
From Local SGD to Local Fixed-Point Methods for Federated Learning

Grigory Malinovsky 1 Dmitry Kovalev 2 Elnur Gasanov 2 Laurent Condat 2 Peter Richtárik 2

Abstract
Most algorithms for solving optimization prob-
lems or finding saddle points of convex–concave
functions are fixed-point algorithms. In this work
we consider the generic problem of finding a fixed
point of an average of operators, or an approxima-
tion thereof, in a distributed setting. Our work is
motivated by the needs of federated learning. In
this context, each local operator models the com-
putations done locally on a mobile device. We
investigate two strategies to achieve such a con-
sensus: one based on a fixed number of local steps,
and the other based on randomized computations.
In both cases, the goal is to limit communication
of the locally-computed variables, which is often
the bottleneck in distributed frameworks. We per-
form convergence analysis of both methods and
conduct a number of experiments highlighting the
benefits of our approach.

1. Introduction
In the ‘big data’ era, the explosion in size and complexity
of the data arises in parallel to a shift towards distributed
computations, as modern hardware increasingly relies on
the power of uniting many parallel units into one system.
For distributed optimization tasks, specific issues arise, such
as decentralized data storage. For instance, the huge amount
of mobile phones or smart home devices in the world con-
tain an important volume of data captured and stored on
each of them. This data contains a wealth of potentially use-
ful information to their owners, and more so if appropriate
machine learning models could be trained on the heteroge-
neous data stored across the network of such devices. Yet,
many users are increasingly sensitive to privacy concerns
and prefer their data to never leave their devices. But the
only way to share knowledge while not having all data in

1Moscow Institute of Physics and Technology, Dolgoprudny,
Russia 2King Abdullah University of Science and Technology
(KAUST), Thuwal, Saudi Arabia. Correspondence to: Laurent
Condat <see https://lcondat.github.io/>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

one place is to communicate, to keep moving towards the
solution of the overall problem. Typically, mobile phones
communicate back and forth with a distant server, so that a
global model is progressively improved and converges to a
steady state, which is globally optimal for all users. This is
precisely the purpose of the recent and rising paradigm of
federated learning (Konečný et al., 2016; McMahan et al.,
2017) where typically a global supervised model is trained
in a massively distributed manner over a network of het-
erogeneous devices. Communication, which can be costly
and slow, is the main bottleneck in this framework. So, it
is of primary importance to devise novel algorithmic strate-
gies, where the computation and communication loads are
balanced.

A strategy increasingly used by practitioners is to make
use of local computations; that is, more local computations
are performed on each device before communication and
subsequent model averaging, with the hope that this will re-
duce the total number of communications needed to obtain
a globally meaningful solution. Thus, local gradient de-
scent methods have been investigated (Stich, 2019; Khaled
et al., 2019; 2020; Ma et al., 2017; Haddadpour & Mahdavi,
2019). Despite their practical success, local methods are
little understood and there is much to be discovered. In this
paper, we don’t restrict ourselves to gradient descent to min-
imize an average of smooth functions; we consider the much
broader setting of finding a fixed point of an average of a
large number M of operators. Indeed, most, if not all, itera-
tive methods are fixed-point methods, which aim at finding a
fixed point of some operator (Bauschke et al., 2011; Condat
et al., 2019). Fixed-point methods are typically made from
compositions and averages of gradient or proximity opera-
tors of functions (Combettes & Yamada, 2015; Bauschke
& Combettes, 2017); for instance, a sum of proximity op-
erators corresponds to the ‘proximal average’ of functions
(Yu, 2013). Using more involved Lyapunov functions than
the distance to the solution or the objective value, conver-
gence of methods with inertia, e.g. Nesterov’s acceleration
techniques, to a fixed point, can be established (Lessard
et al., 2016). (Block-)coordinate or alternating minimiza-
tion methods are fixed-point methods as well (Richtárik &
Takáč, 2014; Pesquet & Repetti, 2015). Let us also men-
tion that by the design of nontrivial fixed-point operators,
nonlinear inverse problems can be solved (Combettes &



From Local SGD to Local Fixed-Point Methods for Federated Learning

Woodstock, 2020). Beyond optimization, fixed-point meth-
ods are used to solve monotone inclusions or variational
inequalities, with applications in mechanics or stochastic
control. They are also used to find saddle points of convex–
concave functions, e.g. Nash equilibria in game theory. Yet
another example is attaining the steady-state of a control
system or a dynamic phenomenon modeled by a PDE.

1.1. Contributions

We model the setting of communication-efficient distributed
fixed-point optimization as follows: we haveM ≥ 1 parallel
computing nodes. The variables handled by these nodes are
modeled as vectors of the Euclidean space Rd, endowed
with the classical inner product, for some d ≥ 1. Let Ti,
for i = 1, . . . ,M be operators on Rd, which model the set
of operations during one iteration. We define the average
operator

T : x ∈ Rd 7→ 1

M

M∑
i=1

Ti(x). (1)

Our goal is to find a fixed point of T ; that is, a vector
x? ∈ Rd such that T (x?) = x?. The sought solution x?

should be obtained by repeatedly applying Ti at each node,
in parallel, with averaging steps to achieve a consensus.
Here we consider that, after some number of iterations,
each node communicates its variable to a distant server,
synchronously. Then the server computes the average of the
received vectors and broadcasts it to all nodes.

We investigate two strategies. The first one consists, for each
computing node, in iterating several times some sequence
of operations; we call this local steps. The second strategy
consists in reducing the number of communication steps by
sharing information only with some low probability, and
doing only local computations inbetween. We analyze two
algorithms, which instantiate these two ideas, and we prove
their convergence. Their good performances are illustrated
by experiments.

1.2. Mathematical Background

Let T be an operator on Rd. We denote by Fix(T ) the set
of its fixed points. T is said to be χ-Lipschitz continuous,
for some χ ≥ 0, if, for every x and y in Rd,

‖T (x)− T (y)‖ ≤ χ‖x− y‖.

Moreover, T is said to be nonexpansive if it is 1-Lipschitz
continuous, and χ-contractive, if it is χ-Lipschitz continu-
ous, for some χ ∈ [0, 1). If T is contractive, its fixed point
exists and is unique, see the Banach–Picard Theorem 1.50 in
(Bauschke & Combettes, 2017). T is said to be α-averaged,
for some α ∈ (0, 1], if T = αT ′ + Id for some nonexpan-
sive operator T ′, where Id denotes the identity. T is said to
be firmly nonexpansive if it is 1/2-averaged.

2. A Generic Distributed Fixed-Point Method
with Local Steps

Let (tn)n∈N be the sequence of integers at which commu-
nication occurs. We propose Algorithm 1, shown below; it
proceeds as follows: at every iteration, the operator Ti is
applied at node i, with further relaxation with parameter λ.
After some number of iterations, each of the M comput-
ing nodes communicates its vector to a master node, which
computes their average and broadcasts it to all nodes. Thus,
the later resume computing at the next iteration from the
same variable x̂k. The algorithm is a generalization of local
gradient descent, a.k.a. Federated Averaging (McMahan
et al., 2017).

We call an epoch a sequence of local iterations, followed by
averaging; that is, the n-th epoch, for n ≥ 1, is the sequence
of iterations of indices k + 1 = tn−1 + 1, . . . , tn (the 0-th
epoch is the initialization step x0

i := x̂0, for i = 1, . . . ,M ).
We assume that the number of iterations in each epoch,
between two aggregation steps, is bounded by some integer
H ≥ 1; that is,
Assumption 2.1. 1 ≤ tn − tn−1 ≤ H , for every n ≥ 1.

To analyze Algorithm 1, we introduce the following aver-
aged vector:

x̂k =
1

M

M∑
i=1

xki =
1

M

M∑
i=1

hki .

Note that this vector is actually computed only when k is
one of the tn. In the uniform case tn = nH , for every
n ∈ N, we introduce the operator

T̃λ =
1

M

M∑
i=1

(
λTi + (1− λ)Id

)H
,

where ·H denotes the composition of an operator with itself
H times. Thus, xnH1 = · · · = xnHM = x̂nH is the variable
shared by every node at the end of the n-th epoch. We have,
for every n ∈ N,

x̂(n+1)H = T̃λ(x̂nH).

We also assume that the following holds:

Assumption 2.2. Fix(T ) and Fix(T̃λ) are nonempty.

Note that the fixed points of T̃λ depend on λ. The smaller
λ, the closer Fix(T ) and Fix(T̃ ). But the smaller λ, the
slower the convergence, so λ controls the tradeoff between
accuracy and speed in estimating a fixed point of T .

2.1. General Convergence Analysis

Theorem 2.3 (General convergence). Suppose that tn =
nH , for every n ∈ N, and suppose that the Ti are all α-
averaged, for some α ∈ (0, 1]. Let λ ∈ (0, 1/α) be the



From Local SGD to Local Fixed-Point Methods for Federated Learning

Algorithm 1 Local fixed-point method
Input: Initial estimate x̂0 ∈ Rd, stepsize
λ > 0, sequence of synchronization times
0 = t0 < t1 < . . .
Initialize: x0

i := x̂0, for all i = 1, . . . ,M
for k = 0, 1, . . . do

for i = 1, 2, . . . ,M in parallel do
hk+1
i := (1− λ)xki + λTi(xki )

if k + 1 = tn, for some n ∈ N, then
Communicate hk+1

i to master node
else
xk+1
i := hk+1

i

end if
end for
if k + 1 = tn, for some n ∈ N, then

At master node: x̂k+1 := 1
M

∑M
i=1 h

k+1
i

Broadcast: xk+1
i := x̂k+1, for all i

end if
end for

Algorithm 2 Randomized fixed-point method
Input: Initial estimate x̂0 ∈ Rd, stepsize
λ > 0, communication probability 0 < p ≤ 1
Initialize: x0

i = x̂0, for all i = 1, . . . ,M
for k = 1, 2, . . . do

for i = 1, 2, . . . ,M in parallel do
hk+1
i := (1− λ)xki + λTi(xki )

end for
Flip a coin and
with probability p do

Communicate hk+1
i to master, for all i

At master node: x̂k+1 := 1
M

∑M
i=1 h

k+1
i

Broadcast: xk+1
i := x̂k+1, for all i

else, with probability 1− p, do
xk+1
i := hk+1

i , for all i = 1, . . . ,M
end for

parameter in Algorithm 1. Then the sequence (x̂nH)n∈N
converges to a fixed point x† of T̃ . In addition, the following
hold:

(i) T̃λ is ζ-averaged, with ζ = Hαλ
1+(H−1)αλ .

(ii) The distance between x̂nH and x† decreases at every
epoch: for every n ∈ N,

‖x̂(n+1)H−x†‖2 ≤ ‖x̂nH−x†‖2−1− ζ
ζ
‖x̂(n+1)H−x̂nH‖2.

(2)

(iii) The squared differences between two successive updates
are summable:∑

n∈N
‖x̂(n+1)H − x̂nH‖2 ≤ ζ

1− ζ
‖x̂0 − x†‖2. (3)

(iv) For every n ∈ N,

‖x̂(n+1)H − x̂nH‖2 ≤ 1

ζ(1− ζ)(n+ 1)
‖x̂0 − x†‖2. (4)

(v) ‖x̂(n+1)H − x̂nH‖2 = o(1/n). (5)

Proof. The convergence property and the property (iii)
come from the application of the Krasnosel’skii–Mann the-
orem, see Theorem 5.15 in (Bauschke & Combettes, 2017).
The properties (i) and (ii) are applications of Proposition
4.46, Proposition 4.42, and Proposition 4.35 in (Bauschke
& Combettes, 2017). (iv) and (v) come from Theorem 1 in
(Davis & Yin, 2016). �

We can note that in most cases, the fixed-point residual
‖T (xk) − xk‖ is a natural way to measure the conver-
gence speed of a fixed-point algorithm xk+1 = T (xk). For

gradient descent, T (xk) = xk − γ∇F (xk), so we have
‖T (xk)− xk‖ = γ‖∇F (xk)‖, which indeed measures the
discrepancy to ∇F (x?) = 0. For the proximal point algo-
rithm to solve a monotone inclusion 0 ∈M(x?), T (xk) =
(γM + Id)−1(xk), so that T (xk) − xk ∈ −γM(xk+1);
again, ‖T (xk) − xk‖ characterizes the discrepancy to the
solution.

Remark 2.4 (Convergence speed). For the baseline algo-
rithm (Algorithm 1 with H = 1), where averaging occurs
after every iteration, we have after H iterations:

‖x̂(n+1)H − x†‖2 ≤ ‖x̂nH − x†‖2 (6)

− 1− αλ
αλ

(n+1)H−1∑
k=nH

‖x̂k+1 − x̂k‖2.

We can compare this ‘progress’, made in decreasing the
squared distance to the solution, with the one in Theorem
2.3-(ii), where 1−ζ

ζ = 1−αλ
Hαλ . This latter value multiplies

‖x̂(n+1)H − x̂nH‖2, which can be up to H2 larger than
‖x̂k+1 − x̂k‖2, for k in nH, . . . , (n + 1)H − 1. So, in
favorable cases, Algorithm 1 progresses as fast as the base-
line algorithm. In less favorable cases, the progress in one
epoch is H times smaller, corresponding to the progress in
1 iteration. Given that communication occurs only once per
epoch, the ratio of convergence speed to communication
burden is, roughly speaking, between 1 and H times better
than the one of the baseline algorithm. They don’t converge
to the same elements, however.

A complementary result on the convergence speed is the
following. In the rest of the section, the tn are not restricted



From Local SGD to Local Fixed-Point Methods for Federated Learning

to be uniform; we assume that Assumption (2.1) holds, as
well as:
Assumption 2.5. Each operator Ti is firmly nonexpansive.

Then we have the following results on the iterates of Algo-
rithm 1:
Theorem 2.6. Suppose that λ ≤ 1

8 max(1,H−1) . Then ∀T ∈
N,

1

T

T−1∑
k=0

∥∥∥x̂k − T (x̂k)
∥∥∥2

≤ 3‖x̂0 − x?‖2

λT

+
36λ2(H − 1)2

M

M∑
i=1

‖x? − Ti(x?)‖2. (7)

The next result gives us an explicit complexity, in terms of
number of iterations sufficient to achieve ε-accuracy:
Corollary 2.7. Suppose that H ≥ 2 and that λ ≤ 1

8 . Then
a sufficient condition on the number T of iterations to reach
ε-accuracy, for any ε > 0, is

T

H − 1
≥ 24‖x̂0 − x?‖2

ε
max

{
2,

3σ√
ε

}
. (8)

Note that as long as the target accuracy is not too high,
in particular if ε ≥ 9σ2

8 , then T
H = O

(
‖x̂0−x?‖2

ε

)
. If

ε < 9
8σ

2, the communication complexity is equal to T
H =

O
(
‖x̂0−x?‖2σ

ε3/2

)
.

Corollary 2.8. Let T ∈ N and let H ≥ 1 be such that
H ≤

√
T√
M

; set λ = 1
8

√
M√
T

. Then

1

T

T−1∑
k=0

∥∥∥x̂k−T (x̂k)
∥∥∥2

≤ 24‖x̂0 − x?‖2√
MT

+
3M(H − 1)2σ2

8T
.

(9)

Hence, to get a convergence rate of 1√
MT

we can choose

the parameter H as O
(
T 1/4M−3/4

)
, which implies a total

number of Ω
(
T 3/4M3/4

)
synchronization steps. If we need

a rate of 1/
√
T , we can set a larger value H = O

(
T 1/4

)
.

Remark 2.9 (CaseH = 1). We remark that if H = 1, i.e.
communication occurs after every iteration, the last term
in Theorem 2.6, which depends on H − 1, is zero. This is
coherent with the fact that x† = x? in that case, so that the
algorithm converges to an exact fixed point of T . In that
sense, Theorem 2.6 is tight.

Remark 2.10 (Local gradient descent (GD) case). Con-
sider that Ti(xki ) = xki − 1

L∇fi(x
k
i ), where each convex

function fi is L-smooth; that is, fi is differentiable with
L-Lipschitz continuous gradient. Then the assumptions in
Theorem 2.6 are satisfied and our results recover known re-
sults about Local GD for heterogeneous data as particular
cases (Khaled et al., 2019).

2.2. Linear Convergence with Contractive Operators

Theorem 2.11 (Linear convergence). Suppose that tn =
nH , for every n ∈ N, and suppose that the Ti are all χ-
contractive, for some χ ∈ [0, 1). Let λ ∈ (0, 2

1+χ ) be the

parameter in Algorithm 1. Then the the fixed point x† of T̃λ
exists and is unique, and the sequence (x̂nH)n∈N converges
linearly to x†. More precisely, the following hold:

(i) T̃λ is ξH -contractive, with ξ = max
(
λχ+(1−λ), λ(1+

χ)− 1
)
.

(ii) For every n ∈ N,

‖x̂(n+1)H − x†‖ ≤ ξH‖x̂nH − x†‖. (10)

(iii) We have linear convergence with rate ξ: for every
n ∈ N,

‖x̂nH − x†‖ ≤ ξnH‖x̂0 − x†‖. (11)

Proof. For every i = 1, . . . ,M , the operator λTi+(1−λ)Id
is ξ-contractive, with ξ = {λχ + (1 − λ) if λ ≤ 1, λ(1 +
χ)− 1 else}. Thus, (λTi + (1− λ)Id)H is ξH contractive.
Furthermore, the average of ξH -contractive operators is
ξH -contractive. The claimed properties are applications of
the Banach–Picard theorem (Theorem 1.50 in (Bauschke &
Combettes, 2017)). �

Remark 2.12 (Convergence speed). In the conditions of
Theorem 2.11, the convergence rate ξ with respect to the
number of iterations is the same, whatever H: the distance
to a fixed point is contracted by a factor of ξ after every iter-
ation, in average. The fixed point depends on H , however.

Remark 2.13 (Choice of λ). In the conditions of Theorem
2.11, without further knowledge on the operators Ti, we
should set λ = 1, so that ξ = χ, since every other choice
may slow down the convergence.

Since Algorithm 1 converges linearly to x†, it remains to
characterize the distance between x† and x?.

Theorem 2.14 (Neighborhood of the solution). In the con-
ditions of Theorem 2.11, suppose that λ = 1. So, ξ = χ.
Then

‖x† − x?‖ ≤ S, (12)

where

S =
ξ

1− ξ
1− ξH−1

1− ξH
1

M

M∑
i=1

‖Ti(x?)− x?‖. (13)



From Local SGD to Local Fixed-Point Methods for Federated Learning

Remark 2.15 (Comments on Theorem 2.14).

(1) If M = 1, T1 = T , so that ‖T1(x?) − x?‖ = 0 and
S = 0, so that we recover that x† = x?, whatever H . In
that case, the unique node and the master do not need to
communicate, and the variable at the node will converge
to x?. In other words, communication is irrelevant in that
case.

(2) If H = 1, 1− ξH−1 = 0 and S = 0, so that we recover
that x† = x?.

(3) If H → +∞, S is finite and we have

S =
ξ

1− ξ
1

M

M∑
i=1

‖Ti(x?)− x?‖. (14)

This corresponds to x† = 1
M

∑M
i=1 x

?
i , where x?i is the fixed

point of Ti.

(4) If we let H vary from 1 to +∞, S increases monotoni-
cally from 0 to the value in (14).

(5) In ‘one-shot minimization’, applying Ti consists in going
to its fixed point: Ti(x) = x?i , for every x. Then ξ = 0.
Hence, S = 0, because x† = 1

M

∑M
i=1 x

?
i = x?.

(6) In the homogeneous case Ti = T for every i,

S =
ξ

1− ξ
1

M

M∑
i=1

‖T (x?)− x?‖ = 0,

since T (x?) = x?. In this case, the M nodes do the same
computations, so this is the same as having only one node,
like in (1).

(7) As a direct corollary of Theorem 2.11 (iii) and Theorem
2.14, we have, for every n ∈ N,

‖x̂nH − x?‖ ≤ ξnH‖x̂0 − x†‖+ S (15)

≤ ξnH(‖x̂0 − x?‖+ S) + S. (16)

Remark 2.16 (Local gradient descent). Let us consider
that each Ti : x 7→ x − γ∇Fi(x), for some L-smooth
and µ-strongly convex function Fi, with L ≥ µ > 0 and
0 < γ ≤ 2/(L + µ). Set λ = 1. Then ξ = χ = 1 − γµ
and ‖Ti(x?)− x?‖ = γ‖∇Fi(x?)‖. To our knowledge, our
characterization of the convergence behavior is new and
improves upon state-of-the-art results (Khaled et al., 2019),
even in this case.

To summarize, in presence of contractive operators, Algo-
rithm 1 converges at the same rate as the baseline algorithm
(H = 1), up to a neighborhood of size S, for which we give
a tight bound. So, if the desired accuracy ε = ‖x̂k − x?‖ is
not lower than S, using local steps is the way to go, since the
communication load is divided by H , chosen as the largest
value such that S ≤ ε in (13).

3. A Randomized Communication-Efficient
Distributed Fixed-Point Method

Now, we propose a second loopless algorithm, where the
local steps in Algorithm 1, which can be viewed as an inner
loop between two communication steps, is replaced by a
probabilistic aggregation. This yields Algorithm 2, shown
above. It is communication-efficient in the following sense:
while in Algorithm 1 the number of communication rounds
is divided by H (or by the average of tn − tn−1 in the
nonuniform case), in Algorithm 2 it is multiplied by the
probability p ≤ 1. Thus, p plays the same role as 1/H .

To analyze Algorithm 2, we suppose that the operators are
contractive:
Assumption 3.1. Each operator Ti is (1+ρ/2)-cocoercive
(Bauschke & Combettes, 2017), with ρ > 0; that is, there
exists ρ > 0 such that, for every i = 1, . . . ,M and every
x, y ∈ Rd,

(1+ρ)‖Ti(x)−Ti(y)‖2 ≤ ‖x−y‖2−‖x−Ti(x)−y+Ti(y)‖2.

In the particular case of gradient descent (GD) as the op-
erator, this assumption is satisfied with ρ > 0 for strongly
convex smooth functions, see Theorem 2.1.11 in (Nesterov,
2004).

Almost sure linear convergence of Algorithm 2 up to a
neighborhood is established in the next theorem:
Theorem 3.2. Let us define the Lyapunov function: for
every k ∈ N,

Ψk := ‖x̂k − x?‖2 +
5λ

p

1

M

M∑
i=1

∥∥xki − x̂k∥∥2
(17)

Then, under Assumption 3.1 and if λ < p
15 , we have, for

every k ∈ N,

EΨk ≤
(

1−min

(
λρ

1 + ρ
,
p

5

))k
Ψ0

+
150

min
(
λρ

1+ρ ,
p
5

)
p2
λ3σ2, (18)

where σ2 := 1
M

∑M
i=1 ‖x? − Ti(x?)‖2 and E denotes the

expectation.

Since the previous theorem may be difficult to analyze,
the next results gives a bound to reach ε-accuracy in in
Algorithm 2:
Corollary 3.3. Under Assumption 3.1 and if λ < p

15 , for
any ε > 0, ε-accuracy is reached after T iterations, with

T ≥ max

{
15(1 + ρ)

ρp
,

18σ(1 + ρ)
1
3

pρ
3
2 ε

1
2

,
40σ

2
3 (1 + ρ)

pρε
1
3

}

× log
2Ψ0

ε
. (19)



From Local SGD to Local Fixed-Point Methods for Federated Learning

(a) (b)

(c)

Figure 1. We analyze the convergence of Algorithm 1 with gradient descent steps, with uniform communication times tn = nH; in (a)
w.r.t. number of communication rounds, for different values of H , with λ = 0.5; in (b) w.r.t. computation time, for different values of H ,
with λ = 0.5; in (c) w.r.t. computation time, for different values of λ, with H = 4.

4. Experiments
Model Although our approach can be applied more broadly,
we focus on logistic regression, since this is one of the
most important models for classification. The corresponding
objective function takes the following form:

f(x) =
1

n

n∑
i=1

log
(
1 + exp

(
−bia>i x

))
+
κ

2
‖x‖2,

where ai ∈ Rd and bi ∈ {−1,+1} are the data samples.

Datasets We use the ’a9a’ and ’a4a’ datasets from the
LIBSVM library and we set κ to be L

n , where n is the size
of the dataset and L is a Lipschitz constant of the first part
of ∇f , without regularization.

Hardware and software We implemented all algorithms
in Python using the package MPI4PY, in order to run the
code on a truly parallel architecture. All methods were

evaluated on a computer with an Intel(R) Xeon(R) Gold
6146 CPU at 3.20GHz, having 24 cores. The cores are
connected to 2 sockets, with 12 cores for each of them.

4.1. Local Gradient Descent

We consider gradient descent (GD) steps as the operators.
That is, we consider the problem of minimizing the finite
sum:

f(x) =
1

M

M∑
i=1

fi(x), (20)

where each function fi is convex and L-smooth. We set
Ti(xki ) := xki − 1

L∇fi(x
k
i ). We use 1

L as the stepsize, so that
each Ti is firmly nonexpansive. The results of Algorithms 1
and 2 are illustrated in Figures 1 and 3, respectively.



From Local SGD to Local Fixed-Point Methods for Federated Learning

(a) (b)

(c)

Figure 2. We analyze the convergence of Algorithm 1 with cyclic gradient descent steps, with uniform communication times tn = nH; in
(a) w.r.t. number of communication rounds, for different values of H , with λ = 0.5; in (b) w.r.t. computation time, for different values of
H , with λ = 0.5; in (c) w.r.t. computation time, for different values of λ, with H = 4.

4.2. Local Cycling Gradient Descent

In this section, we consider another operator, which is cy-
cling GD. So, we consider minimizing the same function as
in (20), but this time each function fi is also a finite sum:
fi = 1

N

∑N
j=1 fij . Instead of applying full gradient steps,

we apply N element-wise gradient steps, in the sequential
order of the data points. Thus,

Ti(xki ) := Si1(Si2(. . . Sin(xki ))),

where Sij : y 7→ y − 1
NL∇fij . If, for each i, all functions

fij have the same minimizer x?i , then this joint minimizer
is a fixed point of Ti. Also, these operators can be shown to
be firmly nonexpansive. The results of Algorithms 1 and 2
are illustrated in Figures 2 and 4, respectively.

4.3. Results

We observe a very tight match between our theory and the
numerical results. As can be seen, the larger the value of
the parameters H and λ, the faster the convergence at the
beginning, but the larger the radius of the neighborhood.
In terms of computational time, there is no big advantage,
since the experiments were run on a single machine and the
communication time was negligible. But in a distributed
setting where communication is slow, our approach has a
clear advantage. We can also observe the absence of oscil-
lations. Hence, there is a clear advantage of local methods
when only limited accuracy is required.

In the experiment with cyclic GD, the algorithm converges
only to a neighbourhood of the ideal solution, even when
1 local step is used. This happens because the assumption
of a joint minimizer for all i is not satisfied here. However,
since the operators are firmly nonexpansive, we have con-



From Local SGD to Local Fixed-Point Methods for Federated Learning

(a) (b)

(c)

Figure 3. We analyze the convergence of Algorithm 2 with gradient descent steps, with λ = 0.5; in (a) with the same gradient stepsizes,
w.r.t. number of communication rounds, for different values of p; in (b) with the same gradient stepsizes, w.r.t. computation time, for
different values of p; in (c) with gradient stepsizes proportional to p, w.r.t. number of communication rounds, for different values of p.

vergence to a fixed point. The convergence of Algorithm 1
is illustrated with respect to the relaxation parameter λ. If λ
is small, convergence is slower, but the algorithm converges
to a point closer to the true solution x?. In Figure 4, we
further illustrate the behavior of Algorithm 2 with respect
to the probability p, for cyclic gradient descent. We can see
that the fastest and most accurate convergence is obtained
for an intermediate value of p, here p = 0.2.

The experiments with Algorithm 2 show that, with a low
probability p of update, the neighborhood is substantially
larger; however, with p increasing, the convergence in terms
of communication rounds becomes worse. Therefore, with
careful selection of the probability parameter, a significant
advantage can be obtained.

5. Conclusion
We have proposed two strategies to reduce the communica-
tion burden in a generic distributed setting, where a fixed
point of an average of operators is sought. We have shown
that they improve the convergence speed, while achieving
the goal of reducing the communication load. At conver-
gence, only an approximation of the ideal fixed point is
attained, but if medium accuracy is sufficient, the proposed
algorithms are particularly adequate.

In future work, we will generalize the setting to random-
ized fixed-point operators, to generalize stochastic gradient
descent approaches. We will also investigate compression
(Khaled & Richtárik, 2019; Chraibi et al., 2019) of the com-
municated variables, with or without variance reduction, in
combination with locality.



From Local SGD to Local Fixed-Point Methods for Federated Learning

(a) (b)

(c)

Figure 4. We analyze the convergence of Algorithm 2 with cyclic gradient descent steps, with λ = 0.5; in (a) with the same gradient
stepsizes, w.r.t. number of communication rounds, for different values of the p; in (b) same as in (a), but w.r.t. computation time; in (c)
with gradient stepsizes proportional to p, w.r.t. number of communication rounds, for different values of p.

Acknowledgements
Part of this work was done while the first author was an
intern at KAUST.

References
Bauschke, H. H. and Combettes, P. L. Convex Analysis and

Monotone Operator Theory in Hilbert Spaces. Springer,
New York, 2nd edition, 2017.

Bauschke, H. H., Burachik, R. S., Combettes, P. L., Elser, V.,
Luke, D. R., and Wolkowicz, H. (eds.). Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering.
Springer, 2011.

Chraibi, S., Khaled, A., Kovalev, D., Richtárik, P., Salim,
A., and Takáč, M. Distributed fixed point methods with
compressed iterates. preprint ArXiv:1912.09925, 2019.

Combettes, P. L. and Woodstock, Z. C. A fixed point frame-
work for recovering signals from nonlinear transforma-
tions. preprint arXiv:2003.01260, 2020.

Combettes, P. L. and Yamada, I. Compositions and convex
combinations of averaged nonexpansive operators. Jour-
nal of Mathematical Analysis and Applications, 425(1):
55–70, 2015.

Condat, L., Kitahara, D., Contreras, A., and Hirabayashi, A.
Proximal splitting algorithms: Relax them all! preprint
arXiv:1912.00137, 2019.

Davis, D. and Yin, W. Convergence rate analysis of several
splitting schemes. In Glowinski, R., Osher, S. J., and Yin,
W. (eds.), Splitting Methods in Communication, Imaging,
Science, and Engineering, pp. 115–163, Cham, 2016.
Springer International Publishing.

Haddadpour, F. and Mahdavi, M. On the convergence of



From Local SGD to Local Fixed-Point Methods for Federated Learning

local descent methods in federated learning. preprint
arXiv:1910.14425, 2019.

Khaled, A. and Richtárik, P. Gradient descent with com-
pressed iterates. In NeurIPS Workshop on Federated
Learning for Data Privacy and Confidentiality, 2019.

Khaled, A., Mishchenko, K., and Richtárik, P. First anal-
ysis of local GD on heterogeneous data. In NeurIPS
Workshop on Federated Learning for Data Privacy and
Confidentiality, 2019.

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter theory
for local SGD on identical and heterogeneous data. In The
23rd International Conference on Artificial Intelligence
and Statistics (AISTATS 2020), 2020.

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. In NIPS
Workshop on Private Multi-Party Machine Learning,
2016.

Lessard, L., Recht, B., and Packards, A. Analysis and
design of optimization algorithms via integral quadratic
constraints. SIAM J. Optim., 26(1):57–95, 2016.

Ma, C., Konečný, J., Jaggi, M., Smith, V., Jordan, M. I.,
Richtárik, P., and Takáč, M. Distributed optimization
with arbitrary local solvers. Optimization Methods and
Software, 32(4):813–848, 2017.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and
Agüera y Arcas, B. Communication-efficient learning
of deep networks from decentralized data. In Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2017.

Nesterov, Y. Introductory lectures on convex optimization:
a basic course. Kluwer Academic Publishers, 2004.

Pesquet, J.-C. and Repetti, A. A class of randomized primal-
dual algorithms for distributed optimization. J. Nonlinear
Convex Anal., 12(16), December 2015.

Richtárik, P. and Takáč, M. Iteration complexity of random-
ized block-coordinate descent methods for minimizing
a composite function. Math. Program., 144(1–2):1–38,
April 2014.

Stich, S. U. Local SGD Converges Fast and Communi-
cates Little. In International Conference on Learning
Representations, 2019.

Yu, Y.-L. On decomposing the proximal map. In Proc. of
26th Int. Conf. Neural Information Processing Systems
(NIPS), pp. 91–99, 2013.



From Local SGD to Local Fixed-Point Methods for Federated Learning

Supplementary material
A. Notations and Basic Facts
A.1. Notations

Let T1, T2, . . . , Tn be operators on Rd.

Let us list here the notations used in the paper and the Appendix:

T (x) =
1

M

M∑
i=1

Ti(x)− averaging operator,

x? = T (x?)− fixed point,

x̂k =
1

M

M∑
i=1

xki − mean point,

σ2 =
1

M

M∑
i=1

‖gi(x?)‖2 − variance for locality,

Vk =
1

M

M∑
i=1

∥∥xki − x̂k∥∥2 − deviation from average,

gi(x) = x− Ti(x)− local residual,

ĝk = x̂k − 1

M

M∑
i=1

Ti(xki )− residual for mean point,

ρ− contraction parameter,
λ− relaxation parameter,

H − bound for the number of local steps in Alg. 1,
p− probability of communication in Alg. 2.

The value Vk measures the deviation of the iterates from their average. This value is crucial for the convergence analysis.
The values gi(xk) and ĝk can be viewed as analogues of the gradient and the average gradient in our more general setting.
The value σ2 serves as a measure of variance adapted to methods with local steps.

A.2. Basic Facts

Jensen’s inequality. For any convex function f and any vectors x1, . . . xM we have

f

(
1

M

M∑
m=1

xm

)
≤ 1

M

M∑
m=1

f (xm) . (21)

In particular, with f(x) = ‖x‖2, we obtain ∥∥∥∥∥ 1

M

M∑
m=1

xm

∥∥∥∥∥
2

≤ 1

M

M∑
m=1

‖xm‖2 . (22)

Facts from linear algebra.
We will use the following important properties:

‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2, for every x, y ∈ Rd, (23)



From Local SGD to Local Fixed-Point Methods for Federated Learning

‖x+ y‖2 ≥ 1

2
‖y‖2 − ‖x‖2, for every x, y ∈ Rd, (24)

2〈a, b〉 ≤ ζ‖a‖2 + ζ−1‖b‖2 for all a, b ∈ Rd and ζ > 0, (25)

1

M

M∑
m=1

‖Xm‖2 =
1

M

M∑
m=1

∥∥∥∥∥Xm −
1

M

M∑
i=1

Xi

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

M

M∑
m=1

Xm

∥∥∥∥∥
2

. (26)

Firm nonexpansiveness An operator T is said to be firmly nonexpansive if it is 1/2-averaged. Equivalently, for every x
and y ∈ Rd,

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖T (x)− x− T (y) + y‖2. (27)

A.3. Technical Lemmas

Technical Lemma 1. If T is firmly nonexpansive, then

〈T (x)− x− T (y) + y, x− y〉 ≤ −‖x− T (x)− y + T (y)‖2 (28)

and
‖T (x)− T (y)‖2 ≤ ‖x− y‖2. (29)

Proof.

‖T (x)− T (y)‖2 = ‖x− y‖2 + 2〈T (x)− x− T (y) + y, x− y〉+ ‖T (x)− x− T (y) + y‖2

≤ ‖x− y‖2 − ‖T (x)− x− T (y) + y‖2

= ‖x− y‖2 − ‖x− T (x)− y + T (y)‖2.

We have

‖x− y‖2 + 2〈T (x)− x− T (y) + y, x− y〉+ ‖T (x)− x− T (y) + y‖2 ≤ ‖x− y‖2 − ‖x− T (x)− y + T (y)‖2.

So,
2〈T (x)− x− T (y) + y, x− y〉+ ‖T (x)− x− T (y) + y‖2 ≤ −‖x− T (x)− y + T (y)‖2,

2〈T (x)− x− T (y) + y, x− y〉 ≤ −2‖x− T (x)− y + T (y)‖2,

〈T (x)− x− T (y) + y, x− y〉 ≤ −‖x− T (x)− y + T (y)‖2.

Technical Lemma 2. Let ρ > 0. Let T be a contractive and firmly nonexpansive operator; that is, for every x, y ∈ Rd,

(1 + ρ)‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖x− T (x)− y + T (y)‖2. (30)

Then

〈x− y, Ti(x)− x+ y − Ti(y)〉 ≤ −
(

ρ

2(1 + ρ)
‖x− y‖2 +

2 + ρ

2(1 + ρ)
‖x− Ti(x)− y + Ti(y)‖2

)
.

Proof.

‖Ti(x)− Ti(y)‖2 = ‖x− y − x+ Ti(x) + y − Ti(y)‖2

= ‖x− y‖2 − 2〈x− y, x− Ti(x)− y + Ti(y)〉+ ‖x− Ti(x)− y + Ti(y)‖2.

We have

(1 + ρ)‖Ti(x)− Ti(y)‖2 = (1 + ρ)‖x− y‖2 + (1 + ρ)‖x− Ti(x)− y + Ti(y)‖2

− 2(1 + ρ)〈x− y, x− Ti(x)− y + Ti(y)〉.



From Local SGD to Local Fixed-Point Methods for Federated Learning

Since

(1 + ρ)‖x− y‖2 + (1 + ρ)‖x− Ti(x)− y + Ti(y)‖2

≤ ‖x− y‖2 − ‖x− Ti(x)− y + Ti(y)‖2 + 2(1 + ρ)〈x− y, x− Ti(x)− y + Ti(y)〉,

we have

2(1 + ρ)〈x− y, x− Ti(x)− y + Ti(y)〉 ≥ ρ‖x− y‖2 + (2 + ρ)‖x− Ti(x)− y + Ti(y)‖2

〈x− y, Ti(x)− x+ y − Ti(y)〉 ≤ −
(

ρ

2(1 + ρ)
‖x− y‖2 +

2 + ρ

2(1 + ρ)
‖x− Ti(x)− y + Ti(y)‖2

)
.

B. Analysis of Algorithm 1 in Theorem 2.6
The first lemma allows us to find a recursion on the optimality gap for a single step of local method:

Lemma B.1. Under Assumption 2.5 and the condition 0 ≤ λ ≤ 1 we have, for every k ∈ N,

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 + λ(2− λ)Vk −
1

2
λ(1− λ)

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2
. (31)

Lemma B.2. Under Assumption 2.5 and the condition 0 ≤ λ ≤ 1 we have, for every k ∈ N,

Vk ≤ λ2(H − 1)

k∑
j=kp

3

M

M∑
i=1

‖xji − x̂
j‖2 +

k∑
j=kp

2

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6

k∑
j=kp

σ2. (32)

B.1. Proof of Lemma B.1

Under Assumption 2.5 and under the condition 0 ≤ λ ≤ 1, we have

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 + λ(2− λ)Vk −
1

2
λ(1− λ)

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2
. (33)



From Local SGD to Local Fixed-Point Methods for Federated Learning

Proof.

‖x̂k+1 − x?‖2 = ‖x̂k+1 − x̂k + x̂k − x?‖2

= ‖x̂k − x?‖2 + 2〈x̂k+1 − x̂k, x̂k − x?〉+ ‖x̂k+1 − x̂k‖2

= ‖x̂k − x?‖2 + 2〈(1− λ)x̂k + λ
1

M

M∑
i=1

Ti(xki )− x̂k, x̂k − x?〉

+ ‖(1− λ)x̂k + λ
1

M

M∑
i=1

Ti(xki )− x̂k‖2

= ‖x̂k − x?‖2 + 2λ〈 1

M

M∑
i=1

(
Ti(xki )− x̂k

)
, x̂k − x?〉

+ λ2‖ 1

M

M∑
i=1

(
Ti(xki )− x̂k

)
‖2

= ‖x̂k − x?‖2 + 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − x?〉

+ λ2‖ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

)
‖2

= 2λ
1

M

M∑
i=1

[
〈Ti(xki )− xki − Ti(x?) + x?, xki − x?〉

+ 〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉
]

+ ‖x̂k − x?‖2 + λ2‖ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

)
‖2

= ‖x̂k − x?‖2 + 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, xki − x?〉

+ 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉

+ λ2
∥∥ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

) ∥∥2
.

Using Technical Lemma 1,

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 − 2λ
1

M

M∑
i=1

‖Ti(xki )− xki − Ti(x?) + x?‖2

+ 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉

+ λ2 1

M
‖
M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

)
‖2



From Local SGD to Local Fixed-Point Methods for Federated Learning

Using the inequality (25)

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 − 2λ
1

M

M∑
i=1

‖Ti(xki )− xki − Ti(x?) + x?‖2

+ λ2 1

M

M∑
i=1

‖Ti(xki )− xki − Ti(x?) + x?‖2

+ 2λ
1

M

M∑
i=1

(
1

2
‖Ti(xki )− xki − Ti(x?) + x?‖2 +

1

2
‖x̂k − xki ‖2

)

= ‖x̂k − x?‖2 − λ(1− λ)
1

M

M∑
i=1

‖Ti(xki )− xki − Ti(x?) + x?‖2

+ λ
1

M

M∑
i=1

‖x̂k − xki ‖2

= ‖x̂k − x?‖2 − λ(1− λ)
1

M

M∑
i=1

‖Ti(xki )− xki − Ti(x?) + x?‖2 + λVk.

Hence,

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 + λVk

− λ(1− λ)
1

M

M∑
i=1

∥∥∥Ti(xki )− xki − Ti(x?) + x? + Ti(x̂k)− Ti(x̂k) + x̂k − x̂k
∥∥∥2

= ‖x̂k − x?‖2 + λVk

− λ(1− λ)
1

M

M∑
i=1

∥∥∥ (Ti(xki )− xki − Ti(x̂k) + x̂k
)

+
(
Ti(x̂k)− x̂k − Ti(x?) + x?

) ∥∥∥2

.

Using the inequality (24)

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 − 1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥Ti(x̂k)− x̂k − Ti(x?) + x?
∥∥∥2

+ (1− λ)λ
1

M

M∑
i=1

∥∥∥Ti(xki )− xki − Ti(x̂k) + x̂k
∥∥∥2

+ λVk

≤ ‖x̂k − x?‖2 − 1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥Ti(x̂k)− x̂k − Ti(x?) + x?
∥∥∥2

+ λ(2− λ)Vk

= ‖x̂k − x?‖2 − 1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+ λ(2− λ)Vk.

B.2. Proof of Lemma B.2

In this section, we prove the following extended version of Lemma B.2: Under Assumption 2.5 and under the condition
0 ≤ λ ≤ 1, we have

Vk ≤ λ2(H − 1)

k∑
j=kp

3

M

M∑
i=1

‖xji − x̂
j‖2

+

k∑
j=kp

2

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6

k∑
j=kp

σ2. (34)



From Local SGD to Local Fixed-Point Methods for Federated Learning

Moreover, for λ ≤ 1
8 max(1,H−1) , we have

kp+1−1∑
k=kp

(
−1

2
λ(1− λ)

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2 + λ(2− λ)Vk

)

≤ −λ
3

kp+1−1∑
k=kp

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2 + 12λ3σ2

kp+1−1∑
k=kp

σ2. (35)

Proof. Using notation ĝk = x̂k − 1
M

∑M
i=1 Ti(xki ) and gi(x) = x − Ti(x), then noting that xk+1

i = xki − λgi(xki ) and
x̂k+1 = x̂k − λĝk. Let kp+1 > k > kp where kp,kp+1 - two consecutive communication times, therefore xkpi = x̂kp .

Vk =
1

M

M∑
i=1

∥∥xki − x̂k∥∥2

=
1

M

M∑
i=1

‖xkpi − x̂
kp − λ

k∑
j=kp

gi(x
j
i )− ĝ

j‖2

= λ2 1

M

M∑
i=1

∥∥∥ k∑
j=kp

(gi(x
j
i )− ĝ

j)
∥∥∥2

(21)

≤ λ2 1

M

M∑
i=1

(k − kp)
k∑

j=kp

‖gi(xji )− ĝ
j‖2.

Using the property (26),

Vk ≤ λ2(H − 1)
1

M

M∑
i=1

k∑
j=kp

‖gi(xji )− ĝ
j‖2

≤ λ2(H − 1)
1

M

M∑
i=1

k∑
j=kp

‖gi(xji )‖
2.

Using (25), we have∥∥gi(xki )
∥∥2 ≤ (1 + c1)

∥∥gi(xki )− gi(x̂k)
∥∥2

+
(
1 + c−1

1

) ∥∥gi(x̂k)
∥∥2

≤ (1 + c1)
∥∥gi(xki )− gi(x̂k)

∥∥2
+
(
1 + c−1

1

)
(1 + c2)

∥∥gi(x̂k)− gi(x?)
∥∥2

+
(
1 + c−1

1

) (
1 + c−1

2

)
‖gi(x?)‖2 .

Setting λ = 2 and β = 1
3 , we get

3
∥∥gi(xki )− gi(x̂k)

∥∥2
+ 2

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 6 ‖gi(x?)‖2

= 3
∥∥xki − Ti(xki )− x̂k + Ti(x̂k)

∥∥2
+ 2

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 6 ‖gi(x?)‖2 .

Then
1

M

M∑
i=1

‖gi(xki )‖2 ≤ 3
1

M

M∑
i=1

‖xki − x̂k‖2 + 2
1

M

M∑
i=1

‖gi(x̂k)− gi(x?)‖2 + 6σ2.

So, we have

Vk ≤ λ2(H − 1)

k∑
j=kp

(
3

1

M

M∑
i=1

‖xji − x̂
j‖2 + 2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)



From Local SGD to Local Fixed-Point Methods for Federated Learning

We get by summation:

kp+1−1∑
k=kp

Vk ≤ λ2(H − 1)

kp+1−1∑
k=kp

k∑
j=kp

(
3

1

M

M∑
i=1

‖xji − x̂
j‖2 + 2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)

≤ λ2(H − 1)

kp+1−1∑
k=kp

kp+1−1∑
j=kp

(
3

1

M

M∑
i=1

‖xji − x̂
j‖2 + 2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)

≤ λ2(H − 1)2

kp+1−1∑
j=kp

(
3Vk + 2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)

Thus,

(1− 3λ2(H − 1)2)

kp+1−1∑
k=kp

Vk ≤ λ2(H − 1)2

kp+1−1∑
j=kp

(
2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)
kp+1−1∑
k=kp

Vk ≤
λ2(H − 1)2

(1− 3λ2(H − 1)2)

kp+1−1∑
j=kp

(
2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)
.

Using λ ≤ 1
8 max(1,H−1) , we get

kp+1−1∑
k=kp

Vk ≤
16

15
λ2(H − 1)2

kp+1−1∑
j=kp

(
2

1

M

M∑
i=1

‖gi(x̂j)− gi(x?)‖2 + 6σ2

)
.

Using this result

kp+1−1∑
k=kp

(
−1

2
λ(1− λ)

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2 + λ(2− λ)Vk

)

= −1

2
λ(1− λ)

kp+1−1∑
k=kp

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2 + λ(2− λ)

kp+1−1∑
k=kp

Vk

≤ −1

2
λ(1− λ)

kp+1−1∑
k=kp

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2

+
16

15
λ(2− λ)λ2(H − 1)2

kp+1−1∑
k=kp

(
2

M

M∑
i=1

‖gi(x̂k)− gi(x?)‖2 + 6σ2

)

= −
(

1

2
λ(1− λ)− 16

15
λ(2− λ)λ2(H − 1)2

) kp+1−1∑
k=kp

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2

+ 6λ(2− λ)
16

15
λ2(H − 1)2

kp+1−1∑
k=kp

σ2

≤ −λ
3

kp+1−1∑
k=kp

1

M

M∑
i=1

‖x̂k − Ti(x̂k) + Ti(x?)− x?‖2 + 12λ3(H − 1)2

kp+1−1∑
k=kp

σ2.



From Local SGD to Local Fixed-Point Methods for Federated Learning

B.3. Proof of Theorem 2.6

Suppose that λ ≤ 1
8 max(1,H−1) and that Assumption 2.5 holds. Then, for every k ∈ N,

1

T

T−1∑
k=0

∥∥∥x̂k − T (x̂k)
∥∥∥2

≤ 3‖x̂0 − x?‖2

λT
+ 36λ2(H − 1)2σ2. (36)

Proof. Using statment of lemma B.1:

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 − 1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+ λ(2− λ)Vk.

Summing up these inequalities gives

T−1∑
k=0

‖x̂k+1 − x?‖2 ≤
T−1∑
k=0

|x̂k − x?‖2

+
T−1∑
k=0

(
−1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+ λ(2− λ)Vk

)
.

Considering this and using (35)

T−1∑
k=0

(
−1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+ λ(2− λ)Vk

)

=

p∑
s=1

ks−1∑
j=ks−1

(
−1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+ λ(2− λ)Vk

)

≤
p∑
s=1

kp−1∑
j=kp

(
−1

2
λ(1− λ)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+ λ(2− λ)Vk

)

≤
p∑
s=1

−λ
3

kp+1−1∑
k=kp

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+

p∑
s=1

12λ3(H − 1)2

kp+1−1∑
k=kp

σ2


≤ 12λ3(H − 1)2

T−1∑
k=0

σ2 − λ

3

T−1∑
k=0

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

.

Hence,

T−1∑
k=0

‖x̂k+1 − x?‖2 ≤
T−1∑
k=0

|x̂k − x?‖2 + 12λ3(H − 1)2
T−1∑
k=0

σ2 − λ

3

T−1∑
k=0

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

.

Telescoping this sum:

λ

3

T−1∑
k=0

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

≤ ‖x̂0 − x?‖2 − ‖x̂T − x?‖2 + 12λ3(H − 1)2
T−1∑
k=0

σ2.

Using Jensen’s inequality (22):∥∥∥x̂k − 1

M

M∑
i=1

Ti(x̂k)
∥∥∥2

=
∥∥∥ 1

M

M∑
i=1

(
x̂k − Ti(x̂k) + Ti(x?)− x?

) ∥∥∥2

≤ 1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

.



From Local SGD to Local Fixed-Point Methods for Federated Learning

Finally, we have

λ

3

T−1∑
k=0

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

≤ ‖x̂0 − x?‖2 + 12λ3(H − 1)2
T−1∑
k=0

σ2

λ

3

T−1∑
k=0

∥∥∥x̂k − 1

M

M∑
i=1

Ti(x̂k)
∥∥∥2

≤ ‖x̂0 − x?‖2 + 12λ3(H − 1)2Tσ2

1

T

T−1∑
k=0

∥∥∥x̂k − 1

M

M∑
i=1

Ti(x̂k)
∥∥∥2

≤ 3‖x̂0 − x?‖2

λT
+ 36λ2(H − 1)2σ2

1

T

T−1∑
k=0

∥∥∥x̂k − T (x̂k)
∥∥∥2

≤ 3‖x̂0 − x?‖2

λT
+ 36λ2(H − 1)2σ2.

B.4. Proof of Corollary 2.7

Suppose that λ ≤ 1
8 max(1,H−1) and that Assumption 2.5 holds. Then a sufficient condition on the number T of iterations to

reach ε-accuracy, for any ε > 0, is

T

H − 1
≥ 24‖x̂0 − x?‖2

ε
max

{
2,

3σ√
2ε

}
. (37)

Proof.
3‖x̂0 − x?‖2

λT
+ 36λ2(H − 1)2σ2 ≤ ε.

We have

3‖x̂0 − x?‖2

λT
≤ ε

2
⇒ T ≥ 6‖x̂0 − x?‖2

λε

36λ2(H − 1)2σ2 ≤ ε

2
⇒ λ ≤

√
ε

6
√

2(H − 1)σ
.

So, we have

λ = min

{
1

8(H − 1)
,

√
ε

6
√

2(H − 1)σ

}
.

Using this, we get
T

H − 1
≥ 24‖x̂0 − x?‖2

ε
max

{
2,

3σ√
2ε

}
.

C. Analysis of Algorithm 1: Proof of Theorem 2.14

We set T̃ = 1
M

∑M
i=1 T Hi .

First, we have

‖x† − x?‖ ≤ ‖x† − T̃ (x?)‖+ ‖T̃ (x?)− x?‖ (38)

= ‖T̃ (x†)− T̃ (x?)‖+ ‖T̃ (x?)− x?‖ (39)

≤ ξH‖x† − x?‖+ ‖T̃ (x?)− x?‖, (40)

so that
‖x† − x?‖ ≤ 1

1− ξH
‖T̃ (x?)− x?‖. (41)



From Local SGD to Local Fixed-Point Methods for Federated Learning

Thus, we just have to bound ‖T̃ (x?)− x?‖:

‖T̃ (x?)− x?‖ = ‖ 1

M

M∑
i=1

T Hi (x?)− 1

M

M∑
i=1

Ti(x?)‖ (42)

≤ 1

M

M∑
i=1

‖T Hi (x?)− Ti(x?)‖ (43)

≤ 1

M

M∑
i=1

H−1∑
k=1

‖T k+1
i (x?)− T ki (x?)‖ (44)

≤ 1

M

M∑
i=1

H−1∑
k=1

ξk‖Ti(x?)− x?‖ (45)

=
1

M
ξ

1− ξH−1

1− ξ

M∑
i=1

‖Ti(x?)− x?‖ (46)

Hence,

‖x† − x?‖ ≤ S, (47)

where

S =
ξ

1− ξ
1− ξH−1

1− ξH
1

M

M∑
i=1

‖Ti(x?)− x?‖ (48)

D. Analysis of Algorithm 2
We first derive two lemmas, which will be combined to prove Theorem 3.2.

The first lemma provides a recurrence property, for one iteration of Algorithm 2:

Lemma D.1. Under Assumption 3.1, for every k ∈ N,

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 +

5

2
λVk −

1

2
λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥gi(xki )− gi(x?)
∥∥2
.

We now bound the variance Vk for one iteration, using the contraction property:

Lemma D.2. Under Assumption 3.1 and if λ < p
15 we have, for every k ∈ N,

Vk ≤
2

p

(
1− p

4
+

5

p
λ2

)
Vk + 60

λ2

p2
σ2 − 2

p
E[Vk+1] + 20

λ2

p2

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2
.

D.1. Proof of Lemma D.1

Under Assumption 3.1, for every k ∈ N and 0 ≤ λ ≤ 1, we have

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 +

5

2
λVk −

1

2
λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥gi(xki )− gi(x?)
∥∥2
. (49)

Proof.

xk+1
i = (1− λ)xki + λTi(xki )

= xki − λ
(
xki − Ti(xki )

)
= xki − λgi(xki ).



From Local SGD to Local Fixed-Point Methods for Federated Learning

So, we have

‖x̂k+1 − x?‖2 = ‖x̂k+1 − x̂k + x̂k − x?‖2

= ‖x̂k − x?‖2 + 2〈x̂k+1 − x̂k, x̂k − x?〉+ ‖x̂k+1 − x̂k‖2

= ‖x̂k − x?‖2 + 2〈(1− λ)x̂k + λ
1

M

M∑
i=1

Ti(xki )− x̂k, x̂k − x?〉

+
∥∥∥(1− λ)x̂k + λ

1

M

M∑
i=1

Ti(xki )− x̂k
∥∥∥2

= ‖x̂k − x?‖2 + 2λ〈 1

M

M∑
i=1

Ti(xki )− x̂k, x̂k − x?〉

+ λ2
∥∥∥ 1

M

M∑
i=1

(
Ti(xki )− x̂k

) ∥∥∥2

= ‖x̂k − x?‖2 + 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − x?〉

+ λ2
∥∥∥ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

) ∥∥∥2

= ‖x̂k − x?‖2 + λ2
∥∥∥ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

) ∥∥∥2

+ 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, xki − x?〉

+ 〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉

= 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉+ ‖x̂k − x?‖2

+
2λ

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, xki − x?〉

+ λ2
∥∥∥ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

) ∥∥∥2

.

Using Technical Lemma 2,

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2

− 2λ
1

M

M∑
i=1

(
ρ

2(1 + ρ)
‖xki − x?‖2

)

− 2λ
1

M

M∑
i=1

2 + ρ

2(1 + ρ)

∥∥∥Ti(xki )− xki − Ti(x?) + x?
∥∥∥2

+ 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉

+ λ2
∥∥∥ 1

M

M∑
i=1

(
Ti(xki )− xki − Ti(x?) + x?

) ∥∥∥2

.



From Local SGD to Local Fixed-Point Methods for Federated Learning

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2 − λρ

(1 + ρ)

∥∥∥ 1

M

M∑
i=1

(xki − x?)
∥∥∥2

− 2λ
2 + ρ

2(1 + ρ)

1

M

M∑
i=1

∥∥∥Ti(xki )− xki − Ti(x?) + x?
∥∥∥2

+ 2λ
1

M

M∑
i=1

〈Ti(xki )− xki − Ti(x?) + x?, x̂k − xki 〉+ λ2 1

M

M∑
i=1

∥∥∥ (Ti(xki )− xki − Ti(x?) + x?
) ∥∥∥2

.

Using the inequality (25)

‖x̂k+1 − x?‖2 ≤ ‖x̂k − x?‖2
(

1− λρ

1 + ρ

)
+ 2λ

1

M

M∑
i=1

(
1

4

∥∥∥Ti(xki )− xki − Ti(x?) + x?
∥∥∥2

+
∥∥∥x̂k − xki ∥∥∥2

)
− 2λ

2 + ρ

2(1 + ρ)

1

M

M∑
i=1

∥∥∥Ti(xki )− xki − Ti(x?) + x?
∥∥∥2

+ λ2 1

M

M∑
i=1

∥∥∥ (Ti(xki )− xki − Ti(x?) + x?
) ∥∥∥2

≤ ‖x̂k − x?‖2
(

1− λρ

1 + ρ

)
+

[
λ2 +

1

2
λ− λ(2 + ρ)

1 + ρ

]
× 1

M

M∑
i=1

∥∥∥ (Ti(xki )− xki − Ti(x?) + x?
) ∥∥∥2

+ 2λVk.

Hence,

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 + 2λVk

− λ
(

1

2
− λ
)

1

M

M∑
i=1

∥∥∥Ti(xki )− xki − Ti(x?) + x? + Ti(x̂k)− Ti(x̂k) + x̂k − x̂k
∥∥∥2

=

(
1− λρ

1 + ρ

)
‖x̂k − x?‖2 + 2λVk

− λ
(

1

2
− λ
)

1

M

M∑
i=1

∥∥∥ (Ti(xki )− xki − Ti(x̂k) + x̂k
)

+
(
Ti(x̂k)− x̂k − Ti(x?) + x?

) ∥∥∥2

.

Using (24), we have

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 − 1

2
λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥∥Ti(x̂k)− x̂k − Ti(x?) + x?
∥∥∥2

+ λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥∥Ti(xki )− xki − Ti(x̂k) + x̂k
∥∥∥2

+ 2λVk

≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 + λ

(
2 +

1

2
− λ
)
Vk

− 1

2
λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥∥Ti(x̂k)− x̂k − Ti(x?) + x?
∥∥∥2

.

Finally, we have

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 − 1

2
λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥∥x̂k − Ti(x̂k) + Ti(x?)− x?
∥∥∥2

+
5

2
λVk. (50)



From Local SGD to Local Fixed-Point Methods for Federated Learning

D.2. Proof of Lemma D.2

Under Assumption 3.1 and if λ < p
15 , we have, for every k ∈ N,

Vk ≤
2

p

(
1− p

4
+

5

p
λ2

)
Vk + 20

λ2

p2

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 60
λ2

p2
σ2 − 2

p
E[Vk+1]. (51)

Proof. If communication happens, Vk = 0. Therefore,

E[Vk+1] = (1− p) 1

M

M∑
i=1

∥∥x̂k − λĝk − xki + λgi(x
k
i )
∥∥2

= (1− p) 1

M

M∑
i

∥∥x̂k − xki ∥∥2

+ (1− p)λ2 1

M

M∑
i=1

∥∥gi(xki )− ĝk
∥∥2

+ 2(1− p)λ 1

M

M∑
i=1

〈x̂k − xki , gi(xki )− ĝk〉

Using Young’s inequality (25),

E[Vk+1] ≤ (1− p) 1

M

M∑
i

∥∥x̂k − xki ∥∥2
+ (1− p)λ2 1

M

M∑
i=1

∥∥gi(xki )− ĝk
∥∥2

+
p

4
(1− p) 1

M

M∑
i

∥∥x̂k − xki ∥∥2
+ (1− p)4

p
λ2 1

M

M∑
i=1

∥∥gi(xki )− ĝk
∥∥2
.

Using our notations,

p

2
Vk ≤

(
1− p

2

)
Vk + (1− p)

(
λ2 +

4

p
λ2

)
1

M

M∑
i=1

∥∥gi(xki )− ĝk
∥∥2 − E[Vk+1] + (1− p)p

4
Vk

≤
(

1− p

2
+ (1− p)p

4

)
Vk + (1− p)λ2

(
1 +

4

p

)
1

M

M∑
i=1

∥∥gi(xki )− ĝk
∥∥2 − E[Vk+1]

≤
(

1− p

2
+ (1− p)p

4

)
Vk +

5

p
(1− p)λ2 1

M

M∑
i=1

∥∥gi(xki )
∥∥2 − E[Vk+1].

Applying the same technique, we get:∥∥gi(xki )
∥∥2 ≤ (1 + c1)

∥∥gi(xki )− gi(x̂k)
∥∥2

+
(
1 + c−1

1

) ∥∥gi(x̂k)
∥∥2

≤ (1 + c1)
∥∥gi(xki )− gi(x̂k)

∥∥2
+
(
1 + c−1

1

)
(1 + c2)

∥∥gi(x̂k)− gi(x?)
∥∥2

+
(
1 + c−1

1

) (
1 + c−1

2

)
‖gi(x?)‖2 .

Setting c1 = 2, c2 = 1
3 , we get

3
∥∥gi(xki )− gi(x̂k)

∥∥2
+ 2

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 6 ‖gi(x?)‖2

= 3
∥∥xki − Ti(xki )− x̂k + Ti(x̂k)

∥∥2
+ 2

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 6 ‖gi(x?)‖2 .

By averaging,

1

M

M∑
i=1

‖gi(xki )‖2 ≤ 3
1

M

M∑
i=1

‖xki − x̂k‖2 + 2
1

M

M∑
i=1

‖gi(x̂k)− gi(x?)‖2 + 6σ2.



From Local SGD to Local Fixed-Point Methods for Federated Learning

Using this inequality,

p

2
Vk ≤

(
1− p

2
+ (1− p)p

4

)
Vk +

5

p
(1− p)λ2

(
3Vk + 2

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 6σ2

)
− E[Vk+1]

≤
(

1− p

2
+ (1− p)

(
p

4
+

5

p
λ2

))
Vk

+
5

p
(1− p)λ2

(
2

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 6σ2

)
− E[Vk+1]

≤
(

1− p

4
+

5

p
λ2

)
Vk +

10

p
λ2 1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 30
λ2

p
σ2 − E[Vk+1].

Finally, we get

Vk ≤
2

p

(
1− p

4
+

5

p
λ2

)
Vk + 20

λ2

p2

1

M

M∑
i=1

∥∥gi(x̂k)− gi(x?)
∥∥2

+ 60
λ2

p2
σ2 − 2

p
E[Vk+1].

D.3. Proof of Theorem 3.2

For every k ∈ N, let Ψk be the Lyapunov function defined as:

Ψk := ‖x̂k − x?‖2 +
5λ

p
Vk. (52)

Under Assumption 3.1 and if λ < p
15 , we have, for every k ∈ N,

EΨk ≤
(

1−min

(
λρ

1 + ρ
,
p

5

))k
Ψ0 +

150

min
(
λρ

1+ρ ,
p
5

)
p2
λ3σ2. (53)

Proof. Using Lemma D.1,

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 − 1

2
λ

(
1

2
− λ
)

1

M

M∑
i=1

∥∥∥gi(x̂k)− gi(x?)
∥∥∥2

+
5

2
λVk.

Using Lemma D.2,

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 − 1

2
λ

(
1

2
− λ

)
1

M

M∑
i=1

∥∥∥gi(x̂k)− gi(x?)
∥∥∥2

+
5

2
λ

2

p

((
1− p

4
+

5

p
λ2

)
Vk − E[Vk+1]

)
+

5

2
λ

20

p2
λ2 1

M

M∑
i=1

∥∥∥gi(x̂k)− gi(x?)
∥∥∥2

+ 60
λ2

p2

5

2
λσ2

≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 + λ

(
50

p2
λ2 − 1

2

(
1

2
− λ
))

1

M

M∑
i=1

∥∥∥gi(x̂k)− gi(x?)
∥∥∥2

+
5

2
λ

2

p

((
1− p

4
+

5

p
λ2

)
Vk − E[Vk+1]

)
+ 150

λ3

p2
σ2.



From Local SGD to Local Fixed-Point Methods for Federated Learning

If λ ≤ p
15 , we have

‖x̂k+1 − x?‖2 ≤
(

1− λρ

1 + ρ

)
‖x̂k − x?‖2 +

5λ

p

((
1− p

4
+

5

p
λ2

)
Vk − E[Vk+1]

)
+ 150

λ3

p2
σ2.

We have the contraction property

‖x̂k+1 − x?‖2 +
5λ

p
E[Vk+1] ≤

(
1− λρ

1 + ρ

)
‖x̂k − x?‖2 +

5λ

p

(
1− p

5

)
Vk + 150

λ3

p2
σ2.

Define the Lyapunov function:

Ψk = ‖x̂k − x?‖2 +
5λ

p
Vk.

Using the law of total expectation, we get

EΨk+1 ≤
(

1−min

(
λρ

1 + ρ
,
p

5

))
Ψk + 150

λ3

p2
σ2.

Finally we get

EΨT ≤
(

1−min

(
λρ

1 + ρ
,
p

5

))T
Ψ0 +

150

min
(
λρ

1+ρ ,
p
5

) λ3

p2
σ2.

D.4. Proof of Corollary 3.3

Under Assumption 3.1 and if λ < p
15 , for any ε > 0, ε-accuracy is reached after T iterations, with

T ≥ max

{
15(1 + ρ)

ρp
,

18σ(1 + ρ)
1
3

pρ
3
2 ε

1
2

,
40σ

2
3 (1 + ρ)

pρε
1
3

}
log

2Ψ0

ε
. (54)

Proof. We start from [
1−min

{
λρ

ρ+ 1
,
p

5

}]k
Ψ0 +

150λ3σ2

p2 min
{
λρ
ρ+1 ,

p
5

} ≤ ε.
Regarding the second term, if 150λ3σ2 ≤ 1

2
p2εmin

{
λρ

ρ+ 1
,
p

5

}
, then

{
150λ3σ2 ≤ 1

2p
2ε λρ
ρ+1 ,

150λ3σ2 ≤ p3ε
10

,

so that λ ≤ min

{
p

18σ

√
ερ
ρ+1 ,

pε
1
3

40σ
2
3

}
.

Regarding the first term, and using the fact that λ < p
15 , if

[
1−min

{
λρ

ρ+ 1
,
p

5

}]T
Ψ0 ≤

ε

2
,

then T ≥ max
{

1+ρ
λρ ,

5
p

}
log 2Ψ0

ε , so that λ = min

{
p
15 ,

p
18σ

√
ερ
ρ+1 ,

pε
1
3

40σ
2
3

}
.

Finally, we get

T ≥ max

{
5

p
,

15(1 + ρ)

ρp
,

18σ(1 + ρ)
1
3

pρ
3
2 ε

1
2

,
40σ

2
3 (1 + ρ)

pρε
1
3

}
log

2Ψ0

ε

= max

{
15(1 + ρ)

ρp
,

18σ(1 + ρ)
1
3

pρ
3
2 ε

1
2

,
40σ

2
3 (1 + ρ)

pρε
1
3

}
log

2Ψ0

ε
.


