
Predictive Multiplicity in Classification

A Omitted Proofs
Proof of Proposition 1. We use the Triangle Inequality to bound the distance between the vector of predictions of the
baseline model and the predictions of a competing model in the ✏-level set. Let y = {yi}

n
i=1 be the vector of labels, let

ŷ = {h0(xi)}
n
i=1 be the vector of predictions of the baseline model, and let y0 = {h0(xi)}

n
i=1 be the predictions of a

competing model h0 in the ✏-level set. Note that y, y0, ŷ 2 {+1,�1}n. Now, we can express the risk of the baseline model
R̂(h0), the risk of the competing model R̂(h0), and the discrepancy between h and h0 ,denoted �(h0, h

0), in terms of these
three vectors by

R̂(h0) =
1

4
ky � ŷk

R̂(h0) =
1

4
ky � y0k

�(h0, h
0) =

1

4
ky0 � ŷk

Next, consider the triangle formed in Rn by the points y, y0 and ŷ, with side lengths ky � ŷk, ky0 � ŷk and ky � y0k. The
Triangle Inequality gives us that

ky0 � ŷk  ky � y0k+ ky � ŷk.

Substituting using the three equations above, we have

�(h0, h
0)  R̂(h0) + R̂(h0).

Since h0
2 S✏(h0), we have by the definition of the ✏-level set that R̂(h0)  R̂(h0) + ✏. We can then rewrite the above

expression to yield
�(h0, h

0)  2R̂(h0) + ✏

Recall that �✏(h0) := maxh0
2S✏(h0)

�(h0, h
0). Since each h0

2 S✏(h0) satisfies �(h0, h
0)  2R̂(h0) + ✏, we have the result

that �✏(h0)  2R̂(h0) + ✏. ⇤
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B MIP Formulation for Training the Best Linear Classifier
We fit a classifier that minimizes the training error by solving an optimization problem of the form:

min
h2H

nX

i=1

[h(xi) 6= yi] (5)

We solve this optimization problem via the following MIP formulation:

min
nX

i=0

li

s.t. Mili� yi(� �
dX

j=0

wjxij) i = 1, ..., n (6a)

��h0(xj)
dX

j=0

wjxij (6b)

1= li + li0 (i, i0) 2 K (6c)
wj =w+

j + w�

j j = 0, ..., d (6d)

1=
dX

j=0

(w+
j � w�

j ) (6e)

li 2 {0, 1} i = 1, ..., n
wj 2 [�1, 1] j = 0, ..., d
w+

j 2 [0, 1] j = 0, ..., d
w�

j 2 [�1, 0] j = 0, ..., d

Here, constraints (6a) set the mistake indicators li  [h(xi) 6= yi]. These constraints depend on: (i) a margin parameter
� > 0, which should be set to a small positive number (e.g., � = 10�4); and (ii) the “Big-M” parameters Mi which can be
set as Mi = � +maxxi2X kxik1 since we have fixed kwk1 = 1 in constraint (6e). Constraint (6c) produces an improved
lower bound by encoding the necessary condition that any classifier must make exactly one mistake between any two points
(i, i0) 2 K with identical features xi = xi

0 and conflicting labels. Here, K = {(i, i0) : xi = xi
0 , yi = +1, yi0 = �1} is the

set of points with conflicting labels.
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C Additional Experimental Results
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Figure 4. Multiplicity profiles for the compas and pretrial datasets.
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Figure 5. Multiplicity profiles for the recidivism datasets.
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Figure 6. Multiplicity profiles for the compas and pretrial datasets produced via pools of logistic regression models.
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Figure 7. Multiplicity profiles for the recidivism datasets produced via pools of logistic regression models.


