(x) + g(y) ≤

1
2‖x− y‖

2
2, ∀(x, y) dP ⊗ dQ a.e.

}
.

The dual problem (3) can be recast as an stochastic optimiza-
tion problem by approximating the expectations using inde-
pendent samples from P and Q. However, there is no easy
way to ensure the feasibility of the constraint (f, g) ∈ Φc
along the gradient updates. Common approach is to trans-
late the optimization into a tractable form, while sacrificing
the original goal of finding the optimal transport map. Con-
cretely, an entropic or a quadratic regularizer is added to
the primal problem (2) (Cuturi, 2013; Essid & Solomon,
2018; Peyré et al., 2019; Blondel et al., 2017). Then, the
dual to the regularized primal problem is an unconstrained
version of (3) with additional penalty term. The uncon-
strained problem can be numerically solved using Sinkhorn
algorithm in discrete setting (Cuturi, 2013) or stochastic
gradient methods with suitable function representation in
continuous setting (Genevay et al., 2016; Seguy et al., 2017).
The optimal transport can then be obtained from f and g,
using the first-order optimality conditions of the Fenchel-
Rockafellar’s duality theorem (Seguy et al., 2017), or by
training a generator through an adversarial computational
procedure (Leygonie et al., 2019).

In this paper, we take a different approach: solve the dual
problem without introducing a regularization. This builds
upon (Taghvaei & Jalali, 2019), where ICNN for the task of
approximating the Wasserstein distance and optimal trans-
port map is originally proposed. We bring the idea pro-
posed (Taghvaei & Jalali, 2019) into practice by introducing
a novel minimax optimization formulation. We describe our
proposed method in Section 3 and provide a detailed com-
parison in Remark 3.5. Discussion about other related works
(Lei et al., 2017; Guo et al., 2019; Xie et al., 2019; Muzellec
& Cuturi, 2019; Rabin et al., 2011; Korotin et al., 2019; Liu
et al., 2018; Chen et al., 2019) appears in Appendix ??.

3. A novel minimax formulation to learn
optimal transport

Our goal is to learn the optimal transport map T ∗ from Q to
P , from samples drawn from P and Q, respectively. We use
the fundamental connection between optimal transport and
Kantorovich dual in Theorem 3.1, to formulate learning T ∗

as a problem of estimating W 2
2 (P,Q). However, W 2

2 (P,Q)
is notoriously hard to estimate. The standard Kantorovich
dual formulation in Eq. (3) involves a supremum over a set
Φc with a pointwise constraints, which is challenging to
even approximately project onto. To this end, we derive an
alternative optimization formulation in Eq. (5), inspired by
the convexification trick (Villani, 2003, Section 2.1.2). This
allows us to eliminate the distance constraint of Φc, and
instead constrain our search over all convex functions. This
constrained optimization can now be seamlessly integrated
with recent advances in designing deep neural architectures
with convexity guarantees. This leads to a novel minimax
optimization to learn the optimal transport.

We exploit the fundamental properties of W 2
2 (P,Q) and

the corresponding optimal transport to reparametrize the
optimization formulation. Note that for any (f, g) ∈ Φc,

f(x) + g(y) ≤ 1

2
‖x− y‖22 ⇐⇒[

1

2
‖x‖22 − f(x)

]
+

[
1

2
‖y‖22 − g(y)

]
≥ 〈x, y〉.

Hence reparametrizing 1
2‖ · ‖

2
2 − f(·) and 1

2‖ · ‖
2
2 − g(·) by

f and g respectively, and substituting them in (3) yields

W 2
2 (P,Q) = CP,Q − inf

(f,g)∈Φ̃c

{
EP [f(X)] + EQ[g(Y )]

}
,

where CP,Q = (1/2)E[‖X‖22 + ‖Y ‖22] is a constant inde-
pendent of (f, g) and Φ̃c , {(f, g) ∈ L1(P ) × L1(Q) :
f(x) + g(y) ≥ 〈x, y〉, ∀(x, y) dP ⊗ dQ a.e.}. While the
above constrained optimization problem involves a pair of
functions (f, g), it can be transformed into the following
form involving only a single convex function f , thanks to
Villani (2003, Theorem 2.9):

W 2
2 (P,Q)=CP,Q− inf

f∈CVX(P )
EP [f(X)]+EQ[f∗(Y )], (4)

where f∗(y) = supx〈x, y〉 − f(x) is the convex conjugate
of f(·).

The crucial tools behind our formulation are the following
celebrated results due to Knott-Smith and Brenier (Villani,
2003), which relate the optimal solutions for the dual form
in (4) and the primal form in (2).

Theorem 3.1 ((Villani, 2003, Theorem 2.12)). Let P,Q be
two probability distributions on Rd with finite second order
moments. Then,

1. (Knott-Smith optimality criterion) A coupling π ∈
Π(P,Q) is optimal for the primal (2) if and only if
there exists a convex function f ∈ CVX(Rd) such that
Supp(π) ⊂ Graph(∂f). Or equivalently, for all dπ-
almost (x, y), y ∈ ∂f(x). Moreover, the pair (f, f∗)
achieves the minimum in the dual form (4).
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2. (Brenier’s theorem) If Q admits a density with respect
to the Lebesgue measure on Rd, then there is a unique
optimal coupling π for the primal problem. In particu-
lar, the optimal coupling satisfies that

dπ(x, y) = dQ(y)δx=∇f∗(y),

where the convex pair (f, f∗) achieves the minimum
in the dual problem (4). Equivalently, π = (∇f∗ ×
Id)#Q.

3. Under the above assumptions of Brenier’s theorem,
∇f∗ in the unique solution to Monge transportation
problem from Q to P , i.e.

EQ‖∇f∗(Y )− Y ‖2 = inf
T :T#Q=P

EQ‖T (Y )− Y ‖2.

Remark 3.2. Whenever Q admits a density, we refer to
∇f∗ as the optimal transport map.

Henceforth, throughout the paper we assume that the dis-
tribution Q admits a density in Rd. Note that in view of
Theorem 3.1, any optimal pair (f, f∗) from the dual for-
mulation in (4) provides us an optimal transport map ∇f∗
pushing forward Q onto P . However, optimizing the ob-
jective (4) is challenging because it requires to compute
the conjugate function f∗. To this end, we propose a novel
minimax formulation in the following theorem where we
replace the conjugate with a new convex function.

Theorem 3.3. WheneverQ admits a density in Rd, we have

W 2
2 (P,Q) = sup

f∈CVX(P ),

f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g) + CP,Q, (5)

where VP,Q(f, g) is a functional of f, g defined as

VP,Q(f, g) = −EP [f(X)]−EQ[〈Y,∇g(Y )〉−f(∇g(Y ))].

In addition, there exists an optimal pair (f0, g0) achieving
the infimum and supremum respectively, where ∇g0 is the
optimal transport map from Q to P .

Proof sketch. The proof follows from the inequality
〈y,∇g(y)〉 − f(∇g(y)) ≤ f∗(y) for all functions g, and
then taking the expectation over Q, and observing that the
equality is achieved with g = f∗. The technical details
appear in Appendix ??.

Remark 3.4. For any convex function f , the function
g ∈ L1(Q) that achieves the infimum in (5) is convex and
equals f∗. Therefore, the constraint g ∈ CVX(Q) can be re-
laxed to g ∈ L1(Q) without changing the optimal value and
optimizing functions. We numerically observe that the opti-
mization algorithm performs better under this relaxation.

W1 W2 WL-1...

...

Figure 2. The input convex neural network (ICNN) architecture.

Formulation (5) now provides a principled approach to learn
the optimal transport mapping∇g(·) as a solution of a min-
imax optimization. Since the optimization involves the
search over the space of convex functions, we utilize the
recent advances in input convex neural networks (ICNNs)
to parametrize them as discussed in the following section.

3.1. Minimax optimization over ICNNs

We propose using parametric models based on deep neural
networks to approximate the set of convex functions. This is
known as input convex neural networks (Amos et al., 2016),
denoted by ICNN(Rd). We propose estimating the following
approximate Wasserstein-2 distance, from samples:

W̃ 2
2 (P,Q)= sup

f∈ICNN(Rd)

inf
g∈ICNN(Rd)

VP,Q(f, g)+CP,Q. (6)

ICNNs are a class of scalar-valued neural networks f(x; θ)
such that the function x 7→ f(x; θ) ∈ R is convex.

The neural network architecture for an ICNN is as follows.
Given an input x ∈ Rd, the mapping x 7→ f(x; θ) is given
by a L-layer feed-forward NN using the following equations
for l = 0, 1, . . . , L− 1:

zl+1 = σl(Wlzl +Alx+ bl), f(x; θ) = zL,

where {Wl}, {Al} are weight matrices (with the convention
that W0 = 0), and {bl} are the bias terms. σl denotes
the entry-wise activation function at the layer l. This is
illustrated in Figure 2. We denote the total set of parameters
by θ = ({Wl}, {Al}, {bl}). It follows from Amos et al.
(2016, Proposition 1) that f(x; θ) is convex in x provided

(i) all entries of the weights Wl are non-negative;

(ii) activation function σ0 is convex;

(iii) σl is convex and non-decreasing, for l = 1, . . . , L− 1.

While ICNNs are a specific parametric class of convex func-
tions, it is important to understand if this class is rich enough
representationally. This is answered positively by Chen et al.
(2018, Theorem 1). In particular, they show that any convex
function over a compact domain can be approximated in sup
norm by a ICNN to the desired accuracy. This justifies the
choice of ICNNs as a suitable approximating class for the
convex functions.
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Source Target Transp.

(a) Barycentric-OT (b) W1-LP (c) W2GAN (d) Our approach

Figure 3. The transport maps learned by various approaches on ‘Checker board’ and ‘mixture of eight Gaussians’ datasets. (a) Barycentric-
OT (Seguy et al., 2017); (b) W1-LP (Petzka et al., 2017); (c) W2-GAN (Leygonie et al., 2019); (d) Our approach (Algorithm 1). The
source distribution Q is highlighted in orange, target distribution P in green, the transported distribution T#Q in red, and the transport
map with blue arrows.

The proposed framework for learning the optimal transport
provides a novel training method for deep generative models,
where (a) the generator is modeled as a gradient of a convex
function and (b) the minimax optimization in (6) (and more
concretely, Algorithm 1) provides the training methodology.
On the surface, Eq. (6) resembles the minimax optimization
of generative adversarial networks based on Wasserstein-1
distance (Arjovsky et al., 2017), called WGAN. However,
there are several critical differences making our approach
attractive.

First, because WGANs use optimal transportation distance
only as a measure of distance, the learned generator map
from the latent source to the target is arbitrary and sensitive
to the initialization (see Figure 4) (Jacob et al., 2018). Sensi-
tivity to the initialization is observed o lead to mode collapse
in Stacked MNIST experiment (Lin et al., 2018). On the
other hand, our proposed approach aims to find the optimal
transport map and learns the same mapping regardless of
the initialization (see Figure 1).

Secondly, in a WGAN architecture (Arjovsky et al., 2017;
Petzka et al., 2017), the transport map (which is the genera-
tor) is represented with neural network that is a continuous
mapping. Although, a discontinuous map can be approx-
imated arbitrarily close with continuous neural networks,
such a construction requires large weights making train-
ing unstable. On the other hand, through our proposed
method, by representing the transport map with gradient
of a neural network (equipped with ReLU type activation
functions), we obtain a naturally discontinuous map. As a

consequence we have sharp transition from one part of the
support to the other, whereas GANs (including WGANs)
suffer from spurious probability masses that are not present
in the target. This is illustrated in Section 4.3. The same
holds for regularization-based methods for learning optimal
transport (Genevay et al., 2016; Seguy et al., 2017; Leygo-
nie et al., 2019), where transport map is parametrized by
continuous neural nets.

Remark 3.5. In a recent work, Taghvaei & Jalali (2019)
proposed to solve the semi-dual optimization problem (4)
by representing the function f with an ICNN and learning
it using a stochastic optimization algorithm. However, each
step of this algorithm requires computing the conjugate
f∗ for all samples in the batch via solving a inner convex
optimization problem for each sample which makes it slow
and challenging to scale to large datasets. Further it is
memory intensive as each inner optimization step requires
a copy of all the samples in the dataset. In contrast, we
represent the convex conjugate f∗ using ICNN and present a
novel minimax formulation to learn it, in a scalable manner.

3.2. Stability analysis of the learned transport map

Theorem 3.3 establishes the consistency of our proposed
optimization: if the objective (5) is solved exactly with a
pair of functions (f0, g0), then ∇g0 is the exact optimal
transport map from Q to P . In this section, we study the
error in approximating the optimal transport map∇g0, when
the objective (5) is solved up to a small error. To this end,
we build upon the recent results from Hütter & Rigollet
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(2019, Prop. 8) regarding the stability of optimal transport
maps.

Recall that the optimization objective (5) involves a min-
imization and a maximization. For any pair (f, g), let
ε1(f, g) denote the minimization gap and ε2(g) denote the
maximization gap, defined according to:

ε1(f, g) = V(f, g)− inf
g̃∈CVX(Q)

V(f, g̃), (7)

ε2(f) = sup
f̃∈CVX(P )

inf
g̃∈CVX(Q)

V(f̃ , g̃)− inf
g̃∈CVX(Q)

V(f, g̃)

Then, the following theorem bounds the the error between
∇g and the optimal transport map ∇g0 as a function ε1 and
ε2. We defer its proof to Appendix ??.

Theorem 3.6. Consider the optimization problem (5). As-
sume Q admits a density and let ∇g0(·) denote the optimal
transport map from Q to P . Then for any pair (f, g) such
that f is strongly convex, we have

‖∇g −∇g0‖2L2(Q) ≤
2

α
(ε1(f, g) + ε2(f)),

where ε1 and ε2 are defined in (7), and ‖ · ‖L2(Q) denotes
the L2-norm with respect to measure Q.

Remark 3.7. Dependency in Thm. 3.6 on α is fundamental.
For small α, there are examples where the optimization gaps
are small but the error in LHS is large. Further, Thm. 3.6
captures the difficulty of training if true distribution has
supports that are (nearly) disjoint. In this case, the optimal
function f is not strongly convex and hence the upper-bound
is large. Numerically, in order to search over strong convex
f , we can add a small quadratic term to the output of ICNN.

4. Experiments
In this section, first we qualitatively illustrate our proposed
approach (see Figure 3) on the following two-dimensional
synthetic datasets: (a) Checkerboard, (b) Mixture of eight
Gaussians. We compare our method with the following
three baselines: (i) Barycentric-OT (Seguy et al., 2017),
(ii) W1-LP, which is the state-of-the-art Wasserstein GAN
introduced by (Petzka et al., 2017), (iii) W2GAN (Leygonie
et al., 2019). Note that while the goal of W1-LP is not to
learn the optimal transport map, the generator obtained at
the end of its training can be viewed as a transport map. For
all these baselines, we use the implementations (publicly
available) of Leygonie et al. (2019) which has the best set
of parameters for each of these methods. In Section 4.2
and Section 4.3, we highlight the respective robustness and
the discontinuity of our transport maps as opposed to other
approaches. Finally, in Section 4.4, we show the effective-
ness of our approach on the challenging task of learning
the optimal transport map on a variety of synthetic and real

world high-dimensional data. Full experimental details are
provided in Appendix ??.

Training methodology. We utilize our minimax formu-
lation in (6) to learn the optimal transport map. We
parametrize the convex functions f and g using the same
ICNN architecture (Figure 2). Recall that to ensure convex-
ity, we need to restrict all weights W`’s to be non-negative
(Assumption (i) in ICNN). We enforce it strictly for f , as the
maximization over g can be unbounded, making optimiza-
tion unstable, whenever f is non-convex. However, we relax
this constraint for g (as permitted according to Remark 3.4)
and instead introduce a regularization term

R(θg) = λ
∑
Wl∈θg

‖max(−Wl, 0)‖2F , (8)

where λ > 0 is a regularization constant and the maximum
is taken entry-wise for all the weight parameters {Wl} ⊂
θg. We empirically observe that this relaxation makes the
optimization converge faster.

For both the maximization and minimization updates in (6),
we use Adam (Kingma & Ba, 2014). At each iteration, we
draw a batch of samples from P and Q denoted by {Xi}Mi=1

and {Yj}Mj=1 respectively. Then, we use the following ob-
jective for optimization which is an empirical counterpart
of (6):

max
θf :W`≥0,∀`∈[L−1]

min
θg

J(θf , θg) +R(θg), (9)

where θf , θg are the parameters of f and g, respectively,
W` ≥ 0 is an entry-wise constraint, and

J(θf , θg) =
1

M

M∑
i=1

f(∇g(Yi))− 〈Yi,∇g(Yi)〉 − f(Xi).

This is summarized in Algorithm 1. In the remainder of
the paper, we interchangeably refer to Algorithm 1 as either
‘Our approach’ or ‘Our algorithm’2.

Remark 4.1. Note that the regularization term R(θg) is
data-independent and does not introduce any bias to the
optimization problem. For any convex function f , the mini-
mizer of the problem (9) is still a convex function g as dis-
cussed in Remark 3.4. We use this regularization to guide
the algorithm towards neural networks that are convex.

4.1. Learning the optimal transport map

As highlighted in Figure 1 and Figure 3d, qualitatively, we
observe that our proposed procedure indeed learns the opti-
mal transport map on both the Checkerboard and Mixture of
eight Gaussians datasets. In particular, our transport map is

2Source code is available at https://github.com/
AmirTag/OT-ICNN.

https://github.com/AmirTag/OT-ICNN
https://github.com/AmirTag/OT-ICNN
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(a) W1-LP: Trial 1 (b) W1-LP: Trial 2 (c) W2GAN: Trial 1 (d) W2GAN: Trial 2

Figure 4. Transport maps learned by W1-LP (Petzka et al., 2017) and W2GAN (Leygonie et al., 2019) under different random initialization.

Algorithm 1 The numerical procedure to solve the opti-
mization problem (9).

Input: Source dist. Q, Target dist. P , Batch size M ,
Generator iterations K, Total iterations T
for t = 1, . . . , T do

Sample batch {Xi}Mi=1 ∼ P
for k = 1, . . . ,K do

Sample batch {Yi}Mi=1 ∼ Q
Update θg to minimize (9) using Adam method

end for
Update θf to maximize (9) using Adam method
Projection: w ← max(w, 0), for all w ∈ {W l} ∈ θf

end for

able to cut the continuous mass symmetrically and transport
it to the nearest target support in both these examples. Also,
Figure 3 illustrates the qualitative difference of our approach
compared to other approaches, in terms of non-optimality
and existence of trailing dots. The existence of trailing dots
is due to representing the transport map with continuous
neural networks, discussed in Section 4.3.

4.2. Robustness of learning transport maps

In this section we numerically illustrate that the generator in
W1-LP and W2GAN finds arbitrary transport maps, and it
is sensitive to initialization as discussed in Section 3. This is
in stark contrast with our proposed approach which finds the
optimal transport independent of the initialization. We con-
sider the previous Checkerboard example (Figure 1a) and
train W1-LP and W2GAN with different random initializa-
tions. The resulting transport maps for two different random
trials are depicted in Figure 4a and Figure 4b for W1-LP,
and Figure 4c and Figure 4d for W2-GAN. In addition to
the fact that the learned transport map is very sensitive to
initializations, the quality of the samples generated by those
trained models are also sensitive. This is a major challenge
in training GANs (Lin et al., 2018).

4.3. Learning discontinuous transport maps

The power to represent a discontinuous transport mapping
is what fundamentally sets our proposed method apart from
the existing approaches, as discussed in Section 3. Two
prominent approaches for learning transport maps are gen-
erative adversarial networks (Arjovsky et al., 2017; Petzka
et al., 2017) and regularized optimal transport (Genevay
et al., 2016; Seguy et al., 2017). In both cases, the transport
map is modeled by a standard neural network with finite
depth and width, which is a continuous function. As a con-
sequence, continuous transport maps suffer from unintended
and undesired spurious probability mass that connects dis-
joint supports of the target probability distribution.

First, standard GANs including the original GAN (Good-
fellow et al., 2014) and variants of WGAN (Arjovsky et al.,
2017; Gulrajani et al., 2017; Wei et al., 2018) all suffer
from spurious probability masses. Even those designed to
tackle such spurious probability masses, like PacGAN (Lin
et al., 2018), cannot overcome the barrier of continuous
neural networks. This suggests that fundamental change
in the architecture, like the one we propose, is necessary.
Figure 3b illustrates the same scenario for the transport map
learned through the WGAN framework. We can observe the
trailing dots of spurious probability masses, resulting from
undesired continuity of the learned transport maps.

Similarly, regularization methods to approximate optimal
transport maps, explained in Section 2, suffer from the same
phenomenon. Representing a transport map with an inher-
ently continuous function class results in spurious probabil-
ity masses connecting disjoint supports. Figure 3a, corre-
sponding to Barycentric-OT, illustrates those trailing dots
of spurious masses for the learned transport map from al-
gorithm introduced in Seguy et al. (2017). We also observe
a similar phenomenon with Leygonie et al. (2019) as illus-
trated in Figure 3c.

On the other hand, we represent the transport map with the
gradient of a neural network (equipped with non-smooth
ReLU type activation functions). The resulting transport
map can naturally represent discontinuous transport maps,
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Figure 5. Numerical results on high-dimensional experiments of Section 4.4: (a) Convergence of our estimated W2 distance to the actual
value when transporting N (0, Id) to N (α1, Id) where d = 784; (b) Transporting a 784-dim Gaussian to a 2-dim Gaussian mixture
embedded in 784-dim space; (c) Samples from the source distribution corresponding to first five MNIST digits, embedded into 16-dim.
feature space. (d) Image of the samples under the learned optimal transport map, where the target distribution is the last five digits.

as illustrated in Figure 1b and Figure 3d. The vector field
of the learned transport map in Figure 1c clearly shows the
discontinuity of the learned optimal transport. The spurious
points in Figure 3d are due to finite sample effects and are
expected to decrease with more training samples.

4.4. High dimensional experiments

We consider the challenging task of learning optimal trans-
port maps on high dimensional distributions. In particular,
we consider both synthetic and real world high dimensional
datasets and provide quantitative and qualitative illustration
of the performance of our proposed approach.

Gaussian to Gaussian. Source distribution Q = N (0, Id)
and target distribution P = N (µ, Id), for some fixed
µ ∈ Rd and d = 784. The mean vector µ = α(1, . . . , 1)>

for some parameter α > 0. Because both distributions are
Gaussian, the optimal transport map is explicitly known:
T ∗(x) = x+ µ and hence W 2

2 (P,Q) = ‖µ‖2/2 = α2d/2.
In Figure 5a, we compare our estimated distance W̃ 2

2 (P,Q),
defined in (6), with the exact value W 2

2 (P,Q), as the train-
ing progresses for various values of α ∈ {1, 5, 10}. Intu-
itively, learning is more challenging when α is larger. Fur-
ther, error in learning the optimal transport map, quantified
with the metric ‖µT (Q) − µ‖2, where µT (Q) is the mean
of the transported distribution T#Q, is reported in Table 1.
For comparison, the result using the W2GAN approach is
included.

Table 1. The error between the mean of transported and that of the
target distributions. The source and target are 728-dim. Gaussians.

APPROACH α = 1 α = 5 α = 10

OUR APPROACH 0.19 ± 0.015 13.95 ± 1.45 29.05 ± 5.16

W2GAN 1.30 37.9 66.7

High-dim. Gaussian to low-dim. mixture. Source dis-
tribution Q is standard Gaussian N (0, Id) with d = 784,
and the target distribution P is a mixture of four Gaussians
that lie in in the two-dimensional subspace of the high-
dimensional space Rd, i.e. the first two components of the
random vector X ∼ P is mixture of four Gaussians, and
the rest of the components are zero. The projection of the
learned optimal transport map onto the first four compo-
nents is depicted in Figure 5b. As illustrated in the left
panel of 5b, our transport map correctly maps the source
distribution to the mixture of four Gaussians in the first two
components. And it maps the rest of the components to zero,
as highlighted by a red blob at zero in the right panel.

MNIST {0, 1, 2, 3, 4} to MNIST {5, 6, 7, 8, 9}. We con-
sider the standard MNIST dataset (LeCun et al., 1998) with
the goal of learning the optimal transport map from the set
of images corresponding to first five digits {0, 1, 2, 3, 4} to
the last five digits {5, 6, 7, 8, 9}. To achieve this, we em-
bed the images into the a space where the Euclidean norm
‖ · ‖ between the embedded images is meaningful. This
is in alignment with the reported results in the literature
for learning the L2-optimal transport map (Yang & Karni-
adakis, 2019, Sec. 4.1). We consider the embeddings into a
16-dimensional latent feature space given by a pre-trained
Variational Autoencoder (VAE). We simulate our algorithm
on this feature space. The results of the learned transport
map are depicted in Figure 5. Figure 5c presents samples
from the source distribution and Figure 5d illustrates the
source samples after transportation under the learned op-
timal transport map. We observe that the digits that look
alike are coupled via the optimal transport map, e.g. 1→ 9,
2→ 8, and 4→ 9.

Gaussian to MNIST. The source is 16-dimensional stan-
dard Gaussian distribution, and the target is the 16-
dimensional latent embeddings of all the MNIST digits. The
MNIST like samples that are generated from the learned
optimal transport map are depicted in Figure 6.



Optimal transport mapping via input convex neural networks

Figure 6. MNIST like samples generated by the learned optimal
transport map from Gaussian source distribution in feature space.

These experiments serve as a proof of concept that the al-
gorithm scales to high-dimensional setting and real-world
dataset. We believe that further improvements on the per-
formance of the proposed algorithm requires careful tuning
of hyper-parameters which takes time to develop (similar to
initial WGAN) and is a subject of ongoing work.

5. Conclusion
We presented a novel minimax framework to learn the op-
timal transport map under W2-metric. Our framework is
in contrast to regularization-based approaches, where the
constraint of the dual Kantorovich problem is replaced with
a penalty term. Instead, we represent the dual functions
with ICNN, so that the constraint is automatically satisfied.
Further, the transport map is expressed as gradient of a con-
vex function, which is able to represent discontinuous maps.
We believe that our framework paves way for bridging the
optimal transport theory and practice.
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