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Abstract
Can the parameters of a hidden Markov model
(HMM) be estimated from a single sweep through
the observations – and additionally, without be-
ing trapped at a local optimum in the likelihood
surface? That is the premise of recent method of
moments algorithms devised for HMMs. In these,
correlations between consecutive pair- or triplet-
wise observations are empirically estimated and
used to compute estimates of the HMM parame-
ters. Albeit computationally very attractive, the
main drawback is that by restricting to only low-
order correlations in the data, information is being
neglected which results in a loss of accuracy (com-
pared to standard maximum likelihood schemes).
In this paper, we propose extending these meth-
ods (both pair- and triplet-based) by also includ-
ing non-consecutive correlations in a way which
does not significantly increase the computational
cost (which scales linearly with the number of
additional lags included). We prove strong con-
sistency of the new methods, and demonstrate an
improved performance in numerical experiments
on both synthetic and real-world financial time-
series datasets.

1. Introduction
The hidden Markov model (HMM) is a standard tool in statis-
tical modeling of stochastic time-series (Cappé et al., 2005;
Krishnamurthy, 2016). Despite its structural simplicity – a
Markov chain observed via a noisy sensor –, the HMM has
been successfully applied in a vast range of fields: from
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computational biology (Durbin, 1998; Vidyasagar, 2014)
and speech recognition (Rabiner, 1989; Gales & Young,
2007) to finance (Mamon & Elliott, 2007; 2014) and human
intent modeling (Yang et al., 1997; Xia et al., 2012), etc.
Mathematically, an HMM is described by a latent finite-
dimensional Markov chain xk ∈ {1, . . . , X} that evolves
according to an X ×X transition matrix P :

[P ]ij = Pr[xk+1 = j|xk = i], (1)

where k denotes discrete time. The state xk is observed, in
the case of a finite observation alphabet yk ∈ {1, . . . , Y },
via an X × Y observation matrix B:

[B]ij = Pr[yk = j|xk = i]. (2)

In order to employ an HMM in any application that requires
filtering or prediction, the parameters (1) and (2) have first
to be determined – usually, via either domain-expertise or
data-driven modeling. In this paper, we consider the latter.

Even though data-driven parameter estimation for HMMs
has been studied for more than fifty years (Baum & Petrie,
1966), it remains a challenging problem in practice. The de
facto standard methods employ iterative (“hill-climbing”)
local-search procedures that aim to maximize the likeli-
hood of observed data (e.g., the expectation-maximization
(EM), or Baum-Welch, algorithm) (Cappé et al., 2005; Kr-
ishnamurthy, 2016). In practice, these methods suffer from
drawbacks related to convergence to bad local maxima (see
Section 6.1 for an explicit numerical example) as well as
slow convergence with an associated high computational
cost.

In order to address such drawbacks, methods of moments
have been introduced for HMMs (e.g., Chang, 1996; Mossel
& Roch, 2005; Vanluyten et al., 2008; Lakshminarayanan
& Raich, 2010; Hsu et al., 2012; Anandkumar et al., 2012;
2014; Kontorovich et al., 2013; Subakan et al., 2015; Tran
et al., 2016; Mattila et al., 2017; Huang et al., 2018).
These methods begin by estimating low-order correlations
in the data, such as those of pairs Pr[yk, yk+1] or triplets
Pr[yk, yk+1, yk+2]. The analytical relations between these
correlations and the HMM parameters are then used “in
reverse” to obtain empirical parameter estimates.



Learning Hidden Markov Models by Incorporating Non-Consecutive Correlations

xk xk+1 xk+τ. . . . . .. . .

yk yk+1 yk+τ

Figure 1. Graphical conditional-dependency structure of an HMM
with (hidden) state variable xk and corresponding noisy observa-
tion yk. The red nodes are the second-order moments Pr[yk, yk+τ ]
with τ ∈ {1, 2, . . . , τ̄}, that are used in Section 4 to estimate the
HMM parameters. Previous work employs only the special case
where the observations in the pair are consecutive: τ ∈ {1}.

The consequences of restricting, effectively, to only short
substrings in the observed data is double-edged: On the
one hand, attractive properties include that i) they have very
low computational cost – in practice, they are orders of
magnitudes faster than conventional maximum likelihood
(ML) schemes –, and ii) they are, under suitable assump-
tions, strongly consistent and the associated algorithms do
not suffer from local optima. The main disadvantage on
the other hand, compared to standard ML estimation, is the
loss in statistical efficiency – information available in the
observed data is neglected.

In this paper, we aim to reduce this gap in statistical effi-
ciency while preserving the two attractive properties men-
tioned above. Our core idea is simple: include a user-
defined number τ̄ of lagged (i.e., non-consecutive) tuples in
these procedures. For example, in a pair-based method of
moments (e.g., Vanluyten et al., 2008; Lakshminarayanan
& Raich, 2010; Kontorovich et al., 2013; Subakan et al.,
2015; Mattila et al., 2017; Huang et al., 2018), this corre-
sponds to including correlations on the form Pr[yk, yk+τ ]
with τ = 1, 2, . . . , τ̄ , as illustrated in Fig. 1.

Despite the simplicity and intuitive appeal of the idea, it is
not straight-forward to extend previous methods: care has to
be taken to respect the two attractive properties mentioned
above. In particular, this means avoiding non-convex prob-
lem formulations. Our key contribution is demonstrating
how several, both pair- and triplet-based, methods of mo-
ments can be extended with this idea, while preserving the
attractive properties of the methods they extend.

1.1. Main Results and Outline

In the main text, we considering pair-based (which we also
refer to as second-order) methods of moments. This al-
lows us to keep the presentation clear and concise; we can
demonstrate the key idea, without being impeded by the
tensor notation that is inherent in higher-order methods. In
the supplementary material (Mattila, 2020, pp. 81–104), we
also treat triplet-based (third-order) methods of moments.

In summary, the main results of this paper are:

• We derive expressions for non-consecutive HMM mo-
ments, and demonstrate how these can be incorporated
in existing methods of moments (where the extensions
only introduce steps invoking convex optimization);

• Our algorithms involve only a single sweep through the
HMM dataset (in contrast to iterative ML algorithms
that process the full dataset in each iteration), and take
more information from the observed data into account
than the previous methods they extend;

• Theoretically, we analyze the two principal attractive
properties of our proposed estimators. First, we show
that the computational complexity scales only linearly
with the number of additional lags considered, and that
the dominating cost is independent of the number of
data-samples. Second, we prove that the estimators are
strongly consistent;

• Numerical demonstrations of i) the improved accuracy
of the proposed extensions compared to non-lagged
methods of moments, and ii) the attractive run-times
(up to two orders of magnitude faster than EM) on
synthetic data;

• A numerical evaluation of the performance on a real-
world financial time-series dataset.

The paper is organized as follows. Section 2 presents pre-
liminaries related to HMMs and assumptions. In Section 3,
we derive expressions for non-consecutive HMM moments.
These are incorporated in second-order methods of moments
in Section 4. A discussion of related work is provided in Sec-
tion 5. Numerical experiments are performed in Section 6.

The supplementary material (Mattila, 2020, pp. 81–104)
contains extensions of third-order methods, detailed proofs
and additional numerical experiments.

2. Preliminaries
In this section, we first define the notation used in this paper,
and subsequently outline necessary preliminaries for HMMs
– complete treatments are available in, e.g., (Rabiner, 1989;
Cappé et al., 2005; Krishnamurthy, 2016).

2.1. Notation

All vectors are column vectors unless transposed. The vector
of all ones is denoted 1. The element at row i and column
j of a matrix is [·]ij , and the element at position i of a
vector is [·]i. Inequalities (>,≥,≤, <) between vectors or
matrices are interpreted elementwise. The vector operator
diag(·) : Rn → Rn×n gives the matrix where the vector
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has been put on the diagonal, and all other elements are zero.
‖ · ‖F denotes the Frobenius norm of a matrix. The indicator
function I{·} takes the value 1 if the expression · is fulfilled
and 0 otherwise.

2.2. Hidden Markov Models

We consider a discrete-time hidden Markov model (HMM).
It comprises a finite state Markov chain on the state space
X = {1, 2, . . . , X} with time-homogeneous X ×X transi-
tion probability matrix

[P ]ij = Pr[xk+1 = j|xk = i]. (3)

We denote by π0 ∈ RX and π∞ ∈ RX , the initial and the
stationary distributions, respectively, of the HMM (which
exist under appropriate assumptions). An HMM is said to
be stationary if π0 = π∞.

We consider a discrete-valued observation process for the
HMM.1 Hence, observations are sampled from the finite
set Y = {1, 2, . . . , Y } according to the X × Y observation
probability matrix

[B]ij = Pr[yk = j|xk = i]. (4)

Note that both P and B are row-stochastic matrices (i.e.,
the elements on each row are non-negative and sum to one).

2.3. Problem Formulation

In order to employ an HMM for, e.g., filtering or prediction,
its model parameters have first to be specified or estimated.
The learning problem for HMMs that we consider is:

Problem 1. Given a sequence y1, . . . , yN of observations
generated by a stationary HMM of known state and ob-
servation dimensions X and Y , estimate its parameters P
and B.

In order to guarantee that this problem is well-posed, the
following two assumptions are standard:

Assumption 1. The transition and observation matrices are
elementwise strictly positive – that is, P > 0 and B > 0.

Assumption 2. The transition and observation matrices P
and B, respectively, are full row rank.

Assumption 1 is a common assumption in statistical infer-
ence for HMMs (e.g., Baum & Petrie, 1966; Cappé et al.,
2005) and serves as a proxy for ergodicity of the HMM. It
implies that the underlying Markov chain is ergodic (irre-
ducible and aperiodic). Assumption 2 is related to identifi-
ability and is standard in methods of moments for HMMs

1For clarity of presentation, we consider only discrete obser-
vation spaces in the main text. We treat continuous-valued ob-
servation processes in the supplementary material (Mattila, 2020,
pp. 81–104).

(e.g., Hsu et al., 2012; Gassiat et al., 2016) – see (Huang
et al., 2018) for a discussion on how it can be relaxed. The
assumption of a stationary HMM can be fulfilled by discard-
ing the first few data points; if the chain is mixing (Assump-
tion 1), then it forgets its initial condition geometrically fast.

3. Moments in HMMs
In this section, we define moment conditions that we will
employ to compute estimates of the HMM parameters via
the method of moments. There are a number of potential
candidates. In this work, the crucial quantities are the pair-
and triplet-wise correlations between observations (albeit
we postpone the treatment of the latter to the supplementary
material; Mattila, 2020, pp. 81–104).

3.1. Second-Order Moments

Define the lag-τ second-order moments M2(k, τ) ∈ RY×Y
of the HMM as the matrices:

[M2(k, τ)]ij
def.
= Pr[yk = i, yk+τ = j], (5)

where i, j = 1, . . . , Y and τ ≥ 0. In words: as the joint
probabilities of pairs of observations spaced a distance τ
apart in time.2

In terms of terminology, the reader should note that when
we speak of non-lagged moments, we mean specifically
the case that only τ up to τ = 1 is used in an estimation
procedure. In this case, the two observations in the pair
(5) are at most consecutive: yk and yk+1. When we refer
to higher-order or lagged moments, we mean that a whole
range of values τ = 0, 1, 2, . . . is employed. In this case,
there is also a lag between the first observation yk and the
second observation yk+τ .

It is readily verified that the matrices (5) can be expressed
in terms of the HMM parameters as

M2(k, τ) = BT diag((PT )kπ0)P τB, (6)

for τ > 0, and

M2(k, 0) = diag(BT (PT )kπ0). (7)

For a stationary HMM (i.e., π0 = π∞), these matrices do
not depend on absolute time k and relations (6) and (7)
reduce to

M2(τ) = BT diag(π∞)P τB, (8)

for τ > 0, and

M2(0) = diag(BTπ∞), (9)

respectively.

2The case τ = 0 actually corresponds to first-order moments
[M1(k)]i

def.
= Pr[yk = i], where M1(k) ∈ RY . However, for

notational convenience in Section 4, we express these as a special
case of second-order moments: M2(k, 0) = diag(M1(k)).
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4. Extension of Second-Order Methods of
Moments to Include Non-Consecutive Pairs

In this section, we extend second-order methods of mo-
ments (e.g., Vanluyten et al., 2008; Lakshminarayanan &
Raich, 2010; Kontorovich et al., 2013; Subakan et al., 2015;
Mattila et al., 2017; Huang et al., 2018) to include non-
consecutive pairs of observations. That is, pairwise prob-
abilities Pr[yk, yk+τ ] for τ up to some number τ̄ of lags
(specified by the user). The section is concluded with a
discussion on statistical properties, and indications for how
to choose τ̄ .

4.1. Moment-Matching from Second-Order Moments

The full learning problems for HMMs from consecutive
moments Pr[yk, yk+1] using relation (8) is:

min
π̂∞∈RX ,P̂∈RX×X ,

B̂∈RX×Y

‖M̂2(1)− B̂T diag(π̂∞)P̂ B̂‖2F

s.t. π̂∞ ≥ 0, 1T π̂∞ = 1,

P̂ ≥ 0, P̂1 = 1,

B̂ ≥ 0, B̂1 = 1,

π̂∞ = P̂T π̂∞, (10)

where M̂2(1) is an empirical estimate ofM2(1) and the first
constraints are due to P̂, π̂∞, B̂ representing probabilities,
and the last since π̂∞ is a stationary distribution of P̂ .

This problem is non-convex and previous methods either
use alternating (block-coordinate descent) schemes (e.g.,
Vanluyten et al., 2008; Lakshminarayanan & Raich, 2010;
Huang et al., 2018) that:

i) fix B̂ and optimize for P̂, π̂∞,

ii) fix P̂, π̂∞ and optimize for B̂, and repeat;

or decouple the problem (e.g., Kontorovich et al., 2013;
Subakan et al., 2015; Mattila et al., 2017) to first estimate
B separately3 and then perform only step i).

Below, we demonstrate how step i) can be improved by
including lagged moments – the complementary step (esti-
mating B) is identical. Our aim is hence, in this section, to
estimate the transition matrix P :

Assumption 3. The observation matrix B is given.
3In parametric-output HMMs, as a first step, the output pa-

rameters are estimated via a general mixture model learner, and
as a second step, the identification of the transition matrix P be-
comes identification of a known-sensor HMM. These HMMs are
most natural to consider in general observation spaces, which in-
clude Gaussian HMMs. We provide an extended discussion in the
supplementary material (Mattila, 2020, pp. 81–104).

Remark 1. It should be noted that this special case is addi-
tionally motivated by any application in which the sensor
is designed by the user. Consider, for example, a target-
tracking system. The sensor specifications can be deter-
mined prior to deployment in controlled trials, which gives
the operator knowledge about the sensor equipment (i.e.,
the observation matrix B). The maneuvering strategy of the
tracked target (i.e., the transition matrix P ) is unknown and
has to be estimated.

4.2. Estimating the Transition Matrix with
Non-Consecutive Lags

Even in a known-sensor HMM (Assumption 3) or, equiv-
alently, in step i) above, the moment-matching problem is
non-convex4:

min
π̂∞∈RX ,P̂∈RX×X

‖M̂2(1)−BT diag(π̂∞)P̂B‖2F

s.t. π̂∞ ≥ 0, 1T π̂∞ = 1,

P̂ ≥ 0, P̂1 = 1,

π̂∞ = P̂T π̂∞, (11)

due to the products between P̂ and π̂∞.

Including non-consecutive lags via (8) and jointly minimiz-
ing all moment conditions leads to the objective function:

τ̄∑
τ=1

‖M̂2(τ)−BT diag(π̂∞)P̂ τB‖2F, (12)

subject to the same constraints. The additional non-
convexity (due to the higher-order powers of the transition
matrix) makes it computationally demanding to compute a
global solution. In particular, non-convex optimization com-
monly relies on local-search heuristics (Jain & Kar, 2017)
much alike those employed in standard ML estimation for
HMMs.

It has been shown (e.g., Kontorovich et al., 2013; Mattila
et al., 2017) that the consecutive problem (11) can be re-
formulated as a convex optimization problem. Below, we
extend this approach to the non-consecutive problem (12)
and propose a novel sequential method that involves only
convex (quadratic) optimization.

Step 1. Estimating Second-Order Moments The left-
hand sides of equations (8) and (9) are readily estimated
from data via the empirical estimator

[M̂2(τ)]ij
def.
=

1

N − τ

N−τ∑
k=1

I{yk = i, yk+τ = j}, (13)

4Unsurprisingly, also the likelihood of a known-sensor HMM
(Assumption 3) can be multi-modal and cause problems for local-
search ML algorithms – see the example in Section 6.1.
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for τ = 0, 1, . . . , τ̄ . The key step in a method of moments is
decomposing these empirical estimates into the (unknown)
system parameters on the right-hand sides (8) and (9), which
we demonstrate next.

Step 2. Matching Moments In equation (8), denote

A(τ)
def.
= diag(π∞)P τ , (14)

for τ ≥ 0.5 This implies, by definition, that

A(τ + 1) = A(τ)P, (15)

and that we can rewrite equation (8) as

M2(τ) = BTA(τ)B. (16)

As mentioned above, let the number of lagged pairs in the
estimation procedure be τ̄ ≥ 1. We propose the following
convex (quadratic) procedure to perform moment matching:

(i) Minimize the mismatch in equation (9) by solving

min
π̂∞∈RX

‖M̂2(0)− diag(BT π̂∞)‖2F

s.t. π̂∞ ≥ 0, 1T π̂∞ = 1, (17)

and set6

Â(0) = diag(π̂∞). (18)

(ii) For τ = 1, . . . , τ̄ , minimize the mismatch in equation
(8) by solving

min
P̂ (τ)∈RX×X

‖M̂2(τ)−BT Â(τ − 1)P̂ (τ)B‖2F

s.t. P̂ (τ) ≥ 0, P̂ (τ)1 = 1, (19)

and set
Â(τ) = Â(τ − 1)P̂ (τ). (20)

In essence, the optimization problems (17) and (19) min-
imize the discrepancy between the empirical estimate of
M̂2(τ) and its analytical expression.7 The output of algo-
rithm (17)–(20) is a sequence Â(0), . . . , Â(τ̄), and involves
solving τ̄ + 1 convex (quadratic) optimization problems that
are independent of the data-size N .

5The matrix A(τ) can be interpreted as the joint state distribu-
tion lagged τ time steps apart: [A(τ)]ij = Pr[xk = i, xk+τ = j].

6In (18), π̂∞ denotes the minimizing argument of (17); and
similarly for (19) and (20) below.

7We employ the Frobenius norm for simplicity – other choices
(or, weightings) could improve accuracy (see, e.g., Gourieroux &
Monfort, 1995).

Step 3. Reconstructing the Transition Matrix P In or-
der to construct an estimate of the transition matrix P , we
utilize the shift-relation (15) in a least-squares fit (incorpo-
rating the information from every lag):

min
P̂∈RX×X

∥∥∥∥∥
 Â(0)

...
Â(τ̄ − 1)

 P̂ −
Â(1)

...
Â(τ̄)

∥∥∥∥∥
2

F

s.t. P̂ ≥ 0, P̂1 = 1. (21)

4.2.1. SUMMARY OF SECOND-ORDER ALGORITHM

To summarize, the proposed algorithm involves i) estimating
the moment matrices using the estimator (13), ii) solving
optimization problems (17) and (19), and iii) estimating P
by solving the least-squares problem (21). As discussed in
Section 4.1, the observation matrix is either separately or
iteratively estimated.

The special case τ̄ = 1 reduces the algorithm to the form
(11) which is considered in (e.g., Vanluyten et al., 2008;
Lakshminarayanan & Raich, 2010; Kontorovich et al., 2013;
Subakan et al., 2015; Mattila et al., 2017; Huang et al., 2018).
The proposed method can, as such, be seen as an extension
by including non-consecutive lags (i.e., more information
from the observed data) in the estimation procedure.

4.3. Analysis of the Proposed Second-Order Algorithm

In this section, we analyze the multiple-lag method of mo-
ments estimator proposed above.

4.3.1. COMPUTATIONAL COST

In terms of computational cost, the procedure involves i)
τ̄ + 1 sliding-window estimators (13), and ii) solving τ̄ + 1
convex (quadratic) optimization problems of size X2 (that
do not depend on the data-size N ). In other words, the
dominating computational cost of the procedure is indepen-
dent of N , and scales linearly with the number of lags τ̄
considered. In comparison, each iteration of EM has a com-
plexity O(X2N). This can be prohibitively expensive for
large N , especially when many iterations are required for
convergence.

4.3.2. CONSISTENCY

In terms of statistical properties of the proposed method, the
main theoretical result of this section is the following.

Theorem 1. Assume that the observations are generated by
an HMM of known state dimension, whose transition and
observation matrices satisfy Assumptions 1, 2, and 3. Then,
the estimate of the transition matrix P resulting from the
algorithm in Section 4.2 is strongly consistent – that is, the
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estimate will converge to the true value with probability one
as the number of samples N →∞.

The theorem follows by showing that the moment matrices
M̂2(τ) converge (using a law of large numbers; Cappé et al.
2005), and subsequently that the Â(τ)’s and P̂ converge
(invoking convergence in minimization; Rockafellar & Wets
1998).8

The importance of Theorem 1 is to assure that the proposed
computationally tractable algorithm – recall that a direct
approach for including non-consecutive lags results in the
non-convex problem (12) – is statistically sound; as the
data-size grows, we will obtain the true transition matrix.

4.3.3. CHOICE OF NUMBER OF LAGS

Our second theoretical result serves as a guide for choosing
the number of lags τ̄ to include. The matrix A(τ) defined
in (14) converges to π∞πT∞ (at a geometric rate determined
by the second largest eigenvalue of the underlying Markov
chain):

Proposition 1. Consider an HMM satisfying Assumptions 1
and 2. The corresponding matrix A(τ), defined in (14),
converges as

A(τ)−A(τ + 1) = O(τm2−1|λ2|τ ), (22)

where λ2 is the second largest eigenvalue (modulus) of the
transition matrix P and m2 its algebraic multiplicity.

This means that A(τ + 1) ≈ A(τ) for large τ , and that
increasing τ̄ has diminishing returns since the additional
rows introduced in (21) provide incrementally less new in-
formation. Hence, a guideline is to choose τ̄ on the order of
the time-constant of the Markov chain underlying the HMM.
This is illustrated by numerical experiments in Section 6.

5. Related Work
The most widely used methods for parameter estimation in
HMMs are schemes that iteratively aim to maximize the
likelihood of observed data; the expectation-maximization
(EM), or Baum-Welch, algorithm as well as direct opti-
mization via Newton-Raphson and variants (Cappé et al.,
2005; Krishnamurthy, 2016). These local-search procedures
require careful initialization to avoid problems with local
optima (see Section 6.1). Moreover, the computational cost
can be prohibitively high for large datasets.

An alternative to ML estimation is the method of moments,
which was originally devised to identify mixtures of univari-
ate Gaussians (Pearson, 1894) by selecting the parameters
of the distribution so as to equate empirical estimates of

8A complete proof can be found in the supplementary material
(Mattila, 2020, pp. 81–104).

various-order moments. It has since then been general-
ized and adapted to a vast range of model structures (e.g.,
Hansen, 1982; Gourieroux & Monfort, 1995; Hall, 2005).
In terms of HMMs, methods of moments are commonly
based on occurrence-probabilities of different substrings of
observation sequences. These have recently received much
interest due to their computational attractiveness, as well as
consistency guarantees under suitable assumptions. Many
recent methods (Vanluyten et al., 2008; Lakshminarayanan
& Raich, 2010; Anandkumar et al., 2012; Hsu et al., 2012;
Kontorovich et al., 2013; Subakan et al., 2015; Anandku-
mar et al., 2014; Mattila et al., 2017; Huang et al., 2018)
are based on low-order correlations between consecutive
observations.

Methods based on pairwise occurrences include (Vanluyten
et al., 2008; Lakshminarayanan & Raich, 2010; Kontorovich
et al., 2013; Subakan et al., 2015; Mattila et al., 2017; Huang
et al., 2018). A concern with these methods is that HMMs
are, in general, not identifiable from only their pairwise
(second-order) moments (Chang, 1996; Anandkumar et al.,
2012; Huang et al., 2018) and (Mattila, 2020, Appendix 4.F).
A notable exception is parametric-output HMMs (e.g., Gaus-
sian HMMs). (Kontorovich et al., 2013) demonstrated that
these can be treated in a sequential fashion. First, the ob-
servation likelihoods are estimated using a mixture model
learner, and subsequently, the transition probabilities are
estimated in a known-sensor HMM identification setting.
Our contribution improves the estimation of the transition
probabilities in this framework.

A popular branch of triplet-based (third-order) methods (e.g.,
Mossel & Roch, 2005; Hsu et al., 2012; Anandkumar et al.,
2012; 2014) originates in (Chang, 1996). In these meth-
ods, it is shown that the moment-matching problem can be
performed via a spectral (i.e., eigenvalue) factorization. It
is noted in (Anandkumar et al., 2012) that the properties
of the method hold for higher-order (i.e., non-consecutive)
lags, but this is not explored at any depth – the topic of the
present paper. Due to how the estimates are computed (via
a spectral factorization), it is possible that the parameter es-
timates, especially in the small-sample regime, land outside
the feasible parameter space (i.e., probabilities may not be
non-negative or sum-to-one). Various methods have been
proposed to address these problems; from truncation and
projection to exterior point methods (Shaban et al., 2015).
These problems are alleviated by making the estimates more
accurate according to our proposed extensions (details can
be found in the supplementary material; Mattila, 2020,
pp. 81–104).

There also exists a number of related methods (e.g., Hjal-
marsson & Ninness, 1998; Anderson, 1999; Vidyasagar,
2006; Vanluyten, 2008; Andersson & Rydén, 2009; Finesso
et al., 2010; Cybenko & Crespi, 2011; Vidyasagar, 2011;
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Hsu et al., 2012; Vidyasagar, 2014; Tran et al., 2016) that
estimate alternative parametrizations of an HMM and/or are
based on longer substrings. In this work, we limit the scope
to the methods discussed in the previous two paragraphs
due to their recent popularity and since they i) estimate
the standard parametrization of an HMM, and ii) use only
substrings of length two and three (that are easier to esti-
mate from a fixed-size dataset;9 see Huang et al., 2018). It
should, however, be noted that (Hjalmarsson & Ninness,
1998; Andersson & Rydén, 2009) employ lagged pairwise
correlations, but do not enforce non-negativity constraints
on the HMM parameters.

Restricting to short substrings in the data (approximate sum-
mary statistics) is key to the computational gain of these
methods. However, it also leads to a loss of accuracy due to
not taking all information available in the data into account.
In order to reduce the resulting gap in statistical efficiency
(compared to iterative ML estimation) various methods have
been proposed. Thanks to the strong consistency and low
computational cost of the method of moments estimate, it
can effectively be used as a first approximation of the ML
estimate. In (Kontorovich et al., 2013; Mattila et al., 2017;
Balle et al., 2014; Zhang et al., 2016), estimates from meth-
ods of moments are used as initializers for ML schemes,
and in (Tran et al., 2016) an iterative reweighing scheme
is proposed. These hybrid approaches can, however, still
present computational challenges. In this paper, we avoid
potentially costly iterative schemes completely in favor of
including more information in the moment conditions. How-
ever, employing the resulting estimate as an initializer for
an ML schemes is, of course, still a valid option.

6. Numerical Evaluation
In this section, we evaluate the proposed second-order
method of moments in numerical experiments. More details
and numerical experiments for third-order methods can be
found in the supplementary material (Mattila, 2020, pp. 81–
104). All simulations in this section were run in MATLAB
R2017a on a 3.1 GHz CPU.

6.1. Convergence of Local-Search Procedures

We begin by illustrating the potential algorithmic issues that
standard local-search procedures aiming to maximize the
likelihood function can suffer from. In order to be able to
visualize the likelihood surface, we consider a known-sensor
HMM (Assumption 3) with X = 2; that is, the observation
matrix B is known and we aim to estimate the two unknown
parameters of the transition matrix P .

9The number of occurrence-probabilities grows exponentially
with substring length; there are Y 2 pairwise probabilities, Y 3

tripletwise, etc.
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Figure 2. The likelihood function of data realized by a known-
sensor HMM (Assumption 3). The true parameters are marked
with a red star. The iterates from a local-search procedure started
in two different initial points (marked with blue and green circles)
converge to two different local optima; only the green trajectory
computes the maximum likelihood estimate. Estimates from the
method of moments (Section 4.2) are marked with solid purple
and yellow circles for τ̄ = 1 and τ̄ = 3, respectively.

The standard MATLAB implementation of the expectation-
maximization (EM) algorithm for HMMs (‘hmmtrain’)
was employed (modified to account for Assumption 3). It
was initialized in two different starting points, marked with
large hollow circles in Fig. 2. As can be seen in the figure,
even though the starting points are close, the iterates (in blue
and green) converge to two different local optima – only the
green iterates converge to the ML estimate (i.e., the global
optimum). In the figure, we have marked the true parameter
values with a red star.

In contrast, the method of moments (Section 4.2) does not
suffer from bad initializations due to it invoking only convex
optimization. The estimates computed using τ̄ = 1 and
τ̄ = 3 are marked with purple and yellow solid circles,
respectively.

6.2. Performance on Synthetic Data

We now evaluate how different parameters influence the
algorithm in controlled trials on synthetic data. We consider
an X = Y = 3 known-sensor HMM.

Remark 2. Due to the data-sizeN , the system dimensionsX
and Y can be of modest scale and still cause severe computa-
tional issues – recall that each EM-iteration has complexity
O(X2N). In gene-sequencing applications, the state and
observation spaces are related to the four nucleotides A, T,
C and G of deoxyribonucleic acid (DNA) and the datasets
are enormous (e.g., the human genome consists of roughly
109 nucleotides) – see (Durbin, 1998; Vidyasagar, 2014).
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Figure 3. Left: Relative error of the proposed multiple-lag method of moments estimator for different lags τ̄ at N = 105 samples. Each
box11 is the result of 100 independent simulations. Right: Errors and run-times for various sample sizes N and lags τ̄ . Each point is
the average of 100 independent simulations. The figures demonstrate that including non-consecutive lags increases the accuracy of the
estimate, while preserving the orders-of-magnitude faster run-times compared to the standard EM algorithm (note the logarithmic scale).

As before, the standard MATLAB implementation of EM
was employed (modified to account for Assumption 3), but
now initialized in the true parameter values (to avoid con-
vergence to bad local optima).

6.2.1. NUMBER OF LAGS τ̄

In the left plot of Fig. 3, we generated 100 independent
realizations of N = 105 observations from the HMM. The
errors, in the estimate of P , relative to a non-lagged (τ̄ = 1)
method of moments (e.g., Vanluyten et al., 2008; Lakshmi-
narayanan & Raich, 2010; Kontorovich et al., 2013; Sub-
akan et al., 2015; Mattila et al., 2017) are plotted for varying
τ̄ , as well as for the EM algorithm.

In the figure, there is on average a 25% improvement in error
by including multiple lags. The second largest eigenvalue
of the underlying Markov chain was 0.6, implying a time-
constant of 1/(1−0.6) = 2.5. As was noted in Proposition 1,
the benefits of including higher-order lags become negligi-
ble as A(τ) reaches stationarity. In the plot, this can be seen
by the stagnation of improvement after τ̄ ≈ 3 (roughly the
time-constant).

6.2.2. SAMPLE-SIZE N

In the right plots of Fig. 3, we show the average run-times
and errors of 100 independent realizations for a varying num-
ber of samples N . The attractive run-time of the method of
moments is clearly visible in the bottom plot: at 105 sam-
ples, there are almost two orders of magnitude of difference
compared to EM. Moreover, since only a single (counting)
pass through the data is required, the run-time is roughly
constant in N . The improved accuracy is visible in the top
plot by the reduced gap to EM when including lagged pairs.

11Displayed are the median, the lower and upper quartiles, as
well as, with whiskers, the (smallest) largest data value which is
(larger) smaller than the (lower) upper quartile plus 1.5 times the
inter-quartile-range.

Again, the diminishing returns (Proposition 1) are apparent
by the overlap of the τ̄ = 5 and τ̄ = 10 curves.

6.3. Estimating Regimes in Financial Markets

We now illustrate the performance of the extended second-
order method on real-world data where, in contrast to before,
i) the observation process is continuous-valued and ii) the
analog of Assumption 3 does not hold directly. The specific
details on how to extend the method in Section 4 (using
the decoupling approach of Kontorovich et al., 2013) to
unknown-sensor HMMs on general observation spaces are
provided in the supplementary material (Mattila, 2020, Ap-
pendix 4.D).

6.3.1. BACKGROUND

Regime-switching market models based on HMMs (e.g.,
Turner et al., 1989; Hamilton, 1990; Rydén et al., 1998;
Bulla, 2011; Dias et al., 2015; Kole & van Dijk, 2017) help
economists interpret and analyze past and current market
conditions, as well as perform market forecasting for use in,
e.g., portfolio allocation (Yin & Zhou, 2004; Elliott et al.,
2010; Nystrup et al., 2018). Crucial to the applicability of
the models are their accuracy, as well as the time required
for model estimation and recalibration (which becomes in-
creasingly important in high-frequency applications where
the datasets are large and sampling times are on the order of
milliseconds).

6.3.2. SETUP

As in (Rydén et al., 1998; Kole & van Dijk, 2017; Nystrup
et al., 2018), we consider a two-regime (state) HMM which
models log-returns as (conditionally) Gaussian distributed.
We consider the publicly available weekly closing price of
the Apple stock (AAPL) during 38 years; from 19th Decem-
ber 1980 to 25th April 2018. We chose the number of lags
as τ̄ = 10, since we expect trends to persist on a time-scale
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Figure 4. Top: The stock price of Apple (AAPL) in USD. Bottom (three): The posterior distribution (23) of a two-regime HMM with
weekly log-returns as observations. The vertical red lines mark: the Black Monday (’87), Steve Jobs’s return to Apple (’97), the burst
of the dotcom-bubble (’00), and the global financial crisis (’08). The resemblance of the filter distributions computed with the models
estimated using EM and the multiple-lag method (τ̄=10) should be noted.

of months. As benchmarks, we compare against EM and a
non-lagged method of moments (τ̄ = 1).

6.3.3. RESULTS

All three methods (τ̄ = 1, τ̄ = 10, EM) yield transition
matrices and observation likelihoods that can be interpreted
as “bull-and-bear” market models: state 1 corresponds to op-
timistic market conditions (“bull”), and state 2 corresponds
to pessimistic and volatile conditions (“bear”).

To evaluate the qualities of the resulting models, we com-
puted the posterior distribution

[πk]i = Pr[xk = i|y1, . . . , yk], i ∈ {1, 2}, (23)

using an HMM filter (see, e.g., Krishnamurthy, 2016) with
the parameters resulting from each one of the three methods.
The posterior distribution (23) can be used to analyze and
monitor market conditions in real-time (e.g., Bulla, 2011;
Kole & van Dijk, 2017).

The resulting posterior distributions are plotted in Fig. 4.
From the posteriors, it is, for example, possible to infer the
change in market conditions related to the Black Monday
(’87), Steve Jobs’s return to Apple (’97), the burst of the
dotcom-bubble (’00), and the start of the global financial
crisis (’08), which we have marked in Fig. 4 with red vertical
lines. The improved accuracy can be clearly seen by the high
resemblance of the posterior distributions corresponding to
the multiple-lag method (τ̄ = 10) and that of EM. The
distribution corresponding to the non-lagged method (τ̄ =
1), in comparison, lacks many features.

7. Conclusion
In this paper, we have demonstrated how recent methods
of moments for HMMs can be extended by incorporating
non-consecutive observation tuples (pairs and/or triplets –
see the supplementary material for details on the latter; Mat-
tila, 2020, pp. 81–104). Our proposed extensions allow us
to extract more information from the observed data, yield-
ing more accurate estimates, while preserving the attractive
computational and statistical properties of this type of es-
timator. The algorithms require only a single pass through
the dataset (in contrast, the standard EM algorithm has a
computational cost O(X2N) per iteration). In practice, this
is reflected in orders-of-magnitude faster run-times. More-
over, due to the non-iterative nature of these methods, their
run-time can be better predicted in advance, making them
suitable for real-time applications. We demonstrated im-
proved accuracy and run-times in numerical experiments on
both synthetic and real-world data.

In future work, it would be of interest to apply the pro-
posed methodology for estimation of Markov-switched auto-
regressive models and jump Markov linear systems (e.g., Kr-
ishnamurthy & Rydén, 1998; Krishnamurthy, 2016; Cappé
et al., 2005). It is also worthwhile studying what is to be
gained by employing an optimal weighting in (17), (19) and
(21), as well as quantifying the sample-efficiency through
concentration inequalities for dependent random variables
(e.g., Kontorovich & Ramanan, 2008), or analyzing the
asymptotic covariance (e.g., Hansen, 1985). Moreover, em-
ploying method of moments estimates as initializers for
iterative ML schemes is a promising hybrid that can com-
bine the advantages of both approaches.
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