
On Thompson Sampling with Langevin Algorithms

A. Notation
Before presenting our proofs, we first include a table summarizing our notation.

Symbol Meaning

A set of arms in bandit environment
K number of arms in the bandit environment |A|
T Time horizon
At arm pulled at time t by the algorithm At ∈ A
Ta(t) number of times arm a has been pulled by time t
XAt reward from choosing arm At at time t
θa parameters of likelihood functions such that, θa ∈ Rda
da dimension of parameter space for arm a

pa(x|θa) parametric family of reward distributions for arm a
πa(θa) prior distribution over the parameters for arm a

µ
(n)
a

probability measure associated with the posterior over the parameters of arm a
after n samples from arm a

µ
(n)
a [γa]

probability measure associated with the (scaled) posterior over the parameters of arm a
after n samples from arm a

µ̂
(n)
a

probability measure resulting from running the Langevin MCMC algorithm
described in Algorithm 2 which approximates µ(n)

a

µ̄
(n)
a [γa]

probability measure resulting from an approximate sampling method
which approximates µ(n)

a [γa]
θ∗a true parameter value for arm a

θa,t sampled parameter for arm a at time t of the Thompson Sampling algorithm: θa,t ∼ µ(n)
a

r̄a mean of the reward distribution for arm a: r̄a = E[Xa|θ∗a]
αTa vector in Rda such that r̄a = αTa θ

∗
a

ra,t(Ta(t)) estimate of mean of arm a at round t: ra,t(Ta(t)) = αTa θa,t
Aa norm of αa
ma Strong log-concavity parameter of the family pa(x; θ) in θ for all x.
νa Strong log-concavity parameter of the true reward distribution pa(x; θ∗) in x.

Fn,a(θa) Averaged log likelihood over the data points: Fn,a(θa) = 1
n

∑n
i=1 log pa(Xi, θa)

La Lipschitz constant for the true reward distribution, and likelihood families pa(x; θ∗) in x.

κa condition number of the likelihood family κa = max
(
La
ma
, Laνa

)
.

Ba reflects the quality of the prior: Ba = maxθ πa(θ)
πa(θ∗)

We also define a few notations used within the approximate sampling Algorithm 2.

Symbol Meaning

N number of steps of the approximate sampling algorithm
h(n) step size of the approximate sampling algorithm after n samples from the arm
θih(n) MCMC sample generated within i-th iteration of Algorithm 2
µih(n) measure of θih(n)

k batch-size of the stochastic gradient Langevin algorithm

B. Posterior Concentration Proof
To begin the proof of Theorem 1, we first prove that under our assumptions, the gradients of the population likelihood
function concentrates.

Proposition 2. If the prior distribution over θa satisfies Assumption 3, then we have:

sup
Rda
∇ log πa(θa)T (θa − θ∗a) ≤ g∗a − log πa(θ∗a),
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where g∗a = maxθ∈Rd log πa(θa).

Proof. Let log πa(θa) = g(θa). From the concavity of g, we know that

∇g(θa)T (θa − θ∗a) ≤ g(θa)− g(θ∗a)

Since this holds for all θ ∈ Rda , we take the supremum of both sides and get that:

sup
Rda
∇g(θa)T (θa − θ∗a) ≤ g∗ − g(θ∗a)

Let logBa := g∗a − log πa(θ∗a). If the prior is centered on the correct value of θ∗a, then logBa = 0. Our posterior
concentration rates will depend on Ba.

Before proving the posterior concentration result we first show the empirical likelihood function at θ∗a is a sub-Gaussian
random variable:

Proposition 3. The random variable ‖∇θFa,n(θ∗a)‖ is La
√

da
nνa

-sub-Gaussian:

Proof. Recall that the true density pa(x|θ∗a) is νa-strongly log-concave in x and that ∇θ log pa(x|θ∗a) is La-Lipschitz in x.
Notice that∇θFa(θ∗a) = 0 since θ∗a is the point maximizing the population likelihood.

Let’s consider the random variable Z = ∇θ log pa(x|θ∗a). Since E[Z] = ∇θFa(θ∗a), the random variable Z is centered.

We start by showing Z is a subgaussian random vector. Let v ∈ Sda be an arbitrary point in the da−dimensional sphere and
define the function V : Rda → R as V (x) = 〈∇θ log pa(x|θ∗a), v〉. This function is La−Lipschitz. Indeed let x1, x2 ∈ Rda
be two arbitrary points in Rda :

|V (x1)− V (x2)| = |〈∇θ log pa(x1|θ∗a)−∇θ log pa(x2|θ∗a), v〉|
≤ ‖∇θ log pa(x1|θ∗a)−∇θ log pa(x2|θ∗a)‖2‖v‖2
= ‖∇θ log pa(x1|θ∗a)−∇θ log pa(x2|θ∗a)‖2
≤ La‖x1 − x2‖

The first inequality follows by Cauchy-Schwartz, the second inequality by the Lipschitz assumption on the gradients. After
a simple application of Proposition 2.18 in Ledoux (2001), we conclude that V (x) is subgaussian with parameter La√

νa
.

Since the projection of Z onto an arbitrary direction v of the unit sphere is subgaussian, with a parameter independent of
v, we conclude the random vector Z is subgaussian with the same parameter La√

νa
. Consequently, the vector ∇θFa,n(θ∗a),

being an average of n i.i.d. subgaussian vectors with parameter La√
νa

is also subgaussian with parameter La√
nνa

.

Since∇θFa,n(θ∗a) is a subgaussian vector with parameter La√
nνa

, Lemma 1 of (Jin et al., 2019) implies it is norm subgaussian

with parameter La
√
da√

nνa
.

Given these results we now prove Theorem 1. For clarity, we restate the theorem below:

Theorem B.1. 1 Suppose that Assumptions 1-3 hold, then given samples X(n)
a = Xa,1, ..., Xa,n, the posterior distribution

satisfies, for δ ∈ (0, e−1/2):

P
θ∼µ(n)

a
[γa]

(
‖θa − θ∗a‖2 >

√
2e

man

(
da
γa

+ logBa +

(
32

γa
+

8daκaLa
νa

)
log (1/δ)

))
< δ.



On Thompson Sampling with Langevin Algorithms

Proof. The proof makes use of the techniques used to prove Theorem 1 in Mou et al. (2019): analyzing how a carefully
designed potential function evolves along trajectories of the s.d.e. By a careful accounting of terms and constants, however,
we are able to keep explicit constants and derive tighter bounds which hold for any finite number of samples. Throughout
the proof we drop the dependence on a and condition on the high-probability event, Ga,n(δ1), defined in Proposition 3,
which guarantees that the norm of the likelihood gradients concentrates with probability at least 1− δ1.

Consider the s.d.e.:

dθt =
1

2
∇θFn(θt)dt+

1

2n
∇θ log π(θt))dt+

1
√
nγ
dBt,

and the potential function given by:

V (θ) =
1

2
eαt‖θ − θ∗‖22,

for a choice of α > 0. The idea is that bounds on the p-th moments of V (θt) can be translated into bounds on the p-th
moments of V (θ) where θ ∼ µ(n), due to the fact that limt→∞ θt = θ ∼ µ(n). The square-root growth in p of these
moments will imply that ‖θ − θ∗‖2 has subgaussian tails with a rate that we make explicit.

We begin by using Ito’s Lemma on V (θt):

V (θt) = T1 + T2 + T3 + T4,

where:

T1 = −1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θs)〉ds+
α

2

∫ t

0

eαs‖θs − θ∗‖22ds

T2 =
1

2n

∫ t

0

eαs〈θs − θ∗,∇θ log π(θs)〉ds

T3 =
d

2nγ

∫ t

0

eαsds

T4 =
1
√
nγ

∫ t

0

eαs〈θs − θ∗, dBs〉

Let us first upper bound T1:

T1 = −1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θs)〉ds+
α

2

∫ t

0

eαs‖θs − θ∗‖22ds

= −1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θs)−∇θFn(θ∗)〉ds+
α

2

∫ t

0

eαs‖θs − θ∗‖22ds

− 1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θ∗)〉ds

(i)

≤ α−m
2

∫ t

0

eαs‖θs − θ∗‖22ds−
1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θ∗)〉ds

(ii)

≤ α−m
2

∫ t

0

eαs‖θs − θ∗‖22ds+
1

2

∫ t

0

eαs‖θ∗ − θs‖ ‖∇θFn(θ∗)‖︸ ︷︷ ︸
:=ε(n)

ds

where in (i) we use the strong-concavity property from Assumption 1-Local, and in (ii) we use Cauchy-Shwartz.

Using Young’s inequality for products, where the constant is m, gives:

T1 ≤ 2α−m
4

∫ t

0

eαs‖θs − θ∗‖22ds+
ε(n)2

4m

∫ t

0

eαsds
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Finally, choosing α = m/2 the first term on the RHS vanishes. Evaluating the integral in the second term on the RHS gives:

T1 ≤ ε(n)2

2m2

(
eαt − 1

)
≤ ε(n)2

m2
eαt.

Given our assumption on the prior, our choice of α = m
2 and simple algebra, we can upper bound T2 and T3 as:

T2 =
1

2n

∫ t

0

eαs〈θs − θ∗,∇θ log π(θs)〉ds ≤
logB

2αn
(eαt − 1) ≤ logB

nm
eαt

T3 =
d

2nγ

∫ t

0

eαsds ≤ d

γnm
eαt.

We proceed to bound T4. Let’s start by defining:

Mt =

∫ t

0

eαs〈θs − θ∗, dBs〉,

so that:
T4 =

Mt√
nγ
.

Combining all the upper bounds of T1, T2, T3, and T4 we have that:

V (θt) ≤
(
ε(n)2

m2
+

d

γnm
+

logB

nm

)
eαt +

Mt√
γn
.

To find a bound for the p−th moments of V , we upper bound the p-th moments of the supremum of Mt where p ≥ 1:

E
[

sup
0≤t≤T

|Mt|p
]

(i)

≤ (8p)
p
2E
[
〈M,M〉

p
2

T

]
= (8p)

p
2E

(∫ T

0

e2αs‖θs − θ∗‖22

) p
2

ds


(ii)

≤ (8p)
p
2E

( sup
0≤t≤T

eαt‖θt − θ∗‖22
∫ T

0

eαsds

) p
2


= (8p)

p
2E

[(
sup

0≤t≤T
eαt‖θt − θ∗‖22

(eαT − 1)

α

) p
2

]
(iii)

≤
(

8peαT

α

) p
2

E

[(
sup

0≤t≤T
eαt‖θt − θ∗‖22

) p
2

]

Inequality (i) is a direct consequence of the Burkholder-Gundy-Davis inequality (Ren, 2008), (ii) follows by pulling out the
supremum out of the integral, (iii) holds because eαT − 1 ≤ eαT .

Now, let us look at the moments of V (θt).

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ E
[(

sup
0≤t≤T

(
ε(n)2

m2
+

d

γnm
+

logB

nm

)
eαt +

|Mt|√
γn

)p] 1
p

≤ E
[(

sup
0≤t≤T

(
ε(n)2

m2
+

d

γnm
+

logB

nm

)
eαt + sup

0≤t≤T

|Mt|√
γn

)p] 1
p
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Via the Minkowski Inequality, and the fact ε(n) is independent of t, we can expand the above as:

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤
(

d

γnm
+

logB

nm

)
eαT︸ ︷︷ ︸

:=UT

+
eαT

m2
E
[
ε(n)2p

] 1
p + E

[(
sup

0≤t≤T

|Mt|√
n

)p] 1
p

Since, from Proposition 1, we know that ε(n) is a L
√

d
nν -sub-Gaussian vector, we know that:

E
[
ε(n)2p

] 1
p ≤

(
2L

√
2dp

nν

)2

Using our upper bound on the supremum of Mt gives:

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ UT +
eαT 8dL2

νm2n
p+ E

[(
8peαT

γαn

) p
2
(

sup
0≤t≤T

eαt‖θt − θ∗‖22
) p

2

] 1
p

(6)

We proceed by bounding the second term on the RHS of the expression above:

E

[(
8peαT

αn

) p
2
(

sup
0≤t≤T

eαt‖θt − θ∗‖22
) p

2

] 1
p

(i)

≤ E
[

2p−1

2

(
8peαT

αγn

)p
+

1

2p

(
sup

0≤t≤T
eαt‖θt − θ∗‖22

)p] 1
p

(ii)

≤ 2
p−2
p E

[(
8peαT

αγn

)p] 1
p

+
1

2
E
[(

sup
0≤t≤T

eαt‖θt − θ∗‖22
)p] 1

p

(iii)

≤ 16 E
[(

peαT

αγn

)p] 1
p

+
1

2
E
[(

sup
0≤t≤T

eαt‖θt − θ∗‖22
)p] 1

p

︸ ︷︷ ︸
I

Inequality (i) follows from using Young’s inequality for products on the term inside the expectation with constant 2p−1,
inequality (ii) is a consequence of Minkowski Inequality and (iii) because 2

p−2
p ≤ 2. We note now that the second term I

on the right hand side above is exactly:

1

2
E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

Plugging this into Equation 6 and rearranging gives:

1

2
E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ UT +
16eαT

αγn
p+

eαT 8dL2

νm2n
p,

which finally results in:

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ 2

mn

(
d

γ
+ logB +

(
32

γ
+

8dL2

νm

)
p

)
eαT . (7)

Given this control on the moments of the supremum of V (θt) (recall V (θ) = 1
2e
αt‖θ − θ∗‖22), we finally construct the
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bound on the moments of ‖θT − θ∗‖:

E[‖θT − θ∗‖p]
1
p = E

[
e−

pαT
2 V (θT )

p
2

] 1
p

(i)

≤ E

[
e−

pαT
2

(
sup

0≤t≤T
V (θt)

) p
2

] 1
p

= e−
αT
2

E

[(
sup

0≤t≤T
V (θt)

) p
2

] 2
p


1
2

(ii)

≤ e−
αT
2

(
2

mn

(
d

γ
+ logB +

(
16

γ
+

4dL2

νm

)
p

)
eαT

) 1
2

=

√
2

mn

(
d

γ
+ logB +

(
16

γ
+

4dL2

νm

)
p

) 1
2

Inequality (i) follows from taking the supremum of V (θt), inequality (ii) from plugging in the upper bound from Equation
7.

Taking the limit as T → ∞ and using Fatou’s Lemma, we therefore have that the moments of E[‖θ − θ∗‖p]
1
p , with

probability at least 1− δ1, grow at a rate of
√
p:

E[‖θ − θ∗‖p]
1
p ≤ lim inf

T→∞
E[‖θT − θ∗‖p]

1
p (8)

=

√
2

mn

(
d

γ
+ logB +

(
16

γ
+

4dL2

νm

)
p

) 1
2

. (9)

To simplify notation, let D =
(
d
γ + logB

)
, and σ =

(
16
γ + 4dL2

νm

)
. Therefore we have:

E[‖θ − θ∗‖p]
1
p ≤

√
2

mn
(D + σp) (10)

The result (10), guarantees us that the norm of the uncentered random variable θ − θ∗ has subgaussian tails. We make the
parameters explicit via Markov’s inequality:

P
θ∼µ(n)

a
(‖θ − θ∗‖ > ε) ≤ E[‖θ − θ∗‖p]

εp

≤

(√
2 (D + σp)√
mnε

)p
.

Choosing p = 2 log 1/δ and letting

ε = e
1
2

√
2

mn
(D + σp)

gives us our desired solution:

P
θ∼µ(n)

a [γa]

(
‖θ − θ∗‖2 >

√
2e

mn

(
d

γ
+ logB +

(
32

γ
+

8dL2

νm

)
log (1/δ)

))
< δ.

for δ ≤ e−0.5.
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C. Introduction to the Langevin Algorithms
We refer to the stochastic process represented by the following stochastic differential equation as continuous-time Langevin
dynamics:

dθt = −∇U(θt) dt+
√

2 dBt.

We have first encountered this continuous time Langevin dynamics in Eq. (2), where we have set U(θ) =

−γa (nFn,a(θ) + log πa(θ)) = −γa
∑n
i=1 log pa (xa,i|θ)− γa log πa(θ) to prove posterior concentration of µ(n)

a [γa].

One important feature of the Langevin dynamics is that its invariant distribution is proportional to e−U(θ). We can
therefore also use it to generate samples distributed according to the unscaled posterior distribution µ(n)

a . Via letting
U(θ) = −

∑n
i=1 log pa (xa,i|θ) − log πa(θ), we obtain a continuous time dynamics which generates trajectories that

converge towards the posterior distribution µ(n)
a exponentially fast. To obtain an implementable algorithm, we apply

Euler-Maruyama discretization to the Langevin dynamics and arrive at the following ULA update:

θ(i+1)h(n) ∼ N
(
θih(n) − h(n)∇U(θih(n)), 2h(n)I

)
.

Since ∇U(θ) = −
∑n
i=1∇ log pa (xa,i|θ) − ∇ log πa(θ) in the above update rule, the computation complexity within

each iteration of the Langevin algorithm grows with the number of data being collected, n. To cope with the growing
number of terms in ∇U(θ), we take a stochastic gradient approach and define Û(θ) = − n

|S|
∑
xk∈S ∇ log pa(xk|θ) −

∇ log πa(θ), where S is a subset of the dataset {xa,1, · · · , xa,n}. For simplicity, we form S via subsampling uniformly
from {xa,1, · · · , xa,n}. Substituting the stochastic gradient∇Û for the full gradient∇U in the above update rule results in
the SGLD algorithm.

D. Proofs for Approximate MCMC Sampling
In this Appendix we supply the proofs of concentration for approximate samples from both the ULA and SGLD MCMC
methods. We will quantify the computation complexity of generating samples which are distributed close enough to the
posterior. We restate the assumptions required of the likelihood for the MCMC sampling methods to converge.

Assumption 1-Uniform (Assumption on the family pa(X|θa): strengthened for approximate sampling). Assume that
log pa(x|θa) is La-smooth and ma-strongly concave over the parameter θa:

− log pa(x|θ′a)−∇θ log pa(x|θ′a)> (θa − θ′a) +
ma

2
‖θa − θ′a‖2 ≤ − log pa(x|θa)

≤ − log pa(x|θ′a)−∇θ log pa(x|θ′a)> (θa − θ′a) +
La
2
‖θa − θ′a‖2, ∀θa, θ′a ∈ Rda , x ∈ R.

Assumption 3 (Assumptions on the prior distribution). For every a ∈ A assume that log πa(θa) is concave with L-Lipschitz
gradients for all θa ∈ Rda :

‖∇θπa(θ)−∇θπa(θ′)‖ ≤ La‖θ − θ′‖ ∀θ, θ′ ∈ Rda

Assumption 4 (Joint Lipschitz smoothness of the family log pa(X|θa): for SGLD). Assume a joint Lipschitz smoothness
condition, which strengthens Assumptions 1-Local and 2 to impose the Lipschitz smoothness on the entire bivariate function
log pa(x; θ):

‖∇θ log pa(x|θa)−∇θ log pa(x′|θa)‖ ≤ La ‖θa − θ′a‖+ L∗a ‖x− x′‖ , ∀θa, θ′a ∈ Rda , x, x′ ∈ R.

We now begin by presenting the result for ULA.

D.1. Convergence of the unadjusted Langevin algorithm (ULA)

If function log pa(x; θ) satisfies the Lipschitz smoothness condition in Assumption 1-Local, then we can leverage gradient
based MCMC algorithms to generate samples with convergence guarantees in the p-Wasserstein distance. As stated in
Algorithm 2, we initialize ULA in the n-th round from the last iterate in the (n− 1)-th round.
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Theorem 5 (ULA Convergence). Assume that the likelihood log pa(x; θ) and prior πa satisfy Assumption 1-Uniform and

Assumption 3. We take step size h(n) = 1
32

ma
n(La+ 1

nLa)
2 = O

(
1

nLaκa

)
and number of stepsN = 640

(La+ 1
nLa)

2

m2
a

= O
(
κ2
a

)
in Algorithm 2. If the posterior distribution satisfy the concentration inequality that E

θ∼µ(n)
a

[‖θ − θ∗‖p]
1
p ≤ 1√

n
D̃,

then for any positive even integer p, we have convergence of the ULA algorithm in Wp distance to the posterior µ(n)
a :

Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃, ∀D̃ ≥

√
32
ma
dap.

Proof of Theorem 5. We use induction to prove this theorem.

• For n = 1, we initialize at θ0 which is within a
√

da
ma

-ball from the maximum of the target distribution, θ∗p =

arg max pa(θ|x1), where pa(θ|x1) ∝ pa(x1|θ)πa(θ) and negative log pa(θ|x1) is ma-strongly convex and (La + La)-
Lipschitz smooth. Invoking Lemma 10, we obtain that for dµ

(1)
a = pa(θ|x1)dθ, Wasserstein-p distance between the

target distribution and the point mass at its mode: Wp

(
µ

(1)
a , δ

(
θ∗p
))
≤ 5
√

1
ma
dap. Therefore, Wp

(
µ

(1)
a , δ (θ0)

)
≤

Wp

(
µ

(1)
a , δ

(
θ∗p
))

+
∥∥θ0 − θ∗p

∥∥ ≤ 6
√

1
ma
dap. We then invoke Lemma 6, with initial condition µ0 = δ

(
θ∗p
)
, to obtain

the convergence in the N -th iteration of Algorithm 2 after the first pull to arm a:

W p
p

(
µNh(1) , µ(1)

a

)
≤
(

1− ma

8
h(1)

)p·N
W p
p

(
δ (θ0) , µ(1)

a

)
+ 25p (La + La)

p

mp
a

(dap)
p/2
(
h(1)

)p/2
,

where we have substituted in the strong convexity ma for m̂ and the Lipschitz smoothness (La + La) for L̂. Plugging
in the step size h(1) = 1

32
ma

(La+La)2
≤ min

{
ma

32(La+La)2
, 1

1024
m2
a

(La+La)2
D̃2

dap

}
, and number of steps N = 20

ma
1
h(1) =

640 (La+La)2

m2
a

, W p
p

(
µ̂

(1)
a , µ

(1)
a

)
= W p

p

(
µNh(1) , µ

(1)
a

)
≤ 2D̃p.

• Assume that after the (n − 1)-th pull and before the n-th pull to the arm a, the ULA algorithm guarantees that
Wp

(
µ̂

(n−1)
a , µ

(n−1)
a

)
≤ 2√

n−1
D̃. We now prove that after the n-th pull and before the (n+ 1)-th pull, it is guaranteed

that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃. We first obtain from the assumed posterior concentration inequality:

Wp(µ
(n)
a , δ (θ∗)) ≤ E

θ∼µ(n)
a

[‖θ − θ∗‖p]
1
p ≤ 1√

n
D̃. (11)

Therefore, for n ≥ 2,

Wp

(
µ(n)
a , µ(n−1)

a

)
≤Wp(µ

(n)
a , δ (θ∗)) +Wp(µ

(n−1)
a , δ (θ∗)) ≤ 3√

n
D̃.

We combine this bound with the induction hypothesis and obtain that

Wp

(
µ(n)
a , µ̂(n−1)

a

)
≤Wp

(
µ(n)
a , µ(n−1)

a

)
+Wp

(
µ(n−1)
a , µ̂(n−1)

a

)
≤ 8√

n
D̃.

From Lemma 6, we know that for m̂ = n ·ma and L̂ = n ·La +La, with initial condition µ0 = µ̂
(n−1)
a , with accurate

gradient,

W p
p

(
µih(n) , µ(n)

a

)
≤
(

1− m̂

8
h(n)

)p·i
W p
p

(
µ̂(n−1)
a , µ(n)

a

)
+ 25p L̂

p

m̂p
(dap)

p/2
(
h(n)

)p/2
.

If we take step size h(n) = 1
32

m̂

L̂2
≤ min

{
m̂

32L̂2
, 1

1024
1
n
m̂2

L̂2

D̃2

dap

}
and number of steps taken in the ULA algorithm from

(n− 1)-th pull till n-th pull to be: N̂ ≥ 20
m̂

1
h(n) ,

W p
p

(
µ̂(n)
a , µ(n)

a

)
= W p

p

(
µN̂h(n) , µ

(n)
a

)
≤
(

1− m̂

8
h(n)

)p·N̂
8pD̃p

np/2
+ 25p L̂

p

m̂p
(dap)

p/2
(
h(n)

)p/2
≤ 2D̃p

np/2
, (12)
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leading to the result that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃.

Since at least one round would have past from the (n− 1)-th pull to the n-th pull to arm a, taking number of steps in

each round t to be N = 20
m̂

1
h(n) = 640

(La+ 1
nLa)

2

m2
a

suffices.

Therefore, N = 640
(La+ 1

nLa)
2

m2
a

= O
(
L2
a

m2
a

)
.

D.2. Convergence of the stochastic gradient Langevin algorithm (SGLD)

If log pa(x; θ) satisfies a stronger joint Lipschitz smoothness condition in Assumption 4, similar guarantees can be obtained
for stochastic gradient MCMC algorithms.

Theorem 6 (SGLD Convergence). Assume that the family log pa(x; θ) and prior πa satisfy Assumption 1-Uniform, As-
sumption 3, and Assumption 4. We take number of data samples in the stochastic gradient estimate k = 32

(L∗
a)2

maνa
= 32κ2

a,

step size h(n) = 1
32

ma
n(La+ 1

nLa)
2 = O

(
1

nLaκa

)
and number of steps N = 1280

(La+ 1
nLa)

2

m2
a

= O
(
κ2
a

)
in Algorithm 2. If

the posterior distribution satisfy the concentration inequality that E
θ∼µ(n)

a
[‖θ − θ∗‖p]

1
p ≤ 1√

n
D̃, then for any positive

even integer p, we have convergence of the ULA algorithm in Wp distance to the posterior µ(n)
a : Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃,

∀D̃ ≥
√

32
ma
dap.

Proof of Theorem 6. Similar to Theorem 5, we use induction to prove this theorem. After the first pull to arm a, we take the

same 640
(La+ 1

nLa)
2

m2
a

number of steps to converge to W p
p

(
µ̂

(1)
a , µ

(1)
a

)
≤ 2D̃p.

Assume that after the (n − 1)-th pull and before the n-th pull to the arm a, the SGLD algorithm guarantees that
Wp

(
µ̂

(n−1)
a , µ

(n−1)
a

)
≤ 2√

n−1
D̃. We prove that after the n-th pull and before the (n + 1)-th pull, it is guaranteed

that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃. Following the proof of Theorem 5, we combine the assumed posterior concentration

inequality and the induction hypothesis to obtain:

Wp

(
µ(n)
a , µ̂(n−1)

a

)
≤Wp

(
µ(n)
a , µ(n−1)

a

)
+Wp

(
µ(n−1)
a , µ̂(n−1)

a

)
≤ 8√

n
D̃.

Denote function U as the negative log-posterior density over parameter θ. From Lemma 6, we know that for m̂ = n ·ma

and L̂ = n · La + La, with initial condition that µ0 = µ̂
(n−1)
a , if the difference between the stochastic gradient ∇Û and the

exact one ∇U is bounded as E
[∥∥∥∇U(θ)−∇Û(θ)

∥∥∥p ∣∣θ] ≤ ∆p, then

W p
p

(
µih(n) , µ(n)

a

)
≤
(

1− m̂

8
h(n)

)p·i
W p
p

(
µ̂(n−1)
a , µ(n)

a

)
+ 25p L̂

p

m̂p
(dap)

p/2
(
h(n)

)p/2
+ 22p+3 ∆p

m̂p
.

We demonstrate in the following Lemma 5 that

∆p ≤ 2
np/2

kp/2

(√
dapL

∗
a√

νa

)p
.

Lemma 5. Denote Û as the stochastic estimator of U . Then for stochastic gradient estimate with k data points,

E
[∥∥∥∇Û(θ)−∇U(θ)

∥∥∥p ∣∣θ] ≤ 2
np/2

kp/2

(√
dapL

∗
a√

νa

)p
.

If we take the number of samples in the stochastic gradient estimator k = 32
(L∗
a)2

maνa
, then ∆p ≤ 2

32p/2
(n ·ma)

p/2 ·
(p · da)

p/2 ≤ 2−2p−5 m̂pD̃p

np/2
for any p ≥ 2. Consequently, 22p+3 ∆p

m̂p ≤
1
4
D̃p

np/2
.
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If we take step size h(n) = 1
32

m̂

L̂2
≤ min

{
m̂

32L̂2
, 1

1024
1
n
m̂2

L̂2

D̃2

dap

}
and number of steps taken in the SGLD algorithm from

(n− 1)-th pull till n-th pull to be: N̂ ≥ 40
m̂

1
h(n) ,

W p
p

(
µ̂(n)
a , µ(n)

a

)
= W p

p

(
µN̂h(n) , µ

(n)
a

)
≤
(

1− m̂

8
h(n)

)p·N̂
8pD̃p

np/2
+ 25p L̂

p

m̂p
(dap)

p/2
(
h(n)

)p/2
+ 22p+3 ∆p

m̂p

≤ 2D̃p

np/2
,

leading to the result that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃. Since at least one round would have past from the (n− 1)-th pull to the

n-th pull to arm a, taking number of steps in each round t to be N = 40
m̂

1
h(n) suffices.

Therefore, N = 1280
(La+ 1

nLa)
2

m2
a

= O
(
L2
a

m2
a

)
.

Proof of Lemma 5. We first develop the expression:

E
[∥∥∥∇U(θ)−∇Û(θ)

∥∥∥p] = npE

∥∥∥∥∥∥ 1

n

n∑
i=1

∇ log p(xi|θa)− 1

k

k∑
j=1

∇ log p(xj |θa)

∥∥∥∥∥∥
p

=
np

kp
E

∥∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj |θa)

)∥∥∥∥∥∥
p .

We note that

∇ log p(xj |θa)− 1

n

n∑
i=1

∇ log p(xi|θa) =
1

n

∑
i 6=j

(∇ log p(xj |θa)−∇ log p(xi|θa)) .

By the joint Lipschitz smoothness Assumption 4, we know that∇ log p(x|θa) is a Lipschitz function of x:

‖∇ log p(xj |θa)−∇ log p(xi|θa)‖ ≤ L∗a ‖xj − xi‖ .

On the other hand, the data x follows the true distribution p(x; θ∗), which by Assumption 2 is νa-strongly log-concave.
Applying Theorem 3.16 in (Wainwright, 2019), we obtain that (∇ log p(xj |θa)−∇ log p(xi|θa)) is 2L∗

a√
νa

-sub-Gaussian.
Leveraging the Azuma-Hoeffding inequality for martingale difference sequences (Wainwright, 2019), we obtain that sum of
the (n− 1) sub-Gaussian random variables:(

∇ log p(xj |θa)− 1

n

n∑
i=1

∇ log p(xi|θa)

)
,

is 2
√
n−1L∗

a

n
√
νa

-sub-Gaussian. In the same vein,
(∑k

j=1

(
1
n

∑n
i=1∇ log p(xi|θa)−∇ log p(xj |θa)

))
is 2
√
k(n−1)L∗

a

n
√
νa

-sub-

Gaussian. We then invoke the 2
√
dak(n−1)L∗

a

n
√
νa

-sub-Gaussianity of∥∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj |θa)

)∥∥∥∥∥∥
and have

E

∥∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj |θa)

)∥∥∥∥∥∥
p ≤ 2

(
2
√
dak(n− 1)pL∗a
en
√
νa

)p
.
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Therefore,

E
[∥∥∥∇U(θ)−∇Û(θ)

∥∥∥p] =
np

kp
E

∥∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj |θa)

)∥∥∥∥∥∥
p

≤ 2
np/2

kp/2

(
2
√
dapL

∗
a

e
√
νa

)p
≤ 2

np/2

kp/2

(√
dapL

∗
a√

νa

)p
.

D.3. Convergence of (Stochastic Gradient) Langevin Algorithm within Each Round

In this section, we examine convergence of the (stochastic gradient) Langevin algorithm to the posterior distribution over
a-th arm at the n-th round. Since only the a-th arm and n-th round are considered, we drop these two indices in the notation
whenever suitable. We also define some notation that will only be used within this subsection. For example, we focus on the
θ parameter and denote the posterior measure dµ

(n)
a (x; θ) = dµ∗(θ) = exp (−U(θ)) dθ as the target distribution.

Symbol Meaning

µ∗ posterior distribution, µna
U potential (i.e., negative log posterior density)
θ∗U minimum of the potential U (or mode of the posterior µ∗)
θt interpolation between θih(n) and θ(i+1)h(n) , for t ∈ [ih(n), (i+ 1)h(n)]

µt measure associated with θt
θ∗t an auxiliary stochastic process with initial distribution µ∗ and follows dynamics (17)
m̂ strong convexity of the potential U , nma

L̂ Lipschitz smoothness of the potential U , nLa + La

We also formally define the Wasserstein-p distance used in the main text. Given a pair of distributions µ and ν on Rd, a
coupling γ is a joint distribution over the product space Rd × Rd that has µ and ν as its marginal distributions. We let
Γ(µ, ν) denote the space of all possible couplings of µ and ν. With this notation, the Wasserstein-p distance is given by

W p(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Rd×Rd

‖x− y‖p dγ(x, y). (13)

We use the following (stochastic gradient) Langevin algorithm to generate approximate samples from the posterior distribu-
tion µ(n)

a (θ) at n-th round. For i = 0, · · · , T ,

θ(i+1)h(n) ∼ N
(
θih(n) − h(n)∇Û(θih(n)), 2h(n)I

)
, (14)

where ∇Û(θih(n)) is a stochastic estimate of ∇U(θih(n)). We prove in the following Lemma 6 the convergence of this
algorithm within n-th round.

Lemma 6. Assume that the potential U is m̂-strongly convex and L̂-Lipschitz smooth. Further assume that the p-th moment
between the true gradient and the stochastic one satisfies:

E
[∥∥∥∇U(θih(n))−∇Û(θih(n))

∥∥∥p ∣∣∣θih(n)

]
≤ ∆p.

Then at i-th step, for µih(n) following the (stochastic gradient) Langevin algorithm with h ≤ m̂

32L̂2
,

W p
p (µih(n) , µ∗) ≤

(
1− m̂

8
h(n)

)p·i
W p
p (µ0, µ

∗) + 25p L̂
p

m̂p
(dp)

p/2
(
h(n)

)p/2
+ 22p+3 ∆p

m̂p
. (15)

Remark 2. When ∆p = 0, Lemma 6 provides convergence rate of the unadjusted Langevin algorithm (ULA) with the exact
gradient.
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Proof of Lemma 6. We first interpolate a continuous time stochastic process, θt, between θih(n) and θ(i+1)h(n) . For
t ∈ [ih(n), (i+ 1)h(n)],

dθt = ∇Û(θih(n))dt+
√

2dBt, (16)

where Bt is standard Brownian motion. This process connects θih(n) and θ(i+1)h(n) and approximates the following
stochastic differential equation which maintains the exact posterior distribution:

dθ∗t = ∇U(θ∗t )dt+
√

2dBt. (17)

For a θ∗t initialized from µ∗ and following equation (17), θ∗t will always have distribution µ∗.

We therefore design a coupling between the two processes: θt and θ∗t , where θt follows equation (16) (and thereby
interpolates Algorithm 2) and θ∗t initializes from µ∗ and follows equation (17) (and thereby preserves µ∗). By studying the
difference between the two processes, we will obtain the convergence rate in terms of the Wasserstein-p distance.

For t = ih(n), we let θih(n) to couple optimally with θ∗
ih(n) , so that for(

θih(n) , θ∗ih(n)

)
∼ γ∗ ∈ Γopt

(
µih(n) , µ∗ih(n)

)
,

E
[∥∥θih(n) − θ∗ih(n)

∥∥p] = W p
p (µih(n) , µ∗). For t ∈ [ih(n), (i + 1)h(n)], we choose a synchronous coupling

γ̄
(
θt, θ

∗
t |θih(n) , θ∗ih(n)

)
∈ Γ (µt(θt|θih(n)), µ∗t (θ

∗
t |θih(n))) for the laws of θt and θ∗t . (A synchonous coupling simply

means that we use the same Brownian motion Bt in defining θt and θ∗t .) We then obtain that for any pair (θt, θ
∗
t ) ∼ γ̄,

d‖θt − θ∗t ‖p

dt
= ‖θt − θ∗t ‖p−2

〈
θt − θ∗t ,

dθt
dt
− dθ∗t

dt

〉
= p‖θt − θ∗t ‖p−2 〈θt − θ∗t ,−∇U(θt) +∇U(θ∗t )〉

+ p‖θt − θ∗t ‖p−2
〈
θt − θ∗t ,∇U(θt)−∇Û(θih(n))

〉
≤ −pm̂ ‖θt − θ∗t ‖

p
+ p ‖θt − θ∗t ‖

p−1
∥∥∥∇U(θt)−∇Û(θih(n))

∥∥∥ (18)

≤ −pm̂ ‖θt − θ∗t ‖
p (19)

+ p

p− 1

p

(
pm̂

2(p− 1)

)
‖θt − θ∗t ‖

p
+

1

p

1(
pm̂

2(p−1)

)p−1

∥∥∥∇U(θt)−∇Û(θih(n))
∥∥∥p
 (20)

≤ −pm̂
2
‖θt − θ∗t ‖

p
+

2p−1

m̂p−1

∥∥∥∇U(θt)−∇Û(θih(n))
∥∥∥p , (21)

where equation (20) follows from Young’s inequality.

Equivalently, we can obtain

de
pm̂
2 t‖θt − θ∗t ‖p

dt
≤ e

pm̂
2 t 2p−1

m̂p−1

∥∥∥∇U(θt)−∇Û(θih(n))
∥∥∥p .

By the fundamental theorem of calculus,

‖θt − θ∗t ‖p ≤ e−
pm̂
2 (t−ih(n)) ∥∥θih(n) − θ∗ih(n)

∥∥p +
2p−1

m̂p−1

∫ t

ih(n)

e−
pm̂
2 (t−s)

∥∥∥∇U(θs)−∇Û(θih(n))
∥∥∥p ds. (22)

Taking expectation on both sides, we obtain that

E [‖θt − θ∗t ‖p] = E
[
E
[
‖θt − θ∗t ‖p | θih(n) , θ∗ih(n)

]]
≤ e−

pm̂
2 (t−ih(n))E

[∥∥θih(n) − θ∗ih(n)

∥∥p]
+

2p−1

m̂p−1

∫ t

ih(n)

e−
pm̂
2 (t−s)E

[∥∥∥∇U(θs)−∇Û(θih(n))
∥∥∥p] ds. (23)
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In the above expression, the integral and expectation are exchanged using Tonelli’s theorem, since∥∥∥∇U(θs)−∇Û(θih(n))
∥∥∥p

is positive measurable.

We further expand the expected error E
[∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p]:
E
[∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p]
= E

[∥∥∥∇U(θs)−∇U(θih(n)) +∇U(θih(n))−∇Û(θih(n))
∥∥∥p]

≤ 1

2
E [‖2 (∇U(θs)−∇U(θih(n)))‖p] +

1

2
E
[∥∥∥2

(
∇U(θih(n))−∇Û(θih(n))

)∥∥∥p]
= 2p−1E [‖∇U(θs)−∇U(θih(n))‖p] + 2p−1E

[
E
[∥∥∥∇U(θih(n))−∇Û(θih(n))

∥∥∥p ∣∣∣θih(n)

]]
≤ 2p−1L̂p · E [‖θs − θih(n)‖p] + 2p−1∆p. (24)

Plugging into equation (22), we have that

E [‖θt − θ∗t ‖p]

≤ e−
pm̂
2 (t−ih(n))E

[∥∥θih(n) − θ∗ih(n)

∥∥p]
+ 22p−2 L̂p

m̂p−1

∫ t

ih(n)

e−
pm̂
2 (t−s)E [‖θs − θih(n)‖p] ds+ 22p−2(t− ih(n))

∆p

m̂p−1
. (25)

We provide an upper bound for
∫ t
ih(n) e

− pm̂2 (t−s)E [‖θs − θih(n)‖p] ds in the following lemma.

Lemma 7. For h(n) ≤ m̂

32L̂2
, and for t ∈ [ih(n), (i+ 1)h(n)],

∫ t

ih(n)

e−
pm̂
2 (t−s)E [‖θs − θih(n)‖p ds]

≤ 23p−3L̂p
(
t− ih(n)

)p+1

W p
p (µih(n) , µ∗) +

8p

2

(
t− ih(n)

)p/2+1

(dp)
p/2

+ 22p−2(t− ih(n))p+1 ·∆p. (26)

Applying this upper bound to equation (25), we obtain that for h(n) ≤ m̂

32L̂2
, and for t ∈ [ih(n), (i+ 1)h(n)],

E [‖θt − θ∗t ‖p] ≤ e−
pm̂
2 (t−ih(n))E

[∥∥θih(n) − θ∗ih(n)

∥∥p]+ 25p−5 L̂2p

m̂p−1

(
t− ih(n)

)p+1

W p
p (µih(n) , µ∗)

+ 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1

(dp)
p/2

+ 24p−4 L̂p

m̂p−1
(t− ih(n))p+1 ·∆p

+ 22p−2(t− ih(n))
∆p

m̂p−1

≤
(

1− m̂

4

(
t− ih(n)

))p
E
[∥∥θih(n) − θ∗ih(n)

∥∥p]+ 25p−5 L̂2p

m̂p−1

(
t− ih(n)

)p+1

W p
p (µih(n) , µ∗)

+ 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1

(dp)
p/2

+ 22p(t− ih(n))
∆p

m̂p−1
.

Recognizing that γ̂ (θt, θ
∗
t ) = E(

θ
ih(n) ,θ

∗
ih(n)

)
∼γ∗

[
γ̄
(
θt, θ

∗
t |θih(n) , θ∗ih(n)

)]
is a coupling, we achieve the upper bound for
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W p
p (µt, µ

∗):

W p
p (µt, µ

∗) ≤ E(θt,θ∗t )∼γ̂ [‖θt − θ∗t ‖p]

≤
(

1− m̂

4

(
t− ih(n)

))p
E(

θ
ih(n) ,θ

∗
ih(n)

)
∼γ∗

[∥∥θih(n) − θ∗ih(n)

∥∥p]
+ 25p−5 L̂2p

m̂p−1

(
t− ih(n)

)p+1

W p
p (µih(n) , µ∗) + 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1

(dp)
p/2

+ 22p(t− ih(n))
∆p

m̂p−1
.

≤
(

1− m̂

8

(
t− ih(n)

))p
W p
p (µih(n) , µ∗) + 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1

(dp)
p/2 (27)

+ 22p(t− ih(n))
∆p

m̂p−1
. (28)

Taking t = (i+ 1)h(n), the recurring bound reads

W p
p

(
µ(i+1)h(n) , µ∗

)
≤
(

1− m̂

8
h(n)

)p
W p
p (µih(n) , µ∗) + 25p−3 L̂p

m̂p−1
(dp)

p/2
(
h(n)

)p/2+1

+
4p

m̂p−1
h(n)∆p.

We finish the proof by invoking the recursion i times:

W p
p (µih(n) , µ∗) ≤

(
1− m̂

8
h(n)

)p
W p
p

(
µ(i−1)h(n) , µ∗

)
+ 25p−3 L̂p

m̂p−1
(dp)

p/2
(
h(n)

)p/2+1

+
4p

m̂p−1
h(n)∆p

≤
(

1− m̂

8
h(n)

)p·i
W p
p (µ0, µ

∗)

+

i−1∑
k=0

(
1− m̂

8
h(n)

)p·k
·

(
25p−3 L̂p

m̂p−1
(dp)

p/2
(
h(n)

)p/2+1

+
4p

m̂p−1
h(n)∆p

)

≤
(

1− m̂

8
h(n)

)p·i
W p
p (µ0, µ

∗) + 25p L̂
p

m̂p
(dp)

p/2
(
h(n)

)p/2
+ 22p+3 ∆p

m̂p
. (29)

D.3.1. SUPPORTING PROOFS FOR LEMMA 6

Proof of Lemma 7. We use the update rule of ULA to develop
∫ t
ih(n) e

− pm̂2 (t−s)E [‖θs − θih(n)‖p] ds:∫ t

ih(n)

e−
pm̂
2 (t−s)E [‖θs − θih(n)‖p ds]

=

∫ t

ih(n)

e−
pm̂
2 (t−s)E

[∥∥∥−(s− ih(n))
(
∇U(θih(n))−

(
∇U(θih(n))−∇Û(θih(n))

))
+
√

2(Bs −Bih(n))
∥∥∥p] ds

≤ 22p−2(t− ih(n))p
∫ t

ih(n)

e−
pm̂
2 (t−s)E [‖∇U(θih(n))‖p] ds

+ 23p/2−1

∫ t

ih(n)

e−
pm̂
2 (t−s)E [‖Bs −Bih(n)‖p] ds

+ 22p−2(t− ih(n))p
∫ t

ih(n)

e−
pm̂
2 (t−s)E

[∥∥∥∇U(θih(n))−∇Û(θih(n))
∥∥∥p] ds

≤ 22p−2L̂p
(
t− ih(n)

)p+1

E [‖θih(n) − θ∗U‖
p
] + 23p/2−1

∫ t

ih(n)

E [‖Bs −Bih(n)‖p] ds

+ 22p−2
(
t− ih(n)

)p+1

∆p. (30)

where θ∗U is the fixed point of U . We then use the following lemma to simplify the above expression.
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Lemma 8. The integrated p-th moment of the Brownian motion can be bounded as:∫ t

ih(n)

E ‖Bs −Bih(n)‖p ds ≤ 2

(
dp

e

)p/2 (
t− ih(n)

)p/2+1

. (31)

We also provide bound for the p-th moment of ‖θih(n) − θ∗U‖.

Lemma 9. For θih(n) ∼ µih(n) ,

E ‖θih(n) − θ∗U‖
p ≤ 2p−1W p

p (µihn , µ
∗) +

10p

2

(
dp

m̂

)p/2
. (32)

Plugging the results into equation (30), we obtain that for h(n) ≤ m̂

32L̂2
, and for t ∈ [ih(n), (i+ 1)h(n)],

∫ t

ih(n)

e−
pm̂
2 (t−s)E [‖θs − θih(n)‖p ds]

≤ 23p−3L̂p
(
t− ih(n)

)p+1

W p
p (µihn , µ

∗) +
40p

8
L̂p
(
t− ih(n)

)p+1
(
dp

m̂

)p/2
+

(
8

e

)p/2
(dp)

p/2
(
t− ih(n)

)p/2+1

+ 22p−2(t− ih(n))p+1 ·∆p

≤ 23p−3L̂p
(
t− ih(n)

)p+1

W p
p (µihn , µ

∗) +
8p

2

(
t− ih(n)

)p/2+1

(dp)
p/2

+ 22p−2(t− ih(n))p+1∆p. (33)

Proof of Lemma 8. The Brownian motion term can be upper bounded by higher moments of a normal random variable:∫ t

ih(n)

E ‖Bs −Bih(n)‖p ds ≤
(
t− ih(n)

)
E ‖Bt −Bih(n)‖p =

(
t− ih(n)

)p/2+1

E ‖v‖p ,

where v is a standard d-dimensional normal random variable. We then invoke the
√
d sub-Gaussianity of ‖v‖ and have

(assuming p to be an even integer):

E ‖v‖p ≤ p!

2p/2 (p/2)!
dp/2 ≤ e1/12p

√
2πp(p/e)p

2p/2
√
πp(p/2e)p/2

dp/2 ≤ 2

(
dp

e

)p/2
.

Proof of Lemma 9. For the E ‖θih(n) − θ∗U‖
p term, we note that any coupling of a distribution with a delta measure is their

product measure. Therefore, E ‖θih(n) − θ∗U‖
p relates to the p-Wasserstein distance between µih(n) and the delta measure at

the fixed point θ∗U , δ (θ∗U ):

E ‖θih(n) − θ∗U‖
p

= W p
p (µih(n) , δ (θ∗U )) ≤ (Wp (µih(n) , µ∗) +Wp (µ∗, δ (θ∗U )))

p

≤ 2p−1W p
p (µih(n) , µ∗) + 2p−1W p

p (µ∗, δ (θ∗U )) .

We then bound W p
p (µ∗, δ (θ∗U )) in the following lemma.

Lemma 10. Assume the posterior µ∗ is m̂-strongly log-concave. Then for θ∗U = arg maxµ∗,

W p
p (µ∗, δ (θ∗U )) ≤ 5p

(
dp

m̂

)p/2
. (34)
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Therefore,

E
∥∥∥θ(n)

ih(n) − θ∗n
∥∥∥p ≤ 2p−1W p

p (µih(n) , µ∗) +
10p

2

(
dp

m̂

)p/2
.

Proof of Lemma 10. We first decompose Wp (µ∗, δ (θ∗U )) into two terms:

Wp (µ∗, δ (θ∗U )) ≤Wp (µ∗, δ (Eθ∼µ∗ [θ])) + ‖θ∗U − Eθ∼µ∗ [θ]‖ .

By the celebrate relation between mean and mode for 1-unimodal distributions (see, e.g., Basu and DasGupta, 1996, Theorem
7), we can first bound the difference between mean and mode:

(θ∗U − Eθ∼µ∗ [θ])
T

Σ−1 (θ∗U − Eθ∼µ∗ [θ]) ≤ 3.

where Σ is the covariance matrix of µ∗. Therefore,

‖θ∗U − Eθ∼µ∗ [θ]‖2 ≤ 3

m̂
. (35)

We then bound Wp (µ∗, δ (Eθ∼µ∗ [θ])). Since the coupling between µ∗ and the delta measure δ (Eθ∼µ∗ [θ]) is their product
measure, we can directly obtain that the p-Wasserstein distance is the p-th moments of µ∗:

W p
p (µ∗, δ (Eθ∼µ∗ [θ])) =

∫
‖θ − Eθ∼µ∗ [θ]‖p dµ∗(θ).

We invoke the Herbst argument (see, e.g., Ledoux, 1999) to obtain the p-th moment bound. We first note that for an
m̂-strongly log-concave distribution, it has a log Sobolev constant of m̂. Then using the Herbst argument, we know that
x ∼ µ∗ is a sub-Gaussian random vector with parameter σ2 = 1

2m̂ :∫
eλu

T(θ−Eθ∼µ∗ [θ])dµ∗(θ) ≤ e λ
2

4m̂ , ∀ ‖u‖ = 1.

Hence θ is 2
√

d
m̂ norm-sub-Gaussian, which implies that

(Eθ∼µ∗ [‖θ − Eθ∼µ∗ [θ]‖p])1/p ≤ 2e1/e

√
dp

m̂
. (36)

Combining equations (35) and (36), we obtain the final result that

W p
p (µ∗, δ (θ∗U )) ≤

(
2e1/e

√
dp

m̂
+

√
3

m̂

)p

≤ 5p
(
dp

m̂

)p/2
.

Lemma 11. Assume that the likelihood log pa(x; θ), prior distribution, and true distributions satisfy Assumptions 1-3, and
that arm a has been chosen n = Ta(t) times up to iteration t of the Thompson sampling algorithm. Further, assume that we

choose the stepsize step size h(n) = 1
32

ma
n(La+ 1

nLa)
2 = O

(
ma
nL2

a

)
, and number of steps N = 640

(La+ 1
nLa)

2

m2
a

= O
(
L2
a

m2
a

)
in Algorithm 2 then for δ2 ∈ (0, e−1/2):

P
θa,t∼µ̄(n)

a [γa]

(
‖θa,t − θ∗a‖2 >

√
36e

man

(
da + logBa + 2σ log 1/δ1 + 2

(
σa +

mada
18Laγa

)
log 1/δ2

)∣∣∣∣Zn−1

)
< δ2.
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where Zt−1 = {‖θa,t−1 − θ∗a‖ ≤ C(n)} for:

C(n) =

√
18e

nma
(da + logBa + 2σ log 1/δ1)

1
2 ,

σ = 16 +
4daL

2
a

νama
, and where θa,t−1 is the sample from the previous round of the Thompson sampling algorithm for arm a.

Proof. We begin as in the proof of Theorem 3, except that we now take µ0 = δθa,t−1 , where θa,t−1 is the sample from the
previous step of the algorithm:

W p
p

(
µih(n) , µ(n)

a

)
≤
(

1− m̂

8
h(n)

)p·i
W p
p

(
δ(θa,t−1), µ(n)

a

)
+

80p

2

L̂p

m̂p
(dp)

p/2
(
h(n)

)p/2
.

We first use the triangle inequality on the first term on the RHS:

Wp

(
δ(θa,t−1), µ(n)

a

)
≤Wp

(
δ(θa,t−1), δθ∗a

)
+Wp

(
δ(θ∗a), µ(n)

a

)
= ‖θ∗a − θa,t−1‖+ +Wp

(
δ(θ∗a), µ(n)

a

)
≤ C(n) +

D̃√
n

where we have used the fact that ‖θ∗a− θa,t−1‖ ≤ C(n) by assumption, and the definition of D̃ from the proof of Theorem 5:

D̃ =
√

2
ma

(da + logBa + σp)
1
2 .

Since:

C(n) =

√
18e

ma
(da + logBa + 2σ log 1/δ1)

1
2 ,

We can further develop this upper bound:

Wp

(
δθa,t−1

, µ(n)
a

)
≤ D̃√

n
+ C(n)

≤ 8

√
2

man
(da + logBa + 2σ log 1/δ1 + σp)

1
2 ,

where to derive this result we have used the fact that
√

2(x+ y) ≥
√
x+
√
y.

Letting D̄ =
√

2
man

(da + logBa + 2σ log 1/δ1 + σp)
1
2 , we see that our final result is:

Wp

(
δθa,t−1

, µ(n)
a

)
≤ 8√

n
D̄,

where D̃ < D̄. Using the same choice of h(n) and number of steps N as in the proof or Theorem 5 guarantees us that:

W p
p

(
µih(n) , µ(n)

a

)
≤ 2

(
D̄√
n

)p
Further combining this with the triangle inequality, and the fact that D̃ < D̄ gives us that:
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Wp (µih(n) , δθ∗) ≤ D̃√
n

+
D̄√
n
≤ 3

D̄√
n
,

Now, since the sample returned by the Langevin algorithm is given by:

θa = θN + Z, (37)

where Z ∼ N
(

0, 1
nLaγa

I
)

, it remains to bound the distance between the approximate posterior µ̂(n)
a of θa and the

distribution of θNh(n) . Since θa − θNh(n) = Z, for any even integer p,

W p
p

(
µ̄(n)
a , µ̄(n)

a [γa]
)

=

 inf
γ∈Γ

(
µ̄
(n)
a ,µ̄

(n)
a [γa]

)
∫
‖θa − θN‖p dθadθN

1/p

≤ E[‖Z‖p]
1
p

≤

√
d

nLaγa

(
2p/2Γ(p+1

2 )
√
π

)1/p

≤

√
d

nLaγa

(
2p/2

(p
2

)p/2)1/p

≤

√
dp

nLaγa
,

where we have used upper bound of the Stirling type for the Gamma function Γ(·) in the second last inequality.

Thus, we have, via the triangle inequality once again, that:

Wp

(
µ̄(n)[γa]
a , δθ∗

)
≤ 3

D̄√
n

+

√
dp

nLaγa

≤
√

36

man

(
da + logBa + 2σa log 1/δ1 +

(
σa +

da
18Laγa

)
p

) 1
2

,

which, by the same derivation as in the proof of Theorem 1, gives us that:

P
θa,t∼µ̄(n)

a [γa]

(
‖θa,t − θ∗a‖2 >

√
36e

man

(
da + logBa + 2σ log 1/δ1 + 2

(
σa +

mada
18Laγa

)
log 1/δ2

)∣∣∣∣Zn−1

)
< δ2.

for δ2 ∈ (0, e−1/2):.

We remark that via an identical argument, the following Lemma holds as well:
Lemma 12. Assume that the family log pa(x; θ) and the prior πa satisfy Assumptions 1-4 and that arm a has been
chosen n = Ta(t) times up to iteration t of the Thompson sampling algorithm. If we take number of data samples

in the stochastic gradient estimate k = 32
(L∗
a)2

maνa
, step size h(n) = 1

32
ma

n(La+ 1
nLa)

2 = O
(
ma
nL2

a

)
and number of steps

N = 1280
(La+ 1

nLa)
2

m2
a

= O
(
L2
a

m2
a

)
in Algorithm 2, then for δ2 ∈ (0, e−1/2)::

P
θa,t∼µ̄(n)

a [γa]

(
‖θa,t − θ∗a‖2 >

√
36e

man

(
da + logBa + 2σ log 1/δ1 + 2

(
σa +

mada
18Laγa

)
log 1/δ2

)∣∣∣∣Zn−1

)
< δ2.,

where Zt−1 = {‖θa,t−1 − θ∗a‖ ≤ C(n)} for the parameters:

C(n) =

√
18e

nma
(da + logBa + 2σ log 1/δ1)

1
2 , σ = 16 +

4daL
2
a

νama
,

and θa,t−1 being the sample from the previous round of the Thompson sampling algorithm over arm a.
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E. Regret Proofs
We now present the proof of logarithmic regret of Thompson sampling under our assumptions with samples from the true
posterior and from the approximate sampling schemes discussed in Section 4. To provide the regret guarantees for Thompson
sampling with samples from the true posterior and from approximations to the posterior, we proceed as is common in regret
proofs for multi-armed bandits by upper-bounding the number of times a sub-optimal arm a ∈ A is pulled up to time T ,
denoted Ta(T ). Without loss of generality we assume throughout this section that arm 1 is the optimal arm, and define the
filtration associated with a run of the algorithm as Ft = {A1, X1, A2, X2, ..., At, Xt}.

To upper bound the expected number of times a sub-optimal arm is pulled up to time T , we first define the event
Ea(t) = {ra,t(Ta(t)) ≥ r̄1 − ε} for some ε > 0. This captures the event that the mean calculated from the value of θa
sampled from the posterior at time t ≤ T , ra,t(Ta(t)), is greater than r̄1 − ε (recall r̄1 is the optimal arm’s mean). Given
these events, we proceed to decompose the expected number of pulls of a sub-optimal arm a ∈ A as:

E[Ta(T )] = E

[
T∑
t=1

I(At = a)

]
= E

[
T∑
t=1

I(At = a,Eca(t))

]
︸ ︷︷ ︸

I

+E

[
T∑
t=1

I(At = a,Ea(t))

]
︸ ︷︷ ︸

II

. (38)

In Lemma 13 we upper bound (I), and then bound term (II) in Lemmas 14.

We note that this proof follows a similar structure to that of the regret bound for Thompson sampling for Bernoulli bandits
and bounded rewards in (Agrawal and Goyal, 2012). However, to give the regret guarantees that incorporate the quality of
the priors as well as the potential errors and lack of independence resulting from the approximate sampling methods we
discuss in Section 4 the proof is more complex.

Lemma 13 (Bounding I). For a sub-optimal arm a ∈ A, we have that:

I = E

[
T∑
t=1

I(At = a,Eca(t))

]
≤ E

[
T−1∑
s=1

1

p1,s
− 1

]
.

where pa,s = P(ra,t(s) > r̄1 − ε|Ft−1), for some ε > 0.

Proof. To bound term I of (3), we first recall At is the arm achieving the largest sample reward mean at round t. Further, we
define A′t to be the arm achieving the maximum sample mean value among all the suboptimal arms:

A′t = argmax
a∈A,a 6=1

ra(t, Ta(t)).

Since E [I(At = a,Eca(t))] = P (At = a,Eca(t)), we aim to bound P(At = a,Eca(t)|Ft−1). We note that the following
inequality holds:

P(At = a,Eca(t)|Ft−1) ≤ P(A′t = a,Eca(t)|Ft−1)(P(r1(t, T1(t)) ≤ r̄1 − ε|Ft−1))

= P(A′t = a,Eca(t)|Ft−1)(1− P(E1(t)|Ft−1)). (39)

We also note that the term P(A′t = a,Eca(t)|Ft−1) can be bounded as follows:

P(At = 1, Eca(t)|Ft−1)
(i)

≥ P(A′t = a,Eca(t), E1(t)|Ft−1)

= P(A′t = a,Eca(t)|Ft−1)P(E1(t).|Ft−1) (40)

Inequality (i) holds because {A′t = a,Eca(t), E1(t)} ⊆ {At = 1, Eca(t), E1(t)}. The equality is a consequence of the
conditional independence of E1(t) and {A′t = a,Eca(t)} (conditioned on Ft−1). 6

6The conditional independence property holds for all of our sampling mechanisms because the sample distributions for the two distinct
arms (a, 1) are always conditionally independent on Ft−1
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Assuming P(E1(t)|Ft−1) > 0 and7 putting inequalities 39 and 40 together gives the following upper bound for P(At =
a,Eca(t)|Ft−1):

P(At = a,Eca(t)|Ft−1) ≤ P(At = 1, Eca(t)|Ft−1)

(
1− P(E1(t)|Ft−1)

P(E1(t)|Ft−1)

)
.

Letting P (E1(t)|Ft−1) := p1,T1(t) and noting that{At = 1, Eca(t)} ⊆ {At = 1} :

P(At = a,Eca(t)|Ft−1) ≤ P(At = 1|Ft−1)

(
1

p1,T1(t)
− 1

)
. (41)

Now, we use this to give an upper bound on the term of interest:

E

[
T∑
t=1

I(At = a,Eca(t))

]
(i)
= E

[
T∑
t=1

E [I (At = a,Eca(t)) |Ft−1]

]
(ii)
= E

[
T∑
t=1

P (At = a,Eca(t)|Ft−1)

]
(iii)

≤ E

[
T∑
t=1

P(At = 1|Ft−1)

(
1

p1,T1(t)
− 1

)]
(iv)
= E

[
T∑
t=1

E [I(At = 1)|Ft−1]

(
1

p1,T1(t)
− 1

)]
(v)
= E

[
T∑
t=1

I(At = 1)

(
1

p1,T1(t)
− 1

)]
(vi)

≤ E

[
T−1∑
s=1

1

p1,s
− 1

]
.

Here the equality (i) is a consequence of the tower property, and equality (ii) by noting that E [I (At = a,Eca(t)) |Ft−1] =
P (At = a,Eca(t)|Ft−1). Inequality (iii) follows by from Equation 41, and equality (iv) follows by definition. Finally,
equality (v) follows by the tower property and the last line each the fact that T1(t) = s and At = 1 can only happen once
for every s = 1, ..., T . This completes the proof.

Given the bound on (I) from (3), we now present the tighter of two bounds on (II) which is used to provide regret
guarantees for Thompson sampling with exact samples from the posteriors.

Lemma 14 (Bounding II - exact posterior). For a sub-optimal arm a ∈ A, we have that:

II = E

[
T∑
t=1

I(At = a,Ea(t))

]
≤ 1 + E

[
T∑
s=1

I
(
pa,s >

1

T

)]
.

where pa,s = P(ra,t(s) > r̄1 − ε|Ft−1), for some ε > 0.

Proof. The upper bound for term II in (3) follows the exact same proof as in (Agrawal and Goyal, 2012), and we recreate it
for completeness below. Let T = {t : pa,Ta(t) >

1
T }, then:

7In all the cases we consider, including approximate sampling schemes, this property holds. In that case, since the Gaussian noise in
the Langevin diffusion ensures all sets of the form (a, b) have nonzero probability mass.
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E

[
T∑
t=1

I(At = a,Ea(t))

]
≤ E

[∑
t∈T

I(At = a)

]
︸ ︷︷ ︸

I

+E

[∑
t/∈T

I(Ea(t))

]
︸ ︷︷ ︸

II

(42)

By definition, term I in (42) satisfies:∑
t∈T

I(At = a) =
∑
t∈T

I
(
At = a, pa,Ta(t) >

1

T

)
≤

T∑
s=1

I
(
pa,s >

1

T

)

To address term II in (42), we note that, by definition: E[I(Ea(t))|Ft−1] = pa,Ta(t). Therefore, using the definition of the
set of times T , we can construct this simple upper bound:

E

[∑
t/∈T

I(Ea(t))

]
= E

[∑
t/∈T

E [I (Ea(t)) |Ft−1]

]

= E

[∑
t/∈T

pa,t

]

≤
∑
t/∈T

1

T

≤ 1

Using the two upper bounds for terms I and II in (42) gives out desired result:

E

[
T∑
t=1

I(At = a,Ea(t))

]
≤ 1 + E

[
T∑
s=1

I
(
pa,s >

1

T

)]

E.1. Regret of Exact Thompson Sampling

We now present two technical lemmas for use in the proof of the regret of exact Thompson sampling. The first technical
lemma, provides a lower bound on the probability of an arm begin optimistic in terms of the quality of the prior:
Lemma 15. Suppose the likelihood and reward distributions satisfy Assumptions 1-3, then for all n = 1, ..., T and
γ1 =

ν1m
2
1

8d1L3
1

:

E
[

1

p1,n

]
≤ 64

√
L1

m1
B1

Proof. Throughout this proof we drop the dependence on the arm to simplify notation (unless necessary). We first analyze
‖θ∗ − θu‖2 where θu is the mode of the posterior of arm 1 after having received n samples from the arm which satisfies:

1

n
∇ log π1(θu) +∇F1,n(θu) = 0

Given this definition, and letting θ̂ = θu − θ∗ we have that:

θ̂T (∇Fn(θ∗)−∇Fn(θu))− 1

n
θ̂T∇ log π(θu) = θ̂T∇Fn(θ∗)

m‖θ̂‖2 ≤ m

2
‖θ̂‖2 +

1

2m
‖∇Fn(θ∗)‖2 +

logB1

n

‖θ̂‖2 ≤ 1

m2
‖∇Fn(θ∗)‖2 +

2 logB1

mn
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Noting that |aT (θ∗ − θu)| ≤
√
A2‖θ̂‖2 we find that:

p1,s = Pr
(
αT (θ − θu) ≥ αT (θ∗ − θu)− ε

)
≥ Pr

αT (θ − θu) ≥
√

2A2 logB1

nm
+
A2

m2
‖∇Fn(θ∗)‖2︸ ︷︷ ︸

=t

 ,

where we note that ‖Fn(θ∗)‖ in Proposition 1 is a 1-dimensional dLa√
nν

subgaussian random variable.

Now, since we know that the posterior over θ is γ(n+ 1)L-smooth and γmn-strongly log concave, with mode θu, we know
from e.g (Saumard and Wellner, 2014) Theorem 3.8 that the marginal density of αT θ is γ(n+1)L

A2 -smooth and γmn
A2 -strongly

log-concave.

Thus we have that:

Pr
(
αT (θ − θu) ≥ t

)
≥
√

nm

(n+ 1)L
Pr(Z ≥ t)

where Z ∼ N
(

0, A2

γ(n+1)L

)
.

Now using a lower bound on the cumulative density function of a Gaussian random variable, we find that, for σ2 = A2

γ(n+1)L :

p1,s ≥
√

nm

2π(n+ 1)L


σt

t2+σ2 e
− t2

2σ2 : t > A√
γ(n+1)L

0.34 : t ≤ A√
γ(n+1)L

Thus we have that:

1

p1,s
≤
√

2π(n+ 1)L

nm


t2+σ2

σt e
t2

2σ2 : t > A√
γ(n+1)L

1
0.34 : t ≤ A√

γ(n+1)L

≤
√

2π(n+ 1)L

nm


(
t
σ + 1

)
e
t2

2σ2 : t > A√
γ(n+1)L

3 : t ≤ A√
γ(n+1)L

Taking the expectation of both sides with respect to the samples X1, ..., Xn, letting κ = L/m, and using the fact that
n+1
n ≤ 2 for n ≥ 1 we find that:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκE


√

2A2 logB1

nm + A2

m2 ‖∇Fn(θ∗)‖2

σ
+ 1

 e
t2

2σ2



Noting that
√

2A2 logB1

nm + A2

m2 ‖∇Fn(θ∗)T ‖2 ≤ A
√

2 logB1

nm + A
m‖∇Fn(θ∗)‖, and letting Y = ‖∇Fn(θ∗)‖ to simplify

notation, this further simplifies:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκE

[(√
4γκ logB1 +

A

mσ
Y

)
e2γκ logB1+

(n+1)γL

2m2 Y 2

]
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Via Cauchy-Schwartz we can further develop this upper bound and find that:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκe2γκ logB1

(√
4γκ logB1E

[
e

(n+1)γL

2m2 Y 2
]

+
A

mσ

√
E [Y 2]

√
E
[
e

(n+1)γL

m2 Y 2
])

Since Y is sub-Gaussian, Y 2 is sub-exponential such that:

E
[
eλY

2
]
≤ e and E

[
Y 2
]
≤ 2

dL2

νn

for λ < nν
4dL2 . Therefore if :

γ =
νm2

8dL3

Simplifying the bound further gives:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκe2γκ logB1

(√
4γκ logB1e+ 2

√
eγ(n+ 1)L

m2

dL2

νn

)

≤ 6
√
πκ+ 2

√
πκe

logB1
4 (

√
logB1

2
e+ 2

√
e)

where we have used the fact that κ, d ≥ 1 and the fact that we can assume without loss of generality that L/ν ≥ 1. Thus,
this bound simplifies to:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκe2γκ logB1

(√
4γκ logB1e+ 2

√
eγ(n+ 1)L

m2

dL2

νn

)

≤ 2
√
πκ (B1)

1
4

(√
logB1

2
e+ 7

)
≤ 4
√
πκ (B1)

1
4

(√
logB1 + 4

)
≤ 64

√
κB1

where we used the fact that x1/4(
√

log x+ 4) ≤ 8
√
x for x ≥ 1 and

√
π < 2 to simplify our bound.

The last technical lemma upper bounds the two terms defined in Lemma 1.

Lemma 16. Suppose the likelihood, true reward distributions, and priors satisfy Assumptions 1-3, then for γa =
νam

2
a

8daL3
a

:

T−1∑
s=1

E
[

1

p1,s
− 1

]
≤ 64

√
L1

m1
B1

⌈
8eA2

1

m∆2
a

(D1 + 4σ1 log 2)

⌉
+ 1 (43)

T∑
s=1

E
[
I
(
pa,s >

1

T

)]
≤ 8eA2

a

m∆2
a

(Da + 2σa log(T )) (44)

Where for a ∈ A, Da is given by:

Da = logBa +
8d2
aL

3
a

m2
aνa

σa =
256daL

3
a

m2
aνa

+
8daL

2
a

maνa
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Proof. We begin by showing that (43) holds. To do so, we first note that, by definition p1,s satisfies:

p1,s = P(r1,t(s) > r̄1 − ε|Ft−1) (45)
= 1− P(r1,t(s)− r̄1 < −ε|Ft−1) (46)
≥ 1− P(|r1,t(s)− r̄1| > ε|Ft−1) (47)

≥ 1− P
θ∼µ(s)

1

(
‖θ − θ∗‖ > ε

A1

)
(48)

where the last inequality follows from the fact that r1,t(s) and r̄1 are Aa-Lipschitz functions of θ ∼ µ(s)
1 and θ∗ respectively.

We then use the fact that the posterior distribution P
θ∼µ(s)

1
satisfies the concentration bound from Theorem 1 for δ ∈

(0, e−1/2). Therefore, we have that:

P
θ∼µ(s)

1

(
‖θ − θ∗‖ > ε

A1

)
≤ exp

(
− 1

2σ1

(
mnε2

2eA2
1

−D1

))
, (49)

where we use the constant D1 and σ1 defined in the proof of Theorem 1 to simplify notation. We remark that this bound is
not useful unless:

n >
2eA2

1

ε2m
D1.

Thus, choosing ε = (r̄1 − r̄a)/2 = ∆a/2 and ` as:

` =

⌈
8eA2

1

m∆2
a

(D1 + 2σ1 log 2)

⌉
.

we proceed as follows:

T−1∑
s=`

E
[

1

p1,s
− 1

]
≤
T−1∑
s=0

1

1− 1
2δ(s)

− 1

≤
∫ ∞
s=1

1

1− 1
2δ(s)

− 1ds

where:
1

2
δ(s) =

1

2
exp

(
− 1

2σ1

(
mε2

2eA2
1

s

))
≤ e−1/2,∀s ≥ `

and the first inequality follows from our choice of ` and the second by upper bounding the sum by an integral. To finish, we
write δ(s) = exp(−c ∗ s), and solve the integral to find that :∫ ∞

s=1

1

1− 1
2δ(s)

− 1ds =
log 2− log (2ec − 1)

c
+ 1 ≤ log 2

c
+ 1.

plugging in for c gives:

T−1∑
s=1

E
[

1

p1,s
− 1

]
≤

`−1∑
s=1

E
[

1

p1,s
− 1

]
+

8eA2
1

m∆2
a

2σ1 log 2 + 1

≤ 64

√
L1

m1
B1

⌈
8eA2

1

m∆2
a

(D1 + 4σ1 log 2)

⌉
+ 1
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To show that (44) holds, we do a similar derivation as in (48):

T∑
s=1

E
[
I
(
pa,s >

1

T

)]
=

T∑
s=1

E
[
I
(
P(ra,t(s)− r̄a > ∆a − ε|Ft−1) >

1

T

)]

=

T∑
s=1

E
[
I
(
P(ra,t(s)− r̄a >

∆a

2
|Ft−1) >

1

T

)]

≤
T∑
s=1

E
[
I
(
P
(
|ra,t(s)− r̄a| >

∆a

2

∣∣∣∣Ft−1

)
>

1

T

)]

≤
T∑
s=1

E
[
I
(
P
θ∼µ(s)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
>

1

T

)]
.

Using the posterior concentration result from Theorem 1 we upper bound the number of pulls n̄ of arm a such that for all
n ≥ n̄:

P
θ∼µ(n)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
≤ 1

T
.

Since the posterior for arm a after n pulls of arm a has the same form as in (49), and 1/T ≤ e−0.5 we can choose n̄ as:

n̄ =
8eA2

a

m∆2
a

(Da + 2σa log(T )).

This completes the proof.

Given these lemma’s the proof of Theorem 2 is straightforwards. For clarity, we restate the theorem below:

Theorem E.1. When the likelihood and true reward distributions satisfy Assumptions 1-3 and γa =
νam

2
a

8daL3
a

we have that the
expected regret after T > 0 rounds of Thompson sampling with exact sampling satisfies:

E[R(T )] ≤
∑
a>1

CA2
a

ma∆a

(
logBa + d2

aκ
3
a + daκ

3
a log(T )

)
+
√
κ1B1

CA2
1

m1∆a

(
1 + logB1 + d2

1κ
3
1

)
+ ∆a

Where C is a universal constant independent of problem-dependent parameters.

Proof. We invoke Lemmas 13 and 14, to find that:

E [Ta(T )] ≤
T−1∑
s=1

E
[

1

p1,s
− 1

]
︸ ︷︷ ︸

(I)

+

T∑
s=1

E
[
I
(

1− pa,s >
1

T

)]
︸ ︷︷ ︸

(II)

(50)

Now, invoking Lemma 16, we use the upper bounds for terms (I) and (II) in the regret decomposition and expanding Da

and D1 to give that:
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E[R(T )] ≤
∑
a>1

8eA2
a

ma∆a

(
logBa + 8daκ

3
a (da + 66 log(T ))

)
+
√
κ1B1

512eA2
a

m1∆2
a

(
1 + logB1 + 8d1κ

3
1 (d1 + 132 log(2))

)
+ ∆a

≤
∑
a>1

CA2
a

ma∆a

(
logBa + d2

aκ
3
a + daκ

3
a log(T )

)
+
√
κ1B1

CA2
1

m1∆a

(
1 + logB1 + d2

1κ
3
1

)
+ ∆a

E.2. Regret of Approximate Sampling

For the proof of Theorem 4, we proceed similarly as for the proof of Theorem 2, but require another intermediate lemma to
deal with the fact that the samples from the arms are no longer conditionally independent given the filtration (due to the fact
that we use the last sample as the initialization of the filtration). To do so, we first define the event:

Za(T ) = ∩T−1
t=1 Za,t,

where:

Za,t =

{
‖θa,t − θ∗a‖ <

√
18e

nma

(
da + logBa + 2

(
16 +

4dL2
a

νama

)
log 1/δ1

) 1
2

}
,

Lemma 17. Suppose the likelihood and reward distributions satisfy Assumptions 1-4, Then the regret of a Thompson
sampling algorithm with approximate sampling can be decomposed as:

E[R(T )] ≤
∑
a>1

∆aE

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ 2∆a (51)

Proof. We begin by conditioning on the event Za(T ) ∩ Z1(T ) for each a ∈ A, where we note that by construction
pZ = P((Za(T )c ∪ Z1(T )c)) ≤ P(Z1(T )c) + P(Za(T )c) = 2Tδ1) (since via Lemma 3, the probability of each event in
Za(T )c and Z1(T )c is less than δ1).

Therefore, we must have that:

E[Ta(T )] ≤ E

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ E

[
Ta(T )

∣∣∣∣∣ (Za(T )c ∪ Z1(T )c)

]
pZ

≤ E

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ 2Tδ3E

[
Ta(T )

∣∣∣∣∣ (Za(T )c ∪ Z1(T )c)

]

≤ E

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ 2δ3T

2,

where in the first line we use the fact that 1− pZ ≤ 1 and in the last line we used the fact that Ta(T ) is trivially less than T .
Choosing δ1 = 1/T 2 ≤ e−1/2 completes the proof.

With this decomposition in hand, we can now proceed as in Lemma 15 to provide anti-concentration guarantees for the
approximate posteriors.
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Lemma 18. Suppose the likelihood and true reward distributions satisfy Assumptions 1-4: then if γ1 = νm2

32(16Lνm+4dL3) ,
for all n = 1, ..., T all samples from the the (stochastic gradient) ULA method with the hyperparameters and runtime as
described in Theorem 3 satisfy:

E
[

1

p1,n

]
≤ 27

√
B1

Proof. We begin by using the last step of our Langevin Dynamics and show that it exhibits the desired anti-concentration
properties. In particular, we know that θ1,t ∼ N (θ1,Nh,

1
γ I), such that:

p1,s = Pr
(
αT (θ − θ1,Nh) ≥ αT (θ∗ − θ1,Nh)− ε

)
≥ Pr

Z ≥ A‖θ1,Nh − θ∗‖︸ ︷︷ ︸
:=t


where Z ∼ N (0, A

2

nLγ I) by construction.

Now using a lower bound on the cumulative density function of a Gaussian random variable, we find that, for σ2 = A2

nLγ :

p1,s ≥
√

1

2π

 σt
t2+σ2 e

− t2

2σ2 : t > A√
nLγ

0.34 : t ≤ A√
nLγ

Thus we have that:

1

p1,s
≤
√

2π


(
t
σ + 1

)
e
t2

2σ2 : t > A√
nLγ

3 : t ≤ A√
nLγ

Taking the expectation of both sides with respect to the samples X1, ..., Xn, we find that:

E
[

1

p1,s

]
≤ 3
√

2π +
√

2πE
[(√

nLγ‖θ1,Nh − θ∗‖+ 1
)
enLγ‖θ1,Nh−θ∗‖

2
]

≤ 3
√

2π +
√

2πnLγ
√
E [‖θ1,Nh − θ∗‖2]

√
E
[
enLγ‖θ1,Nh−θ∗‖

2
]

+
√

2πE
[
e
nLγ
2 ‖θ1,Nh−θ∗‖

2
]

Now, we remark that, from Theorems 5 and 6, we have that for both approximate sampling schemes:

E
[
‖θ1,Nh − θ∗‖2

]
≤ 18

mn

(
d+ logB + 32 +

8dL2

νm

)
Further, we note that ‖θ1,Nh − θ∗‖2 is a sub-exponential random variable. To see this, we analyze its moment generating
function:

E[enLγ‖θ1,Nh−θ
∗‖2 ] = 1 +

∞∑
i=1

E
[

(nLγ)i‖θ1,Nh − θ∗‖2i

i!

]
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Borrowing the notation from the proof of Theorem 1, we know that

E
[
‖θ1,Nh − θ∗‖2p

]
≤ 3

(
2D

mn
+

4σp

mn

)p
where:

D = d+ logB and σ = 16 +
4dL2

νm

Plugging this in above gives:

E[eγ‖θ1,Nh−θ∗‖
2

] ≤ 1 + 3

∞∑
i=1

(
2nLγD+4nLγσi

mn

)i
i!

≤ 1 +
3

2

∞∑
i=1

1

i!

(
4nLγD

mn

)i
+

3

2

∞∑
i=1

1

i!

(
8nLγσi

nm

)i
≤ 3

2
e

4nLγD
mn +

3

2

∞∑
i=1

(
8nLγeσ

nm

)i
where, we have use the identities (x+ y)i ≤ 2i−1(xi + yi) for i ≥ 1, and i! ≥ (i/e)i to simplify the bound.

If γ ≤ m
32Lσ , then we have that:

E[enLγ‖θ1,Nh−θ∗‖
2

] ≤ 3

2

(
e

4nLγD
m + 2.5

)
which, together with the upper bound on γ gives:

E
[

1

p1,s

]
≤ 3
√

2π +
3

2

√
16πnLγ

m
(D + 2σ)

(
e

2nLγD
m + 2

)
+

3

2

√
2π
(
e

4nLγD
m + 7.5

)
≤ 3
√

2π +
3

2

(√
π(d+ logB)

2σ
+
√
π

)(
e
d+logB

16σ + 2
)

+
3

2

√
2π
(
e
d+logB

8σ + 2.5
)

where we used the sub-additivity of
√
x, the fact that

√
3
2 <

3
2 , sqrt2.5 < 2 and substituted in the values for σ and D to

simplify the boung. Finally since L
2

mν > 1, we find that σ > max(4d, 1), allowing us to simplify the bound further to:

E
[

1

p1,s

]
≤ 3
√

2π +
3

2

√
π

8
+

logB

2

(
2B1/16 + 2

)
+

3

2

√
2π
(

2B1/8 + 2.5
)

≤ 18 +
3√
2

(
B1/16 +B1/16

√
logB + logB + 2B1/8

)
︸ ︷︷ ︸

I

≤ 18 + 12/
√

2
√
B ≤ 27

√
B

where to simplify the bound we used the fact that
√
π < 2 and I ≤ 4

√
B and that 18 + 12/

√
2x ≤ 27x for x ≥ 1.

With this lemma in hand, we can now proceed as in Lemma 16 to finalize the proof of Theorem 4.
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Lemma 19. Suppose the likelihood, true reward distributions, and priors satisfy Assumptions 1-4, the samples are generated
from the sampling schemes described in Theorem 6 and Theorem 5, and γa = ma

32Laσa
then:

T−1∑
s=1

E
[

1

p̂1,s
− 1

∣∣∣∣Z1(T )

]
≤ 27

√
B1

⌈
144eA2

1

m∆2
a

(d1 + logB1 + 4σ1 log T + 12d1σ1 log 2)

⌉
+ 1 (52)

T∑
s=1

E
[
I
(
p̂a,s >

1

T

) ∣∣∣∣Za(T )

]
≤ 144eA2

a

m∆2
a

(da + logBa + 10daσa log(T )), (53)

where p̂a,s is the distribution of a sample from the approximate posterior µ̂a after s samples have been collected, and for
a ∈ A, σa is given by:

σa = 16 +
4daL

2
a

maνa
.

Proof. We begin by showing that (52) holds. To do so, we proceed identically as in the proof of Lemma 16 to note that, by
definition p̂1,s satisfies:

p̂1,s = P(r1,t(s) > r̄1 − ε|Ft−1) (54)
= 1− P(r1,t(s)− r̄1 < −ε|Ft−1) (55)
≥ 1− P(|r1,t(s)− r̄1| > ε|Ft−1) (56)

≥ 1− P
θ∼µ̂(s)

1

(
‖θ − θ∗‖ > ε

A1

)
, (57)

where the last inequality follows from the fact that r1,t(s) and r̄1 are Aa-Lipschitz functions of θ ∼ µ(s)
1 and θ∗ respectively.

We then use the fact that conditioned on Z1(T ), the approximate posterior distribution P
θ∼µ̂(s)

1
satisfies the identical

concentration bounds from Lemmas 12 and Lemma 11. Substituting in the assumed value of γ1, and simplifying, we have
that the distribution of the samples conditioned on Z1(T ) satisfy:

P
θ1,t∼µ̄(s)

1 [γ1]

(
‖θ1,t − θ∗1‖2 >

√
36e

m1n
(d1 + logB1 + 4σ1 log T + 6d1σ1 log 1/δ2)

∣∣∣∣Zn−1

)
< δ2.,

Equivalently, we have that:

P
θ∼µ̄(s)

1
[γ1]

(
‖θ − θ∗‖ > ε

A1

)
≤ exp

(
− 1

6d1σ1

(
m1nε

2

36eA2
1

− D̄1

))
, (58)

where we define D̄1 = d1 + logB1 + 4σ log T , to simplify notation. We remark that this bound is not useful unless:

n >
16eA2

1

ε2m1
D̄1.

Thus, choosing ε = (r̄1 − r̄a)/2 = ∆a/2, we can choose ` as:

` =

⌈
144eA2

1

m∆2
a

(D̄1 + 6d1σ1 log 2)

⌉
.

With this choice of `, we proceed exactly as in the proof of Lemma 16 to find that :

T−1∑
s=1

E
[

1

p̂1,s
− 1

∣∣∣∣Z1(T )

]
≤ 27

√
B1`+

T−1∑
s=`

E
[

1

p1,s
− 1

∣∣∣∣Z1(T )

]
≤ 27

√
B1

⌈
144eA2

1

m∆2
a

(D̄1 + 12d1σ1 log 2)

⌉
+ 1,



On Thompson Sampling with Langevin Algorithms

where we used the upper bound from Lemma 18 to bound the first ` terms in the first inequality.

To show that (53) holds, we use a similar derivation as in (57):

T∑
s=1

E
[
I
(
pa,s >

1

T

) ∣∣∣∣Za(T )

]
≤

T∑
s=1

E
[
I
(
P
θ∼µ̄(s)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
>

1

T

) ∣∣∣∣Za(T )

]

Since on the event Za(T ), the posterior concentration result from Lemmas 12 and Lemma 11 holds, it remains to upper
bound the number of pulls n̄ of arm a such that for all n ≥ n̄:

P
θ∼µ̄(n)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
≤ 1

T
.

Since the posterior for arm a after n pulls of arm a has the same form as in (49), we can choose n̄ as:

n̄ =
144eA2

a

m∆2
a

(D̄a + 6daσa log(T )).

Using the fact that da >≥ 1 to simplify the bound completes the proof.

Putting the results of Lemmas 17 and 19 together gives us our final theorem:

Theorem E.2 (Regret of Thompson sampling with (stochastic gradient) Langevin algorithm). When the likelihood and true
reward distributions satisfy Assumptions 1-4: we have that the expected regret after T > 0 rounds of Thompson sampling
with the (stochastic gradient) ULA method with the hyper-parameters and runtime as described in Lemmas 11 (and 12
respectively), and γa =

νam
2
a

32(16Laνama+4daL3
a) = O

(
1

daκ3
a

)
satisfies:

E[R(T )] ≤
∑
a>1

CA2
a

ma∆a

(
da + logBa + d2

aκ
2
a log T

)
+
C
√
B1A

2
1

m1∆a

(
1 + logB1 + d1κ

2
1 log T + d2

1κ
2
1

)
+ 3∆a.

where C is a universal constant that is independent of problem dependent parameters and κa = La/ma.

Proof. To begin, we invoke Lemma 17, which shows that we only need to bound the number of times a suboptimal arm
a ∈ A is chosen on the ‘nice’ event Z1(T ) ∩ Za(T ) where the gradient of the log likelihood has concentrated and the
approximate samples have been in high probability regions of the posteriors. We then invoke Lemmas 13 and 14, to find that:

E

[
Ta(T )

∣∣∣∣∣Z1(T ) ∩ Za(T )

]
≤ 1 + ` (59)

+

T−1∑
s=`

E
[

1

p1,s
− 1

∣∣∣∣Z1(T )

]
︸ ︷︷ ︸

(I)

+

T∑
s=1

E
[
I
(

1− pa,s >
1

T

) ∣∣∣∣Za(T )

]
︸ ︷︷ ︸

(II)

(60)

Now, invoking Lemma 16, we use the upper bounds for terms (I) and (II) in the regret decomposition, use our choice of
both δ1 and δ3 = 1/T 2, expanding Da and D1, and use the fact that dxe ≤ x+ 1 to give that:
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E[R(T )] ≤
∑
a>1

144eA2
a

ma∆a

(
da + logBa + 10da

(
16 +

4daL
2
a

νama

)
log(T )

)
+ 27

√
B1

144eA2
1

m1∆a

(
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(
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2
a

ν1m1

)
(log T + 3d1 log 2)

)
+ 3∆a.

≤
∑
a>1

CA2
a

ma∆a

(
da + logBa + d2

aκ
2
a log T

)
+
C
√
B1A

2
1

m1∆a

(
1 + logB1 + d1κ

2
1 log T + d2

1κ
2
1

)
+ 3∆a.

Using the fact that κa ≥ 1 and that d1 ≥ 1 allows us to simplify to get our desired result.

F. Numerical Experiments
We empirically corroborate our theoretical results with numerical experiments of approximate Thompson sampling in
log-concave multi-armed bandit instances. We benchmark against both UCB and exact Thompson sampling across three
different multi-armed bandit instances, where in the first instance, the priors reflect correct ordering of the mean rewards for
all arms; in the second instance, the priors are agnostic of the ordering; in the third instance, the priors reflects the complete
opposite ordering. See Appendix G for details of the experimental settings.

As suggested in our theoretical analysis in Section 4, we use a constant number of steps for both ULA and SGLD (with
constant number of data points in the stochastic gradient evaluation) to generate samples from the approximate posteriors.
The regret of the three algorithms averaged across 100 runs is displayed in Figure 1, where we see approximate Thompson
sampling with samples generated by ULA and SGLD perform competitively against both exact Thompson sampling and
UCB across all three instances.

Figure 1. Performance of exact and approximate Thompson sampling vs UCB on Gaussian bandits with (a) “good priors” (priors reflecting
the correct ordering of the arms’ means), (b) the same priors on all the arms’ means, and (c) “bad priors” (priors reflecting the exact
opposite ordering of the arms’ means). The shaded regions represent the 95% confidence interval around the mean regret across 100 runs
of the algorithm.

We observe significant performance gains from the (approximate) Thompson sampling approach over the deterministic UCB
algorithm when the priors are suggestive or even non-informative of the appealing arms. When the priors are adversarial to
the algorithm, the UCB algorithm outperforms the Thompson sampling approach as expected. (This case corresponds to the
constant Ba in the Theorems 2 and 4 being large). Also as the theory predicts, we observe little difference between the exact
and the approximate Thompson sampling methods in terms of the regret. If we zoom in and scrutinize further, we can see
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that SGLD slightly outperforms the exact Thompson sampling method in the adversarial prior case. This might be due to the
added stochasticity from the approximate sampling techniques, which improves the robustness against bad priors.

G. Details in the Numerical Experiments
We benchmark the effectiveness of approximate Thompson sampling against both UCB and exact Thompson sampling across
three different Gaussian multi-armed bandit instances with 10 arms. We remark that the use of Gaussian bandit instances is
due to the fact that the closed form for the posteriors allows for us to properly benchmark against exact Thompson sampling
and UCB, though our theory applies to a broader family of prior/likelihood pairs.

In all three instances we keep the reward distributions for each arm fixed such that their means are evenly spaced from 0 to
10 (r̄1 = 1, r̄2 = 2, and so on), and their variances are all 1. In each instance we use different priors over the means of the
arms to analyze whether the approximate Thompson sampling algorithms preserve the performance of exact Thompson
sampling. In the first instance, the priors reflect the correct orderings of the means. We use Gaussian priors with variance 4,
and means evenly spaced between 5 and 10 such that Eπ1

[X] = 5, and Eπ10
[X] = 10. In the second instance, the prior for

each arm is a Gaussian with mean 7.5 and variance 4. Finally, the third instance is ‘adversarial’ in the sense that the priors
reflects the complete opposite ordering of the means. In particular, the priors are still Gaussians such that their means are
evenly spaced between 5 and 10 with variance 4, but this time Eπ1

[X] = 10, and Eπ10
[X] = 5.

As suggested in our theoretical analysis in Section 4, we use a constant number of steps for both ULA and SGLD to generate
samples from the approximate posteriors. In particular, for ULA, we take N = 100 and double that number for SGLD
N = 200. We also choose the stepsize for both algorithms to be 1

32Ta(t) . For SGLD, we use a batch size of min(Ta(t), 32).
Further, since da = κa = 1 since this is a Gaussian family, we take the scaling to be γa = 1. The regret is calculated as∑T
t=1 r̄10 − r̄At for the three algorithms and is averaged across 100 runs. Finally, for the implementation of UCB, we

used the time-horizon tuned UCB (Lattimore and Szepesvári, 2020) and the known variance, σ2 of the arms in the upper
confidence bounds (to maintain a level playing field between algorithms):

UCBa(t) =
1

Ta(t)

t−1∑
i=1

XAiI {Ai = a}+

√
4σ2 log 2T

Ta(t)
.


