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Abstract

Consequential decision-making incentivizes in-
dividuals to strategically adapt their behavior to
the specifics of the decision rule. While a long
line of work has viewed strategic adaptation as
gaming and attempted to mitigate its effects, re-
cent work has instead sought to design classifiers
that incentivize individuals to improve a desired
quality. Key to both accounts is a cost function
that dictates which adaptations are rational to un-
dertake. In this work, we develop a causal frame-
work for strategic adaptation. Our causal perspec-
tive clearly distinguishes between gaming and
improvement and reveals an important obstacle
to incentive design. We prove any procedure for
designing classifiers that incentivize improvement
must inevitably solve a non-trivial causal infer-
ence problem. We show a similar result holds
for designing cost functions that satisfy the re-
quirements of previous work. With the benefit
of hindsight, our results show much of the prior
work on strategic classification is causal modeling
in disguise.

1. Introduction
Individuals faced with consequential decisions about them
often use knowledge of the decision rule to strategically
adapt towards achieving a desirable outcome. Much work
in computer science views such strategic adaptation as
adversarial behavior (Dalvi et al., 2004; Brückner et al.,
2012), manipulation, or gaming (Hardt et al., 2016; Dong
et al., 2018). More recent work rightfully recognizes
that adaptation can also correspond to attempts at self-
improvement (Bambauer & Zarsky, 2018; Kleinberg &
Raghavan, 2019). Rather than seek classifiers that are ro-
bust to gaming, these works suggest to design classifiers
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that explicitly incentive improvement on some target mea-
sure (Kleinberg & Raghavan, 2019; Alon et al., 2020; Kha-
jehnejad et al., 2019; Haghtalab et al., 2020).

Incentivizing improvement requires a clear distinction be-
tween gaming and improvement. While this distinction
may be intuitive in some cases, in others, it is subtle. Do
employer rewards for punctuality improve productivity? It
sounds plausible, but empirical evidence suggests other-
wise (Gubler et al., 2016). Indeed, the literature is replete
with examples of failed incentive schemes (Oates & Schwab,
2015; Rich & Larson, 1984; Belot & Schröder, 2016).

Our contributions in this work are two-fold. First, we pro-
vide the missing formal distinction between gaming and
improvement. This distinction is a corollary of a compre-
hensive causal framework for strategic adaptation that we
develop. Second, we give a formal reason why incentive
design is so difficult. Specifically, we prove any success-
ful attempt to incentivize improvement must have solved a
non-trivial causal inference problem along the way.

1.1. Causal Framework

We conceptualize individual adaptation as performing an
intervention in a causal model that includes all relevant fea-
tures X , a predictor Ŷ , as well as the target variable Y . We
then characterize gaming and improvement by reasoning
about how the corresponding intervention affects the pre-
dictor Ŷ and the target variable Y . This is illustrated in
Figure 1.

We combine the causal model with an agent-model that
describes how individuals with a given setting of features
respond to a classification rule. For example, it is common
in strategic classification to model agents as being rational
with respect to a cost function that quantifies the cost of
feature changes.

Combining the causal model and agent model, we can sepa-
rate improvement from gaming. Informally speaking, im-
provement corresponds to the case where the agent response
to the predictor causes a positive change in the target vari-
able Y . Gaming corresponds to the case where the agent
response causes a change in the prediction Ŷ but not the
underlying target variable Y . Making this intuition precise,
however, requires the language of counterfactuals of the
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form: What value would the variable Y have taken had the
individual changed her features to X ′ given that her original
features were X?

If we think of the predictor as a treatment, we can analo-
gize our notion of improvement with the established causal
quantity known as effect of treatment on the treated.

1.2. Inevitability of Causal Analysis

Viewed through this causal lens, only adaptations on causal
variables can lead to improvement. Therefore, any mecha-
nism for incentivizing improvement intuitively must capture
some knowledge of the causal relationship between the fea-
tures and the target measure. We formalize this intuition
and prove causal modeling is unavoidable in incentive de-
sign. Specifically, we establish a computationally efficient
reduction from discovering the causal structure relating the
variables (sometimes called causal graph discovery) to a
sequence of incentive design problems. In other words, de-
signing classifiers to incentivize improvement is as hard
as causal discovery. Previous work in strategic classifica-
tion sidesteps this difficulty either by assuming the decision
maker already has resolved this discovery step (Kleinberg
& Raghavan, 2019; Alon et al., 2020), or by implicitly as-
suming all the features are causal for the label (Haghtalab
et al., 2020).

Beyond incentivizing improvement, a number of recent
works model individuals as acting in accordance with well-
behaved cost functions that capture the difficulty of chang-
ing the target variable. We show constructing such outcome-
monotonic cost functions also requires modeling the causal
structure relating the variables, and we give a similar reduc-
tion from designing outcome-monotonic cost functions to
causal discovery.

In conclusion, our contributions show that—with the benefit
of hindsight—much work on strategic classification turns
out to be causal modeling in disguise.

1.3. Related Work

This distinction between causal and non-causal manipula-
tion in a classification setting is intuitive, and such consider-
ations were present in early work on statistical risk assess-
ment in lending (Hand et al., 1997). Although they do not
explicitly use the language of causality, legal scholars Bam-
bauer & Zarsky (2018) give a qualitatively equivalent dis-
tinction between gaming and improvement. While we fo-
cus on the incentives classification creates for individuals,
Everitt et al. (2019) introduce a causal framework to study
the incentives classification creates for decision-makers, e.g.
which features the decision-maker is incentivized to use.

Numerous papers in strategic classification (Brückner et al.,
2012; Dalvi et al., 2004; Hardt et al., 2016; Dong et al.,
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Figure 1. Illustration of the causal framework for strategic adapta-
tion. Adaptation is modeled as interventions in a counterfactual
causal graph, conditioned on the individual’s initial features X .
Gaming corresponds to interventions that change the classification
Ŷ , but do not change the true label Y . Improvement corresponds
to interventions that change both the classification Ŷ and the true
label Y . Incentivizing improvement requires inducing agents to
intervene on causal features that can change the label Y rather than
non-causal features. Distinguishing between these two categories
of features in general requires causal analysis.

2018) focus on game-theoretic frameworks for preventing
gaming. These frameworks form the basis of our agent-
model, and Milli et al. (2019); Braverman & Garg (2020);
Khajehnejad et al. (2019) introduce the outcome-monotonic
cost functions we analyze in Section 5. Since these ap-
proaches do not typically distinguish between gaming and
improvement, the resulting classifiers can be unduly conser-
vative, which in turn can lead to undesirable social costs (Hu
et al., 2019; Milli et al., 2019; Braverman & Garg, 2020).

The creation of decision rules with optimal incentives, in-
cluding incentives for improvement, has been long studied
in economics, notably in principle-agent games (Ross, 1973;
Grossman & Hart, 1992). In machine learning, recent work
by Kleinberg & Raghavan (2019) and Alon et al. (2020) stud-
ies the problem of producing a classifier that incentivizes a
given “effort profile”, the amount of desired effort an indi-
vidual puts into certain actions, and assumes the evaluator
knows which forms of agent effort would lead to improve-
ment, which is itself a form of causal knowledge. Haghtalab
et al. (2020) seek to design classifiers that maximize im-
provement across the population, while Khajehnejad et al.
(2019) seek to maximize institutional utility, taking into ac-
count both improvement and gaming. While these works do
not use the language of causality, we demonstrate that these
approaches nonetheless must perform some sort of causal
modeling if they succeed in incentivizing improvement.

In this paper, we primarily consider questions of improve-
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ment or gaming from the perspective of the decision maker.
However, what gets categorized as improvement or gaming
also often reflects a moral judgement—gaming is bad, but
improvement is good. Usually good or bad means good or
bad from the perspective of the system operator. Ziewitz
(2019) analyzes how adaptation comes to be seen as ethical
or unethical through a case study on search engine optimiza-
tion. Burrell et al. (2019) argue that gaming can also be a
form of individual “control” over the decision rule and that
the exercise of control can be legitimate independently of
whether an action is considered gaming or improvement in
our framework.

2. Causal Background
We use the language of structural causal models (Pearl,
2009) as a formal framework for causality. A structural
causal model (SCM) consists of endogenous variables X =
(X1, . . . , Xn), exogenous variables U = (U1, . . . , Un), a
distribution over the exogenous variables, and a set of struc-
tural equations that determine the values of the endogenous
variables. The structural equations can be written

Xi = gi(PAi, Ui), i = 1, . . . , n ,

where gi is an arbitrary function, PAi represents the other
endogenous variables that determine Xi, and Ui represents
exogenous noise due to unmodeled factors.

A structural causal model gives rise to a causal graph where
a directed edge exists from Xi to Xj if Xi is an input to
the structural equation governing Xj , i.e. Xi ∈ PAj . We
restrict ourselves to Markovian structural causal models,
which have an acyclic causal graph and independent ex-
ogenous variables. The skeleton of a causal graph is the
undirected version of the graph.

An intervention is a modification to the structural equations
of an SCM. For example, an intervention may consist of
replacing the structural equation Xi = gi(PAi, Ui) with a
new structural equation Xi := xi that holds Xi at a fixed
value. We use := to denote modifications of the original
structural equations. When the structural equation for one
variable is changed, other variables can also change. Sup-
pose Z and X are two endogenous nodes, Then, we use the
notation ZX:=x to refer to the variable Z in the modified
SCM with structural equation X := x.

Given the values u of the exogenous variables U , the en-
dogenous variables are completely deterministic. We use
the notation Z(u) to represent the deterministic value of
the endogenous variable when the exogenous variables U
are equal to u. Similarly, ZX:=x(u) is the value of Z in
the modified SCM with structural equation X := x when
U = u.

More generally, given some event E, ZX:=x(E) is the ran-

dom variable Z in the modified SCM with structural equa-
tions X := x where the distribution of exogenous variables
U is updated by conditioning on the event E. We make
heavy use of this counterfactual notion. For more details,
see Pearl (2009).

3. A Causal Framework for Strategic
Adaptation

In this section, we put forth a causal framework for reason-
ing about the incentives induced by a decision rule. Our
framework consists of two components: the agent model
and the causal model. The agent model is a standard compo-
nent of work on strategic classification and determines what
actions agents undertake in response to the decision rule.
The causal model enables us to reason cogently about how
these actions affect the agent’s true label. Pairing these mod-
els together allow us to distinguish between incentivizing
gaming and incentivizing improvement.

3.1. The Agent Model

As a running example, consider a software company that
uses a classifier to filter software engineering job appli-
cants. Suppose the model considers, among other factors,
open-source contributions made by the candidate. Some
individuals realize this and adapt—perhaps they polish their
resume; perhaps they focus more of their energy on mak-
ing open source contributions. The agent model describes
precisely how individuals choose to adapt in response to a
classifier.

As in prior work on strategic classification (Hardt et al.,
2016; Dong et al., 2018), we model individuals as best-
responding to the classifier. Formally, consider an individual
with features x ∈ X ⊆ Rn, label y ∈ Y ⊆ R, and a
classifier f : Rn → Y . The individual has a set of available
actions A, and, in response to the classifier f , takes action
a ∈ A to adapt her features from x to x+ a. For instance,
the features x might encode the candidate’s existing open-
source contributions, and the action a might correspond
to making additional open-source contributions. Crucially,
these modifications incur a cost c(a;x), and the action the
agent takes is determined by directly balancing the benefits
of classification f(x+a) with the cost of adaptation c(a;x).
Definition 3.1 (Best-response agent model). Given a cost
function c : A× X → R+ and a classifier f : X → Y , an
individual with features x best responds to the classifier f
by choosing action

a∗ ∈ arg max
a∈A

f(x+ a)− c(a;x).

Let ∆(x; f) = x+ a∗ denote a best-response of the agent
to classifier f . When clear from context, we omit the depen-
dence on f and write ∆(x).
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In the best-response agent model, the cost function com-
pletely dictates what actions are rational for the agent to
undertake and occupies a central modeling challenge. We
discuss this further in Section 5. Our definition of the cost
function in terms of an action set A is motivated by Ustun
et al. (2019). However, this formulation is completely equiv-
alent to the agent-models considered in other work (Hardt
et al., 2016; Dong et al., 2018). In contrast to prior work,
our main results only require that individuals approximately
best-respond to the classifier.

Definition 3.2 (Approximate best-response). For any ε ∈
(0, 1), say ∆ε(x, f) = x+ ã is an ε- best-response to classi-
fier f if f(x+ ã)− c(ã;x) ≥ ε · (maxa f(x+a)− c(a;x)).

While we focus on a multiplicative approximation to the
best-response, our results also hold for an additive approxi-
mation.

3.2. The Causal Model

While the agent model specifies which actions the agent
takes in response to the classifier, the causal model describes
how these actions effect the individual’s true label.

Returning to the hiring example, suppose individuals decide
increase their open-source contributions, X . Does this im-
prove their software engineering skill, Y ? There are two
different causal graphs that explain this scenario. In one
scenario, Y → X: the more skilled one becomes, the more
likely one is to contribute to open-source projects. In the
other scenario, X → Y : the more someone contributes to
open source, the more skilled they become. Only in the
second world, when X → Y , do adaptations that increase
open-source contributions raise the candidate’s skill.

More formally, recall that a structural causal model has two
types of nodes: endogenous nodes and exogenous nodes.
In our model, the endogenous nodes are the individual’s
true label Y , their features X = {X1, . . . , Xn}, and their
classification outcome Ŷ . The structural equation for Ŷ is
represented by the classifier Ŷ = f(Z), where Z ⊆ X are
the features that the classifier f has access to and uses. The
exogenous variables U represent all the other unmodeled
factors.

For an individual with features X = x, let ∆(x, f) denote
the agent’s response to classifier f . Since the agent chooses
∆(x, f) as a function of the observed features x, the la-
bel after adaptation is a counterfactual quantity. This, we
model the individual’s adaptation as an intervention in the
submodel conditioned on observing features X = x. What
value would the label Y take if the individual had features
∆(X, f), given that her features were originally X?

Formally, let A = {i : ∆(x, f)i 6= xi} be the sub-
set of features the individual adapts, and let XA index

those features. Then, the label after adaptation is given by
YXA:=∆(x,f)A({X = x}). The dependence on A ensures
that, if an individual only intervenes on a subset of features,
the remaining features are still consistent with the original
causal model. For brevity, we omit reference to A and write
YX:=∆(x,f)({X = x}). In the language of potential out-
comes, both X and Y are completely deterministic given
the exogenous variables U = u, and we can express the
label under adaptation as YX:=∆(x,f)(u).

Much of the prior literature in strategic classification es-
chews explicit causal terminology and instead posits the
existence of a “qualification function” or a “true binary
classifier” h : X → Y that maps the individual’s features
to their “true quality” (Hardt et al., 2016; Hu et al., 2019;
Braverman & Garg, 2020; Haghtalab et al., 2020). Such a
qualification function should be thought of as the strongest
possible causal model, where X is causal for Y , and the
structural equation determining Y is completely determinis-
tic.

3.3. Evaluating Incentives

Equipped with both the agent model and the causal model,
we can formally characterize the incentives induced by a
decision rule f . Key to our categorization is the notion
of improvement, which captures how the classifier induces
agents to change their label on average over the population
baseline.

Definition 3.3. For a classifier f and a distribution over
features X and label Y generated by a structural causal
model, define the improvement incentivized by f , as

I(f) = EXE
[
YX:=∆(x,f)({X = x})

]
− E [Y ] .

If I(f) > 0, we say that f incentivizes improvement. Other-
wise, we say that f incentivizes gaming.

By the tower property, definition 3.3 can be equiva-
lently written in terms of potential outcomes I(f) =
EU

[
YX:=∆(x,f)(U)− Y (U)

]
. In this view, if we imagine

exposure to the classifier f as a treatment, then improvement
is the treatment effect of exposure to classifier f on the label
Y . In general, since all individuals are exposed and adapt
to the classifier in our model, and estimating improvement
becomes an exercise in estimating the effect of treatment
on the treated, and identifying assumptions are provided
in Shpitser & Pearl (2009). Our notion of improvement is
closely related to notion of “gain” discussed in Haghtalab
et al. (2020), albeit with a causal interpretation.

While we focus on characterizing improvement at the popu-
lation level for consistency with previous work, our frame-
work easily accommodates other notions of improvement.
For instance, we can similarly characterize improvement at
the level of the individuals.
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Y ŶX Z

Figure 2. Reasoning about incentives requires both the agent-
model and the causal model. The cost function plays a central
role in the agent-model. Even though the classification Ŷ only de-
pends on the non-causal feature Z, the agent can change the label
by manipulating, X , Z or both, depending on the cost function.
The causal model determines how the agent’s adaptation affects the
target measure, but the agent model, and in turn the cost function,
determines which actions the agent actually takes.

Definition 3.4. For a classifier f and a distribution over
features X and label Y generated by a structural causal
model, define the improvement incentivized by f for an
individual with features x as

I(f ;x) = E
[
YX:=∆(x,f)({X = x})

]
− E [Y | X = x] .

At first glance, the causal model and Definition 3.3 appear to
offer a convenient heuristic for determining whether a clas-
sifier incentivizes gaming. Namely, does the classifier rely
on non-causal features? However, even a classifier that uses
purely non-causal features can still incentivize improvement
if manipulating upstream, causal features is less costly than
directly manipulating the non-causal features. The follow-
ing example formalizes this intuition. Thus, reasoning about
improvement requires considering both the agent model and
the causal model.
Example 3.1. Suppose we have a structural causal model
with features X,Z and label Y distributed as X := UX ,
Y := X + UY , and Z := Y + UZ , where UX , UY , UZ

i.i.d.∼
N (0, 1). Let the classifier f depend only on the non-causal
feature, Z, f(z) = ŷ. Let A = R2, and define the cost
function c(a;x) = (1/2)a>Ca, where C � 0 is a symmet-
ric, positive definite matrix with det(C) = 1. Then, direct
computation shows ∆(x, z; f) = (x− C12, z + C11), and
I(f) = −C12. Hence, providedC12 < 0, f incentivizes im-
provement despite only rely on non-causal features. When
C12 < 0 changing x and z jointly is less costly than ma-
nipulating z alone. This complementarity (Holmstrom &
Milgrom, 1991) allows the decision-maker to incentivize
improvement using only a non-causal feature. This example
is illustrated in Figure 2.

4. Incentivizing Improvement Requires
Causal Modeling

Beyond evaluating the incentives of a particular classifier,
recent work has sought to design classifiers that explicitly in-
centivize improvement. Haghtalab et al. (2020) seeks classi-
fiers that maximize the improvement of strategic individuals

according to some quality score. Similarly, both Klein-
berg & Raghavan (2019) and Alon et al. (2020) construct
decision-rules that incentivize investment in a desired “ef-
fort profile” that ultimately leads to individual improvement.
In this section, we show that when these approaches suc-
ceed in incentivizing improvement, they must also solve a
non-trivial causal modeling problem. Therefore, while they
may not explicitly discuss causality, much of this work is
necessarily performing causal reasoning.

4.1. The Good Incentives Problem

We first formally state the problem of designing classifiers
that incentivize improvement, which we call the good in-
centives problem. Consider the hiring example presented
in Section 3. A decision-maker has knowledge of the joint
distribution over the features (open-source contributions,
coding test scores, etc) and the label (engineering ability),
and wishes to design a decision rule that incentivizes strate-
gic individuals to improve their engineering ability. As
discussed in Section 3, the decision-maker must reason
about the agent model governing adaptation, and we as-
sume agent’s approximately best-respond according to some
specified cost function.

Definition 4.1 (Good Incentives Problem). Assume agents
ε-best-respond to the classifier for some ε > 0. Given:

1. A joint distribution PX,Y over examples (x, y) ∈ X ×
Y entailed by structural causal model, and

2. A cost function c : A×X → R+,

Find a classifier f∗ : X → Y that incentivizes improvement,
i.e. find a classifier with I(f∗) > 0. If no such classifier
exists, output Fail.

The good incentives problem is closely related to the im-
provement problem studied in Haghtalab et al. (2020).
Translated into our framework, Haghtalab et al. (2020) seek
classifiers that optimally incentivize improvement and solve
maxf I(f), which is a more difficult problem than finding
some classier that leads to improvement.

In the sequel, let GoodIncentives be an oracle for the
Good Incentives problem. GoodIncentives takes as in-
put a cost function and a joint distribution over features
and label, and either returns a classifier that incentivizes
improvements or returns no such classifier exists.

4.2. A Reduction From Causal Modeling to Designing
Good Incentives

Incentivizing improvement requires both (1) knowing which
actions lead to improvement, and (2) incentivizing individ-
uals to take those actions. Since only adaptation of causal
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features can affect the true label Y , determining which ac-
tions lead to improvement necessitates distinguishing be-
tween causal and non-causal features. Consequently, any
procedure that can provide incentives for improvement must
capture some, possibly implicit, knowledge about the causal
relationship between the features and the label.

The main result of this section generalizes this intuition
and establishes a reduction from orienting the edges in a
causal graph to designing classifiers that incentivize im-
provement. Orienting the edges in a causal graph is not
generally possible from observational data alone (Peters
et al., 2017), though it can be addressed through active inter-
vention (Eberhardt et al., 2005). Therefore, any procedure
for constructing classifiers that incentivize improvement
must at its core also solve a non-trivial causal discovery
problem.

We prove this result under a natural assumption: improve-
ment is always possible by manipulating causal features. In
particular, for any edge V →W in the causal graph, there is
always some intervention on V a strategic agent can take to
improve W . We formally state this assumption below, and,
as a corollary, we prove this assumption holds in a broad
family of causal graphs: additive noise models.

Assumption 4.1. Let G = (X,E) be a causal graph, let
X−W denote the random variables X excluding node W .
For any edge (V,W ) ∈ E with V → W , there exists a
real-valued function h mapping X−w to an intervention
v∗ = h(x−w) so that

EX−W
E
[
WV :=h(x−w) ({X−W = x−w})

]
> E [W ] . (1)

Importantly, the intervention v∗ = h(x−w) discussed in As-
sumption 4.1 is an intervention in the counterfactual model,
conditional on observing X−W = x−w. In strategic classi-
fication, this corresponds to choosing the adaptation condi-
tional on the values of the observed features. Before proving
Assumption 4.1 holds for faithful additive noise models, we
first state and prove the main result.

Under Assumption 4.1, we exhibit a reduction from ori-
enting the edges in a causal graph to the good incentives
problem. While Assumption 4.1 requires Equation (1) to
hold for every edge in the causal graph, it is straightforward
to modify the result when Equation (1) only holds for a
subset of the edges.

Theorem 4.1. Let G = (X,E) be a causal graph induced
by a structural causal model that satisfies Assumption 4.1.
Assume X has bounded support X . Given the skeleton of
G, using |E| calls to GoodIncentives, we can orient all
of the edges in G.

Proof of Theorem 4.1. The reduction proceeds by invoking
the good incentives oracle for each edge (Xi, Xj), taking

Xj as the label and using a cost function that ensures only
manipulations on Xi are possible for an ε-best-responding
agent. If Xi → Xj , then Assumption 4.1 ensures that
improvement is possible, and we show GoodIncentives

must return a classifier that incentivizes improvement. Oth-
erwise, if Xi ← Xj , no intervention on Xi can change Xj ,
so GoodIncentives must return Fail.

More formally, let Xi − Xj be an undirected edge in the
skeleton G. We show how to orient Xi −Xj with a single
oracle call. Let X−j , X \ {Xj} be the set of features
excluding Xj , and let x−j denote an observation of X−j .

Consider the following good incentives problem instance.
LetXj be the label, and let the features be (X−j , X̃i), where
X̃i is an identical copy of Xi with structural equation X̃i :=
Xi. Let the action set A = Rn, and let c be a cost function
that ensures an ε-best-responding agent will only intervene
on Xi. In particular, choose

c(a; (x−j , x̃i)) = 2BI [ak 6= 0 for any k 6= i] ,

where B = sup {‖x‖∞ : x ∈ X}. In other words, the indi-
viduals pays no cost to take actions that only affect Xi, but
otherwise pays cost 2B. Since every feasible classifier f
takes values in X , f(x) ≤ B, and any action a with ak 6= 0
leads to negative agent utility. At the same time, action
a = 0 has non-negative utility, so an ε-best-responding
agent can only take actions that affect Xi.

We now show GoodIncentives returns Fail if and only
if Xi ← Xj . First, suppose Xi ← Xj . Then Xi is not
a parent nor an ancestor of Xj since if there existed some
Xi  Z  Xj path, then G would contain a cycle. There-
fore, no intervention on Xi can change the expectation of
Xj , and consequently no classifier that can incentivize im-
provement exists, so GoodIncentives must return Fail.

On the other hand, suppose Xi → Xj . We explicitly
construct a classifier f that incentivizes improvement, so
GoodIncentives cannot return Fail. By Assumption 4.1,
there exists a function h so that

EX−j
E
[
Xj [Xi:=h(x−j)] ({X−j = x−j})

]
> E [Xj ] .

Since X̃i := Xi, Assumption 4.1 still holds additionally
conditioning on X̃i = x̃i. Any classifier that induces
agents with features (x−j , x̃i) to respond by adapting only
Xi := h(x−j) will therefore incentivize improvement. The
intervention Xi := h(x−j) given X−j = x−j is incentiviz-
able by the classifier

f((x−j , x̃i)) = I [xi = h(x̃−j)] ,

where x̃j indicates that xi is replaced by x̃i in the vector
x−j .

An ε-best-responding agent will choose action a∗ where
a∗i = h(x̃−j) − xi and otherwise a∗k = 0 in response to
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f . To see this, a∗ has cost 0. Since X̃i := Xi, we initially
have xi = x̃i. Moreover, by construction, h(x̃−j) depends
only on the feature copy x̃i, not xi, so h(x̃−j) is invariant
to adaptations in xi. Therefore, h(x̃−j + a∗−i) = h(x̃−j) =
xi + a∗i , so f((x−j , x̃i) + a∗) = 1. Thus, action a∗ has
individual utility 1, whereas all other actions have zero or
negative utility, so any ε-best responding agent will choose
a∗. Since all agents take a∗, it then follows by construction
that I(f) > 0.

Repeating this procedure for each edge in the causal
graph thus fully orients the skeleton with |E| calls to
GoodIncentives.

We now turn to showing that Assumption 4.1 holds in a
large class of nontrivial causal model, namely additive noise
models (Peters et al., 2017).

Definition 4.2 (Additive Noise Model). A structural causal
model with graph G = (X,E) is an additive noise model if
the structural assignments are of the form

Xj := gj(PAj) + Uj for j = 1, . . . , n .

Further, we assume that all nodesXi are non-degenerate and
that their joint distribution has a strictly positive density.1

Before stating the result, we need one additional technical
assumption, namely faithfulness. The faithfulness assump-
tion is ubiquitous in causal graph discovery setting and rules
out additional conditional independence statements that are
not implied by the graph structure. For more details and
a precise statement of the d-separation criteria, see Pearl
(2009).

Definition 4.3 (Faithful). A distribution PX is faithful to a
DAGG ifA ⊥⊥ B | C implies thatA andB are d-separated
by C in G

Proposition 4.1. Let (X1, . . . , Xn) be an additive noise
model, and let the joint distribution on (X1, . . . , Xn) be
faithful to the graph G. Then, G satisfies Assumption 4.1.

The proof of Proposition 4.1 is deferred to the appendix.

On the other hand, Assumption 4.1 can indeed fail in non-
trivial cases.

Example 4.1. Consider a two variable graph with X → Y .
Let Y = UX where X and U are independent and E [U ] =
0. In general, X and Y are not independent, but for any
x, x′, E [YX:=x′({X = x})] = x′E [U ] = 0 = E [Y ].

This section demonstrates the necessity of causal reasoning
for incentivizing improvement. In the other direction, causal

1 The condition that the nodes X have a strictly positive den-
sity is met when, for example, the functional relationships fi are
differentiable and the noise variables Ui have a strictly positive
density (Peters et al., 2017).

reasoning can be used to directly solve the good incentives
problem. As discussed in Section 3, evaluating improve-
ment corresponds to computing an effect of treatment on
the treated. Abstractly, given an oracle for such queries,
optimizing improvement becomes a generic stochastic opti-
mization problem. Concretely, in subsequent work, Shavit
et al. (2020) show how to leverage strategic response to
evaluate causal interventions and give an efficient algorithm
for using these interventions to design decision rules that
incentivize improvement.

5. Designing Good Cost Functions Requires
Causal Modeling

The cost function occupies a central role in the best-response
agent model and essentially determines which actions the in-
dividual undertakes. Consequently, not few works in strate-
gic classification model individuals as behaving according
to cost functions with desirable properties, among which is
a natural monotonicity condition—actions that raise an indi-
vidual’s underlying qualification are more expensive than
those that do not. In this section, we prove an analogous
result to the previous section and show constructing these
cost functions also requires causal modeling.

5.1. Outcome-Monotonic Cost Functions

Although they use all slightly different language, Milli et al.
(2019), Khajehnejad et al. (2019), and Braverman & Garg
(2020) all assume the cost function is well-aligned with the
label. Intuitively, they both assume (i) actions that lead to
large increases in one’s qualification are more costly than
actions that lead to small increases, and (ii) actions that de-
crease or leave unchanged one’s qualification have no cost.
Braverman & Garg (2020) define these cost functions using
an arbitrary qualification function that maps features X to
label Y , while Milli et al. (2019) and Khajehnejad et al.
(2019) instead use the outcome-likelihood Pr(y | x) as the
qualification function. Khajehnejad et al. (2019) explicitly
assume a causal factorization so that Pr(y | x) is invariant to
interventions on X , and the qualification function of Braver-
man & Garg (2020) ensures a similar causal relationship
between X and Y . Translating these assumptions into the
causal framework introduced in Section 3, we obtain a class
of outcome-monotonic cost functions.

Definition 5.1 (Outcome-monotonic cost). A cost function
c : A×X → R+ is outcome-monotonic if, for any features
x ∈ X :

1. For any action a ∈ A, c(a;x) = 0 if and only if
E [YX:=x+a({X = x})] ≤ E[Y | X = x].

2. For pair of actions a, a′ ∈ A, c(a;x) ≤ c(a′, x) if and
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only if

E [YX:=x+a({X = x})] ≤ E [YX:=x+a′({X = x})] .

While several works assume the decision-maker has ac-
cess to an outcome-monotonic cost, in general the decision-
maker must explicitly construct such a cost function from
data. This challenge results in the following problem.
Definition 5.2 (Learning outcome-monotonic cost problem).
Given action set A and a joint distribution PX,Y over a set
of features X and label Y entailed by a structural causal
model, construct an outcome-monotonic cost function c.

5.2. A Reduction From Causal Modeling to
Constructing Outcome-Monotonic Costs

Outcome-monotonic costs are both conceptually desir-
able (Milli et al., 2019; Braverman & Garg, 2020) and
algorithmically tractable (Khajehnejad et al., 2019). Si-
multaneously, outcome-monotonic cost functions encode
significant causal information, and the main result of this
section is a reduction from orienting the edges in a causal
graph to learning outcome-monotonic cost functions under
the same assumption as Section 4. Consequently, any pro-
cedure that can successfully construct outcome-monotonic
cost functions must inevitably solve a non-trivial causal
modeling problem.
Proposition 5.1. Let G = (X,E) induced by a struc-
tural causal model that satisfies Assumption 4.1. Let
OutcomeMonotonicCost be an oracle for the outcome-
monotonic cost learning problem. Given the skeleton of G,
|E| calls to OutcomeMonotonicCost suffices to orient all
the edges in G.

Proof. Let X denote the variables in the causal model, and
let Xi − Xj be an undirected edge. We can orient this
edge with a single call to OutcomeMonotonicCost. Let
X−j , X \ {Xj} denote the variables excluding Xj .

Construct an instance of the learning outcome-monotonic
cost problem with features X−j , label Xj , and action set
A = {αei : α ∈ R}, where ei is the i-th standard ba-
sis vector. In other words, the only possible actions are
those that adjust the i-th coordinate. Let c denote the
outcome-monotonic cost function returned by the oracle
OutcomeMonotonicCost. We argue c ≡ 0 if and only if
Xi ← Xj .

Similar to the proof of Theorem 4.1, if Xi ← Xj , then Xi

can be neither a parent nor an ancestor of Xj . Therefore,
conditional on X−j = x−j , there is no intervention on Xi

that can change the conditional expectation of Xj . Since no
agent has a feasible action that can increase the expected
value of the label Xj and the cost function c is outcome-
monotonic, c is identically 0.

On the other hand, suppose Xi → Xj . Then, by Assump-
tion 4.1, there is a real-valued function h such that

EX−jE
[
XjXi:=h(x−j) ({X−j = x−j})

]
> E [Xj ] .

This inequality along with the tower property then implies
there is some agent x−j such that

E
[
XjXi:=h(x−j) ({X−j = x−j})

]
> E [Xj | X−j = x−j ] ,

since otherwise the expectation would be zero or negative.
Since h(x−j)ei ∈ A by construction, there is some action
a ∈ A that can increase the expectation of the label Xj for
agents with features x−j , so c(a;x−j) 6= 0, as required.

The proof of Proposition 5.1 makes repeated calls to an
oracle to construct outcome-monotonic cost functions to
decode the causal structure of the graph G. In many cases,
however, even a single outcome-monotonic cost function
encode significant information about the underlying graph,
as the following example shows.

Example 5.1. Consider a causal model with features (X,Z)
and label Y with the following structural equations

Xi := UXi for i = 1, . . . , n

Y :=

n∑
i=1

θiXi + UY

Zj := gj(X,Y, UZj
) for j = 1, . . . ,m,

for some set of non-zero coefficients θi ∈ R and arbitrary
functions gj . In other words, the model consists of n causal
features, m non-causal features, and a linear structural equa-
tion for Y .

Suppose the action set A = Rn+m, and let c be any
outcome-monotonic cost. Then, 2(n+m) queries evalua-
tions of c suffice to determine (1) which features are causal,
and (2) sign(θi) for i = 1, . . . , n. To see this, evaluate
the cost function at points c(ei; 0) and c(−ei; 0), where ei
denotes the i-th standard basis vector. Direct calculation
shows

E
[
Y(X,Z):=ei({(X,Z) = 0})

]
=

{
θi if feature i is causal
0 otherwise.

Therefore, since c is outcome-monotonic, if c(ei; 0) > 0,
then sign(θi) = 1, if c(−ei; 0) > 0, then sign(θi) = −1,
and if both c(ei; 0) = 0 and c(−ei; 0) = 0, then feature i is
non-causal.
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6. Discussion
The large collection of empirical examples of failed incen-
tive schemes is a testament to the difficulty of designing
incentives for individual improvement. In this work, we
argued an important source of this difficulty is that incen-
tivize design must inevitably grapple with causal analysis.
Our results are not hardness or impossibility results per
se. There are no fundamental computational or statistical
barriers that prevent causal modeling beyond the standard
unidentifiability results in causal inference. Indeed, subse-
quent work by Shavit et al. (2020) shows how causal queries
can explicitly be leveraged to incentive improvement, and
both Shavit et al. (2020) and Bechavod et al. (2020) prove
strategic response itself can facilitate causal discovery. Our
work suggests incentive design without causal understand-
ing is unlikely to succeed, not that such understanding is
unachievable.

Beyond incentive design, we hope our causal perspective
clarifies intuitive, though subtle notions like gaming and
improvement and provides a clear and consistent formalism
for reasoning about strategic adaptation more broadly.
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A. Missing Proofs
Proposition 4.1. Let V → W be an edge in G. We show there exists a real-valued function h that maps a realization of
nodes X−W = x−w to an intervention v∗ that increases the expected value of W . Therefore, we first condition on observing
the remaining nodes X−W = x−w. In an additive noise model, given X−W = x−w the exogenous noise terms for all of the
ancestors of W can be uniquely recovered. In particular, the noise terms are determined by

uj = xj − gj(PAj).

Let UA denote the collection of noise variables for ancestors of W excluding those only have a path through V . Both
UA = uA and V = v are fixed by X−W = x−w.

Consider the structural equation for W , W = gW (PAW ) + UW . The parents of W , PAW , are deterministic given V and
UA. Therefore, given V = v and UA = uA, gW (PAW ) is a deterministic function of v and uA, which we write g̃W (v, uA).

Now, we argue g̃W is not constant in v. Suppose g̃W were constant in v. Then, for every uA, g̃W (v, uA) = k(uA). However,
this means W = k(UA) + UW , and UA is independent of V , so we find that V and W are independent. However, since
V →W in G, this contradicts faithfulness.

Since g̃W is not constant in v, there exists at least one setting of uA with v, v′ so that g̃W (v′, uA) > g̃W (v, uA). Since X
has positive density, (v, ua) occurs with positive probability. Consequently, if h(uA) = arg maxv g̃W (v, uA), then

EX−W
E
[
WV :=v∗(uA) ({X−W = x−w})

]
= EX−W

[E [UW ] + E [g̃W (v∗(UA), UA) | X−W = x−w]]

> E [UW ] + EX−W
E [g̃W (V,UA) | X−W = x−w]

= E [UW ] + E [gW (PAW )]

= E [W ] .

Finally, notice h(uA) can be computed solely form x−w since uA is fixed given x−w. Together, this establishes that
Assumption 4.1 is satisfied for the additive noise model.


