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Abstract
Prediction problems often admit competing mod-
els that perform almost equally well. This effect
challenges key assumptions in machine learning
when competing models assign conflicting pre-
dictions. In this paper, we define predictive mul-
tiplicity as the ability of a prediction problem to
admit competing models with conflicting predic-
tions. We introduce formal measures to evaluate
the severity of predictive multiplicity and develop
integer programming tools to compute them ex-
actly for linear classification problems. We ap-
ply our tools to measure predictive multiplicity
in recidivism prediction problems. Our results
show that real-world datasets may admit compet-
ing models that assign wildly conflicting predic-
tions, and motivate the need to measure and report
predictive multiplicity in model development.

1 Introduction
Machine learning algorithms are often designed to fit a best
model from data. For example, modern methods for empiri-
cal risk minimization fit a model by optimizing a specific
objective (e.g., error rate) over models that obey a specific
set of constraints (e.g., linear classifiers with equal TPR
between groups). In an ideal scenario where stakeholders
agree on such a problem formulation (Passi & Barocas,
2019) and we are given a large dataset of representative ex-
amples, the use of machine learning may still lead to ethical
challenges if there are multiple best-fitting models.

In machine learning, multiplicity refers to the ability of a
prediction problem to admit multiple competing models that
perform almost equally well. Several works mention that
prediction problems can exhibit multiplicity (see e.g., Moun-
tain & Hsiao, 1989; McCullagh & Nelder, 1989), but few
discuss its implications. The work of Breiman (2001) is
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a major exception. In a seminal position paper, Breiman
describes how multiplicity challenges explanations derived
from a single predictive model: if one can fit multiple com-
peting models – each of which provides a different explana-
tion of the data-generating process – how can we tell which
explanation is correct?

Drawing parallels between the discordant explanations of
competing models and the discordant testimonies of wit-
nesses in the motion picture “Rashomon,” Breiman refers
to this dilemma the Rashomon effect. In the context of
his work, the Rashomon effect is – in fact – an argument
against the misuse of explanations. Seeing how prediction
problems can exhibit multiplicity, we should not use the
explanations of a single model to draw conclusions about
the broader data-generating process, at least until we can
rule out multiplicity.

Machine learning has changed drastically since Breiman
coined the Rashomon effect. Many models are now exclu-
sively built for prediction (Kleinberg et al., 2015). In appli-
cations like lending and recidivism prediction, predictions
affect people (Binns et al., 2018), and multiplicity raises
new challenges when competing models assign conflicting
predictions. Consider the following examples:

Recidivism Prediction: Say that a recidivism prediction
problem admits competing models with conflicting predic-
tions. In this case, a person who is predicted to recidivate by
one model may be predicted not to recidivate by a compet-
ing model that performs equally well. If so, we may want to
ignore predictions for this person or even forgo deployment.

Lending: Consider explaining the prediction of a loan ap-
proval model to an applicant who is denied a loan (e.g., by
producing a counterfactual explanation for the prediction
Martens & Provost, 2014). If competing models assign
conflicting predictions, then these predictions may lead to
contradictory explanations. In this case, reporting evidence
of competing models with conflicting predictions would
mitigate unwarranted rationalization of the model resulting
from fairwashing (Aı̈vodji et al., 2019; Laugel et al., 2019;
Slack et al., 2020) or explanation bias (Koehler, 1991).

In this work, we define predictive multiplicity as the ability
of a prediction problem to admit competing models that
assign conflicting predictions. Predictive multiplicity af-
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fects key tasks in modern machine learning – from model
selection to model validation to post-hoc explanation. In
such tasks, presenting stakeholders with information about
predictive multiplicity empowers them to challenge these
decisions.

Our goal is to allow stakeholders to measure and report
predictive multiplicity in the same way that we measure and
report test error. To this end, we introduce formal measures
of predictive multiplicity in classification:

Ambiguity: How many individuals are assigned conflicting
predictions by any competing model?

Discrepancy: What is the maximum number of predictions
that could change if we were to switch the model that we
deploy with a competing model?

Both measures are designed to support stakeholder participa-
tion in model development and deployment (see e.g., Figure
1). For example, ambiguity counts the number of individ-
uals whose predictions are determined by the decision to
deploy one model over another. These individuals should
have a say in model selection and should be able to contest
the predictions assigned to them by a model in deployment.

The main contributions of this paper are as follows:

1. We introduce formal measures of predictive multiplicity
for classification problems: ambiguity and discrepancy.

2. We develop integer programming tools to compute ambi-
guity and discrepancy for linear classification problems.
Our tools compute these measure exactly by solving non-
convex empirical risk minimization problems over the
set of competing models.

3. We present an empirical study of predictive multiplic-
ity in recidivism prediction. Our results show that
real-world datasets can admit competing models with
highly conflicting predictions, and illustrate how report-
ing predictive multiplicity can inform stakeholders in
such cases. For example, in the ProPublica COMPAS
dataset (Angwin et al., 2016), we find that a compet-
ing model that is only 1% less accurate than the most
accurate model assigns conflicting predictions to over
17% of individuals, and that the predictions of 44% of
individuals are affected by model choice.

1.1 Related Work

Multiplicity. Recent work in machine learning tackles
multiplicity from the “Rashomon” perspective. Fisher et al.
(2018) and Dong & Rudin (2019) develop methods to mea-
sure variable importance over the set of competing models.
Semenova & Rudin (2019) present a formal measure of
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Figure 1. Classifiers with conflicting predictions can perform
equally well. We show 4 linear classifiers that optimize accuracy
on a 2D classification problem with 100 points. The predictions
of any 2 models differ on 50 points. Thus, discrepancy is 50%.
The predictions of 100 points vary based on model choice. Thus,
ambiguity is 100%.

the size of the set of competing models and use it to char-
acterize settings where simple models perform well. Our
work differs from this stream of research in that we study
competing models with conflicting predictions (see Figure
2). Predictive multiplicity reflects irreconcilable differences
between subsets of predictions – similar to the impossibility
results in fair machine learning literature (Chouldechova,
2017; Kleinberg et al., 2016; Corbett-Davies et al., 2017).

Model Selection. Techniques to resolve multiplicity can
be broadly categorized as approaches for tie-breaking and
reconciliation. Classical approaches for model selection
break ties using measures like AIC, BIC, or K-CV error (see
e.g., McAllister, 2007; Ding et al., 2018). These approaches
are designed to improve out-of-sample performance. How-
ever, they may fail to do so when problems exhibit predictive
multiplicity. In Figure 1 for example, tie-breaking would
not improve out-of-sample performance as all competing
models perform equally well.

Bayesian approaches. Bayesian approaches explicitly
represent multiplicity through posterior distributions over
models. Posterior distributions are commonly used to con-
struct a single model for deployment via majority vote or
randomization procedures (see e.g., McAllester, 1999; Ger-
main et al., 2016). In theory, however, posterior distributions
could allow for an ad hoc analyses of predictive multiplic-
ity – e.g., by counting conflicting predictions over a set of
models sampled from the posterior (see Dusenberry et al.,
2020). While valuable, these analyses may underestimate
the severity of predictive multiplicity because the sample
would not contain all competing models.

Integer Programming. Our work is part of a recent
stream of research on integer programming methods for
classification (Nguyen & Sanner, 2013; Belotti et al., 2016;
Ustun & Rudin, 2015; Ustun et al.; 2019). We present meth-
ods to compute measures of predictive multiplicity for linear
classification problems by solving integer programs. Inte-
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Figure 2. Predictive multiplicity reflects irreconcilable differences
between the predictions of competing models. Here, we depict two
classification problems where the competing classifiers ha and hb

optimize accuracy. We highlight points that are assigned conflicted
predictions in red and regions of conflict in yellow. On the left, ha

and hb assign the same predictions on the training data but produce
conflicting explanations of the importance of x1 vs. x2, as per
the Rashomon effect. On the right, ha and hb assign conflicting
predictions on the training data as per predictive multiplicity.

ger programming allows us to count conflicting predictions
over the full set of competing classifiers – i.e., all models
that attain ✏-optimal values of a discrete performance metric
like the error rate. In contrast, traditional approaches for
reducing computation would produce unreliable estimates
of predictive multiplicity. For example, if we were to count
conflicting predictions over models that attain ✏-optimal
values of a convex surrogate loss. In this case, we could un-
derestimate or overestimate predictive multiplicity because
models that attain near-optimal performance may differ sig-
nificantly from models that attain near-optimal values of a
surrogate loss.

2 Framework
In this section, we introduce measures of predictive multi-
plicity. For clarity of exposition, we present measures for
binary classification problems. Our measures generalize to
problems where models optimize other performance metrics
(e.g., AUC), predict multiple outcomes, or obey additional
constraints on performance or model form.

Preliminaries. We start with a dataset of n examples
{(xi, yi)}

n
i=1 where each example consists of a feature vec-

tor xi = (1, xi1, . . . , xid) 2 Rd+1 and a label yi 2 {±1}.
We use the dataset to fit a baseline classifier h : Rd+1

!

{±1} from a hypothesis class H by minimizing empirical
risk (i.e., training error):

h0 2 argmin
h2H

R̂(h)

where R̂(h) := 1
n

Pn
i=1 [h(xi) 6= yi].

This practice is aligned with the goal of optimizing true
risk (i.e., test error) when h0 generalizes. Generalization is

a reasonable assumption in our setting as we work with a
simple hypothesis class (see e.g., empirical results in Table
1). Fitting models that optimize performance on all of the
training data is a best practice in machine learning (see e.g.,
Cawley & Talbot, 2010, for a discussion). 1

Competing Models. We measure predictive multiplicity
over a set of classifiers that perform almost as well as the
baseline classifier. We refer to this set as the ✏-level set and
to ✏ as the error tolerance.

Definition 1 (✏-Level Set) Given a baseline classifier h0

and a hypothesis class H, the ✏-level set around h0 is the
set of all classifiers h 2 H with an error rate of at most
R̂(h0) + ✏ on the training data:

S✏(h0) := {h 2 H : R̂(h)  R̂(h0) + ✏}.

Predictive multiplicity can arise over an ✏-level set where
✏ = 0 (see e.g., Figure 1). Despite this, we typically mea-
sure predictive multiplicity over an ✏-level set where ✏ > 0.
This is because a competing model with near-optimal per-
formance on the training data may outperform the optimal
model in deployment. In such cases, it would not be defen-
sible to rule out competing models due to small differences
in training error.

In practice, ✏ should be set so that the ✏-level set is likely
to include a model that attains optimal performance in de-
ployment. This can be achieved by computing confidence
intervals for out-of-sample performance (e.g., via bootstrap-
ping or cross-validation) or by using generalization bounds
(e.g., by setting ✏ so that with high probability the ✏-level
set contains the model that optimizes true risk).

Predictive Multiplicity. A prediction problem exhibits
predictive multiplicity if competing models assign conflict-
ing predictions over the training data.

Definition 2 (Predictive Multiplicity) Given a baseline
classifier h0 and an error tolerance ✏, a prediction problem
exhibits predictive multiplicity over the ✏-level set S✏(h0) if
there exists a model h 2 S✏(h0) such that h(xi) 6= h0(xi)
for some xi in the training dataset.

The fact that competing models assign conflicting predic-
tions means that model selection will involve arbitrating
irreconcilable predictions.

In what follows, we present formal measures of predictive
1For example, in a typical setting where we need to control

overfitting by tuning hyperparameters over a validation dataset,
we would first find hyperparameters that optimize an estimate of
out-of-sample error (e.g., mean 5-CV error). We would then fit a
model to optimize performance for these hyperparameters using
all of the training data.
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multiplicity. Each measure evaluates the severity of predic-
tive multiplicity by counting the number of examples that
are assigned conflicting predictions by competing models
in the ✏-level set.

Definition 3 (Ambiguity) The ambiguity of a prediction
problem over the ✏-level set S✏(h0) is the proportion of
points in a training dataset that can be assigned a conflicting
prediction by a competing classifier h 2 S✏(h0):

↵✏(h0) :=
1

n

nX

i=1

max
h2S✏(h0)

[h(xi) 6= h0(xi)].

Definition 4 (Discrepancy) The discrepancy of a predic-
tion problem over the ✏-level set S✏(h0) is the maximum
proportion of conflicting predictions between the baseline
classifier h0 and a competing classifier h 2 S✏(h0):

�✏(h0) := max
h2S✏(h0)

1

n

nX

i=1

[h(xi) 6= h0(xi)].

Ambiguity represents the number of predictions that can
change over the set of competing models. This reflects the
number of individuals whose predictions are determined by
model choice, who could contest the prediction assigned to
them by the deployed model, and who should have a say in
model selection.

Discrepancy represents the maximum number of predictions
that can change if we switch the baseline classifier with a
competing classifier. This reflects that in practice, in order
to change multiple predictions, the conflicting predictions
must all be realized by a single competing model.

We end with a discussion of the relationship between accu-
racy and predictive multiplicity. In Proposition 1, we bound
the number of conflicts between the optimal model and a
model in the ✏-level set. We include a proof in Appendix A.

Proposition 1 (Bound on Discrepancy) The discrepancy
between h0 and any competing classifier in the ✏-level set
h 2 S✏(h0) obeys:

�✏  2R̂(h0) + ✏.

Proposition 1 demonstrates how the severity of predictive
multiplicity depends on the accuracy of a baseline model.
Specifically, a less accurate baseline model provides more
“room” for predictive multiplicity. This result motivates why
it is important to measure discrepancy and ambiguity using
the best possible baseline model.

3 Methodology
In this section, we present integer programming tools to
compute ambiguity and discrepancy for linear classification
problems.

3.1 Overview

Baseline Classifier. Our tools compute ambiguity and dis-
crepancy given a baseline linear classifier h0 – i.e., the clas-
sifier that we would typically deploy. In our experiments,
we use a baseline classifier h0 that minimizes the error rate,
which we fit using a MIP formulation in Appendix B. This
ensures that multiplicity does not arise due to suboptimality.
Thus, the only way to avoid multiplicity is to change the
prediction problem – i.e., by changing the dataset, the model
class, or the constraints.

Path Algorithms. We present path algorithms to com-
pute ambiguity and discrepancy for all possible ✏-level sets.
Path algorithms efficiently compute the information needed
to show how ambiguity and discrepancy change with re-
spect to ✏ (see Figure 3). These plots relax the need for
practitioners to choose ✏ a priori, and calibrates their choice
of ✏ in settings where small changes in ✏ may produce large
changes in ambiguity and discrepancy.

MIP Formulations. We compute ambiguity and discrep-
ancy by fitting classifiers from the ✏-level set. We fit each
classifier by solving a discrete empirical risk minimization
problem. We formulate each problem as a mixed integer pro-
gram (MIP). Our MIP formulations can easily be changed to
compute predictive multiplicity for more complex prediction
problems – e.g., problems where we optimize other perfor-
mance measures (e.g., TPR, FPR) or where models must
obey constraints on model form or model predictions (e.g.,
group fairness constraints as in Zafar et al., 2019; Celis
et al., 2019; Cotter et al., 2019).

MIP Solvers. We solve each MIP with a MIP solver such
as CPLEX, CBC, or Gurobi. MIP solvers find the global op-
timum of a discrete optimization problem using exhaustive
search algorithms like branch-and-bound (Wolsey, 1998).
In our setting, solving a MIP returns: (i) an upper bound
on the objective value; (ii) a lower bound on the objective
value; and (iii) the coefficients of a linear classifier that
achieves the upper bound. When the upper bound matches
the lower bound, the solution (iii) is certifiably optimal, and
our measures are exact. If a MIP solver does not return a
certifiably optimal solution in a user-specified time limit,
the bounds from (i) and (ii) can be used to produce bounds
on ambiguity and discrepancy.
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3.2 Computing Discrepancy

Given a training dataset, a baseline classifier h0, and a user-
specified error tolerance ✏, we compute the discrepancy
over the ✏-level set around h0 by solving the following
optimization problem.

min
h2H

nX

i=1

[h(xi) = h0(xi)]

s.t. R̂(h)  R̂(h0) + ✏

(1)

We denote the optimal solution to Equation (1) as g✏. For lin-
ear classification problems, we can recover the coefficients
of g✏ by solving the following MIP formulation, which we
refer to as DiscMIP(h0, ✏):

min
nX

i=0

ai

s.t. Miai� � + h0(xi)
dX

j=0

wjxij i = 1, ..., n (2a)

✏� 1
n

nX

i=1

yih0(xi)(1� ai) (2b)

wj =w+
j + w�

j j = 0, ..., d (2c)

1=
dX

j=0

(w+
j � w�

j ) (2d)

ai 2 {0, 1} i = 1, ..., n
w+

j 2 [0, 1] j = 0, ..., d
w�

j 2 [�1, 0] j = 0, ..., d

DiscMIP minimizes the agreement between h and h0 us-
ing indicator variables ai = [h(xi) = h0(xi)]. These
variables are set via the “Big-M” constraints in (2a). These
constraints depend on: (i) a margin parameter � > 0, which
should be set to a small positive number (e.g., � = 10�4);
and (ii) the Big-M parameters Mi, which can be set as
Mi = � +maxi kxik1 since we have fixed kwk1 = 1 in
constraint (2d). Constraint (2b) ensures that any feasible
classifier must belong to the ✏-level set.

Bounds. Solving DiscMIP returns the coefficients of the
classifier that maximizes discrepancy with respect to the
baseline classifier h0. If the solution is not certifiably opti-
mal, the upper bound from DiscMIP corresponds to a lower
bound on discrepancy. Likewise, the lower bound from
DiscMIP corresponds to an upper bound on discrepancy.

Path Algorithm. In Algorithm 1, we present a procedure
to compute discrepancy for all possible values of ✏. The
procedure solves DiscMIP(h0, ✏) for increasing values of
✏ 2 E . At each iteration, it uses the current solution to
initialize DiscMIP for the next iteration. The solution from
the previous iteration produces upper and lower bounds that
reduce the search space of the MIP, which is much faster
than solving DiscMIP separately for each ✏.

Algorithm 1 Compute Discrepancy for All Values of ✏
input h0 baseline classifier
input E values of ✏ sorted in increasing order

0: for ✏ 2 E do
0: g✏  solution to DiscMIP(h0, ✏)
0: �✏  number of conflicts between g✏ and h0

0: ✏next  next value of ✏ 2 E
0: Initialize DiscMIP(h0, ✏next) with g✏
0: end for

Output: {�✏, g✏}✏2E discrepancy and classifier for each ✏ =0

3.3 Computing Ambiguity

We present an algorithm to compute ambiguity for all possi-
ble values of ✏. Given a baseline classifier h0, the algorithm
fits a pathological classifier gi for each point in the training
data – i.e., the most accurate linear classifier that must as-
sign a conflicting prediction to point i. Given a pathological
classifier gi for each i, it then computes ambiguity over the
✏-level set by counting the number of pathological classifiers
whose error is within ✏ of the error of the baseline classifier.
Observe that ambiguity can be expressed as follows:

↵✏(h0) :=
1

n

nX

i=1

max
h2S✏(h0)

[h(xi) 6= h0(xi)]

=
1

n

nX

i=1

[R̂(gi)  R̂(h0) + ✏].

Thus, this approach corresponds to evaluating the summands
in the expression for ambiguity in Definition 3.

We fit gi by solving the following optimization problem:

min
h2H

nX

i=1

[h(xi) 6= yi]

s.t. h(xi) 6= h0(xi)

(3)

Here, h(xi) 6= h0(xi) forces h to assign a conflicting pre-
diction to xi. For linear classification problems, we can
recover the coefficients of gi by solving the following MIP
formulation, which we refer to as FlipMIP(h0,xi):

min
nX

i=0

li

s.t. Mili� yi(� �
dX

j=0

wjxij) i = 1, ..., n (4a)

��h0(xi)
dX

j=0

wjxj (4b)

wj =w+
j + w�

j j = 0, ..., d (4c)

1=
dX

j=0

(w+
j � w�

j ) (4d)

li 2 {0, 1} i = 1, ..., n
w+

j 2 [0, 1] j = 0, ..., d
w�

j 2 [�1, 0] j = 0, ..., d
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FlipMIP minimizes the error rate of a pathological classifier
gi using the indicator variables li  [h(xi) 6= yi]. These
variables are set through the Big-M constraints in (4a) whose
parameters can be set in the same way as those in DiscMIP.
Constraint (4b) enforces the condition that gi(x) 6= h0(x).

Bounds. When a solver does not return a certifiably opti-
mal solution to FlipMIP within a user-specified time limit,
it will return upper and lower bounds on the objective value
of FlipMIP that can be used to bound ambiguity. The upper
bound will produce a lower bound on ambiguity. The lower
bound will produce an upper bound on ambiguity.

Path Algorithm. In Algorithm 2, we present a procedure
to efficiently compute ambiguity by initializing each in-
stance of FlipMIP. In line 2, the procedure sets the upper
bound for FlipMIP using the most accurate classifier in
POOL that obeys the constraint h(xi) 6= h0(xi). Given a
certifiably optimal baseline classifier, we can initialize the
lower bound of FlipMIP to nR̂(h0).

Algorithm 2 Compute Ambiguity for All Values of ✏
input h0 baseline classifier
input E values of ✏

POOL ; pool of pathological classifiers
0: for i 2 {1, 2, . . . , n} do
0: Initialize FlipMIP(h0,xi) using best solution in POOL

0: gi  solution to FlipMIP(h0,xi)
0: Add gi to POOL

0: end for
0: for ✏ 2 E do
0: ↵✏  1

n

Pn
i=1 [R̂(gi)  R̂(h0)]

0: end for
Output: {↵✏}✏2E and {gi}

n
i=1 =0

4 Experiments
In this section, we apply our tools to measure predic-
tive multiplicity in recidivism prediction problems. We
have three goals: (i) to measure the incidence of predic-
tive multiplicity in real-world classification problems; (ii)
to discuss how reporting predictive multiplicity can in-
form stakeholders; (iii) to show that we can also measure
predictive multiplicity using existing tools, albeit imper-
fectly. We include software to reproduce our results at
https://github.com/charliemarx/pmtools.

Our focus on recidivism prediction should not be viewed
as an endorsement of the practice. We consider recidivism
prediction since it is a domain where predictive multiplicity
has serious ethical implications, and where the existence of
predictive multiplicity may serve as an additional reason to
forgo the deployment of machine learning entirely (see e.g.,
Harcourt, 2008; Lum & Isaac, 2016; Barabas et al., 2017,
for broader critiques).

Error of h0

Dataset Outcome Variable n d Train Test

compas arrest rearrest for any crime 5,380 18 32.7% 33.4%
compas violent rearrest for violent crime 8,768 18 37.7% 37.9%
pretrial CA arrest rearrest for any crime 9,926 22 34.1% 34.4%
pretrial CA fta failure to appear 8,738 22 36.3% 36.3%
recidivism CA arrest rearrest for any offense 114,522 20 34.4% 34.2%
recidivism CA drug rearrest for drug-related offense 96,664 20 36.3% 36.2%
recidivism NY arrest rearrest for any offense 31,624 20 31.0% 31.8%
recidivism NY drug rearrest for drug-related offense 27,526 20 32.5% 33.6%

Table 1. Recidivism prediction datasets used in Section 4. For each
dataset, we fit a baseline linear classifier that minimizes training
error. As shown, the models generalize as training error is close
to test error. This is expected given that we fit models from a
simple hypothesis class. Here, n and d denote the number of
examples and features in each dataset, respectively. All datasets
are publicly available. We include a copy of compas arrest
and compas violent with our code. The remaining datasets
must be requested from ICPSR due to privacy restrictions.

4.1 Setup

Datasets. We derive 8 datasets from the following studies
of recidivism in the United States:

• compas from Angwin et al. 2016;

• pretrial from Felony Defendants in Large Urban
Counties (US Dept. of Justice, 2014b);

• recidivism from Recidivism of Prisoners Released in
1994 (US Dept. of Justice, 2014a).

We process each dataset by binarizing features and dropping
examples with missing entries. For clarity of exposition,
we oversample the minority class to equalize the number
of positive and negative examples. Oversampling allows
us to report our measures for level sets defined in terms of
error rates instead of TPR/FPR. We find that oversampling
has a negligible effect on our measures of multiplicity. We
provide a summary of each datasets in Table 1.

Measurement Protocol. We compute our measures of
predictive multiplicity for each dataset as follows. We split
each dataset into a training set composed of 80% of points
and a test set composed of 20% of points. We use the
training set to fit a baseline classifier that minimizes the
0-1 loss directly by solving MIP (6) in Appendix B. We
measure ambiguity and discrepancy for all possible values
of the error tolerance ✏ using Algorithms 1 and 2. We
solve each MIP on a 3.33 GHz CPU with 16 GB RAM. We
allocate at most 6 hours to fit the baseline model, 6 hours to
fit the models to compute discrepancy for all ✏, and 6 hours
to fit the models to compute ambiguity for all ✏.

Ad Hoc Measurement Protocol. We compute ambiguity
and discrepancy through an ad hoc approach. We include
these results to show that an imperfect analysis of predictive
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APPROACH DISCREPANCY AMBIGUITY

EXACT

AD HOC

Figure 3. Severity of predictive multiplicity measured using our tools (top) and using an ad hoc approach (bottom) for compas arrest.
We plot the values of discrepancy (left) and ambiguity (right) over the ✏-level set. We find a discrepancy of 17% and ambiguity of 44%
over the 1%-level set. This means that one can change 17% of predictions by switching the baseline model with a model that is only 1%
less accurate, and that 44% of individuals are assigned conflicting predictions by models in the 1%-level set. We include similar plots for
other datasets in Appendix C.

multiplicity can reveal salient information. Here, we pro-
duce a pool of competing models using the glmnet package
of Friedman et al. (2010). We fit 1,100 linear classifiers us-
ing penalized logistic regression. Each model corresponds
to an optimizer of the logistic loss with a different degree of
`1 and `2 regularization. We choose the baseline model as
the model that minimizes the 5-fold CV test error.

4.2 Results

In Figure 3, we plot ambiguity and discrepancy for all pos-
sible values of the error tolerance ✏ for compas arrest,
comparing the measures produced using our tools to those
produced using an ad hoc analysis. In Table 2, we compare
competing classifiers for compas arrest. In what follows,
we discuss these results.

On the Incidence of Predictive Multiplicity. Our results
in Figure 3 show how predictive multiplicity arises in real-
world prediction problems. For the 8 datasets we con-
sider, we find that between 4% and 53% of individuals
are assigned conflicting predictions in the 1%-level set. In
compas arrest, for example, we observe an ambiguity of
44%. Considering discrepancy, we can find a competing
model in the 1%-level set that would assign a conflicting
prediction to 17% of individuals.

On the Burden of Multiplicity. Our results show that
the incidence of multiplicity can differ significantly be-
tween protected groups. In compas violent, for example,
predictive multiplicity disproportionately affects African-
Americans compared to individuals of other ethnic groups:
the proportion of individuals who are assigned conflicting
predictions over the 1% level set is 72.9% for African-
Americans but 37.2% for Caucasians. Groups with a larger
burden of multiplicity are more vulnerable to model selec-
tion, and more likely to be affected by the ignorance of
competing models.

On the Implications of Predictive Multiplicity. Our re-
sults illustrate how reporting ambiguity and discrepancy
can challenge model development and deployment. In
compas arrest, for example, our baseline model provably
optimizes training error and generalizes. Without an analy-
sis of predictive multiplicity, practitioners could deploy this
model. Our analysis reveals that there exists a competing
model that assigns conflicting predictions to 17% of indi-
viduals. Thus, these measures support the need for greater
scrutiny and stakeholder involvement in model selection.

Reporting ambiguity and discrepancy also help us calibrate
trust in downstream processes in the modern machine learn-
ing life-cycle (e.g., evaluating feature influence as in Kumar
et al., 2020; Marx et al., 2019). Consider the process of
explaining individual predictions. In this case, an ambiguity
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Baseline Model Individual Ambiguity Model Discrepancy Model
h(xp) +1 �1 �1

Error (Train/Test) 32.7% / 33.4% 32.7% / 33.4% 33.6 / 34.5%

Discrepancy (Train/Test) 0.0% / 0.0% 0.0037% / 0.0% 16.8% / 15.1%

Score
Function

+ 0.5 age25
+ 0.0 age 25-45
� 16.4 age�46
� 16.3 female
� 0.2 n priors=0
� 0.1 n priors�1
+ 16.4 n priors�2
+ 16.6 n priors�5
+ 0.0 n juvenile misdemeanors=0
� 0.1 n juvenile misdemeanors�1
+ 0.0 n juvenile misdemeanors�2
� 32.6 n juvenile misdemeanors�5
+ 0.0 n juvenile felonies=0
� 0.2 n juvenile felonies�1
+ 0.3 n juvenile felonies�2
+ 0.0 n juvenile felonies�5
� 0.2 charge degree=M
+ 0.0

+ 10.3 age25
+ 0.0 age 25-45
� 9.9 age�46
� 9.7 female
+ 0.0 n priors=0
+ 0.0 n priors�1
+ 19.8 n priors�2
+ 10.1 n priors�5
+ 0.0 n juvenile misdemeanors=0
� 0.1 n juvenile misdemeanors�1
� 10.1 n juvenile misdemeanors�2
� 9.5 n juvenile misdemeanors�5
� 9.9 n juvenile felonies=0
� 10.1 n juvenile felonies�1
+ 0.3 n juvenile felonies�2
+ 0.0 n juvenile felonies�5
� 0.2 charge degree=M
+ 0.0

+ 7.7 age25
+ 0.0 age 25-45
� 7.8 age�46
� 7.6 female
� 7.8 n priors=0
+ 0.0 n priors�1
+ 7.4 n priors�2
+ 7.8 n priors�5
+ 0.0 n juvenile misdemeanors=0
+ 0.1 n juvenile misdemeanors�1
� 0.1 n juvenile misdemeanors�2
� 15.2 n juvenile misdemeanors�5
+ 7.7 n juvenile felonies=0
+ 0.0 n juvenile felonies�1
+ 15.4 n juvenile felonies�2
+ 0.0 n juvenile felonies�5
� 7.5 charge degree=M
� 0.1

Table 2. Competing linear classifiers that assign conflicting prediction to xp compas arrest. We show the baseline model (left), the
competing model fit to measure ambiguity to xp (middle), and competing model fit to measure discrepancy (right). The baseline model
predicts h(xp) = +1 while other models predict h(xp) = �1. As shown, there exists at least two competing models that predict that xp

would not recidivate. In addition, each model exhibits different coefficients and measures of variable importance.

of 44% means one could produce conflicting explanations
for 44% of predictions. While every explanation would help
us understand how competing models operate, evidence of
conflicting predictions would provide a safeguard against
unwarranted rationalization.

On Model Selection. When presented with many com-
peting models, a natural solution is to choose among them
to optimize secondary objectives. We support this practice
when secondary objectives reflect bona fide goals rather
than a way to resolve reconciling multiplicity (see Section
5 for a discussion). However, tie-breaking does not always
yield a unique model. For example, on the compas arrest
dataset, we can break ties between competing models in the
1%-level set on the basis of a group fairness criterion (i.e.,
by minimizing the disparity in accuracy between African-
Americans and other ethic groups). In this case, we find 102
competing models that are also within 1% optimal in terms
of the secondary criterion.

On Ad Hoc Measurement. Our results for the ad hoc
approach show how measuring and reporting predictive
multiplicity can reveal useful information even without spe-
cialized tools. In compas arrest, for example, an ad hoc
analysis reveals an ambiguity of 10% and a discrepancy of
7% over the set of competing models. These estimates are
far less than those produced using our tools (44% and 17%
respectively). This is because the ad hoc approach only con-
siders competing models that can be obtained by varying `1
and `2 penalties in penalized logistic regression, rather than
all linear classifiers in the 1%-level set. These results show
that ad hoc approaches can detect predictive multiplicity,
but should not be used to certify the absence of multiplicity.

5 Concluding Remarks
Prediction problems can exhibit predictive multiplicity due
to a host of reasons, including feature selection, a misspeci-
fied hypothesis class, or the existence of latent groups.

Even as there exist techniques to choose between compet-
ing models, we do not advocate a general prescription to
resolve predictive multiplicity. Instead, we argue that we
should measure and report multiplicity like we measure and
report test error (Saleiro et al., 2018; Reisman et al., 2018).
In this way, predictive multiplicity can be resolved on a
case-by-case basis, and in a way that allows for input from
stakeholders (as per the principles of contestable design; see
e.g., Hirsch et al., 2017; Kluttz et al., 2018).

Reporting predictive multiplicity can change how we build
and deploy models in human-facing applications. In such
settings, presenting stakeholders with meaningful informa-
tion about predictive multiplicity may lead them to think
carefully about which model to deploy, consider assigning
favorable predictions to individuals who receive conflicting
predictions, or forgo deployment entirely.
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