
Automatic Shortcut Removal for Self-Supervised Representation Learning

A. Architecture
For the feature extractor F , we use the ResNet50 v2 archi-
tecture (He et al., 2016; Kolesnikov et al., 2019) with the
standard channel widening factor of 4 (i.e. 16× 4 channels
in the first convolutional layer) and a representation size of
2048 at the pre-logits layer unless otherwise noted.

For the lens L, we use a variant of the U-Net architecture
(Figure 11; Ronneberger et al. 2015). The lens consists
of a convolutional encoder and decoder. The encoder and
decoder are each a stack of n residual units (same unit archi-
tecture as used for the feature extractor), with k channels for
the first unit of the encoder. We use n = 4 and k = 64 for
all experiments. Two additional residual units form the bot-
tleneck between encoder and decoder (see Figure 11). After
each unit in the encoder, the number of channels is doubled
and the resolution is halved by max-pooling with a 2 × 2
kernel and stride 2. Conversely, after each decoder unit, the
number of channels is halved and the resolution is doubled
using bilinear interpolation. At each resolution level, skip
connections are created between the encoder and decoder by
concatenating the encoder representation channel-wise with
the decoder representation before applying the next decoder
unit. The output of the decoder is of the same resolution as
the input image, and reduced to three channels by a 1 × 1
convolutional layer. This map is combined by element-wise
addition with the input image to produce the lens output.

We choose the U-Net architecture because it efficiently com-
bines a large receptive field with a high output resolution.
For example, for input images of size 224× 224, the maps
at the bottleneck of the U-Net are of size 14×14, such that a
3× 3 convolution at that size corresponds to 48× 48 pixels
at the input resolution and is able to capture large-scale im-
age context. Furthermore, the skip connections of the U-Net
make it trivial for the lens to reconstruct the input image
by setting all internal weights to zero. This is important to
ensure that the changes made by the lens to the image are
not simply due to a lack of capacity.

We find that a lens with n = 4 and k = 64 yields good
results in general, although initial experiments suggested
that tuning the lens capacity individually for each pretext
task and dataset may provide further gains.

We also tested how the performance of the lens varies with
the capacity of the feature extraction network. For the Ro-
tation task and ImageNet, we trained models with different
widening factors (channel number multiplier). As expected,
wider networks perform better (Figure 10). We find that
the lens improves accuracy across all model widths. The
accuracy gain of applying the lens to a feature extraction
network with a width factor of 4 is equivalent to the gain
obtained by widening the network by 2–4×.

4 8 16
Width factor

46

47

48

49

50

D
ow

ns
tr

ea
m

 a
cc

ur
ac

y
(%

)

Baseline
Lens

Figure 10. Downstream accuracy for Rotation models trained on
ImageNet with different feature extraction network widening fac-
tors. The performance gain remains large across model sizes.

For the experiments using CIFAR-10 (Figure 3), we used
a smaller lens architecture consisting of a stack of five
ResNet50 v2 residual units without down or up-sampling.

B. Downstream evaluation

For downstream evaluation of learned representations, we
follow the linear evaluation protocol with SGD from
Kolesnikov et al. (2019). A logistic regression model for Im-
ageNet or Places205 classification was trained using SGD
on the representations obtained from the pre-trained self-
supervised models.

For training the logistic regression, we preprocessed input
images in the same way for all models: Images were resized
to 256×256, randomly cropped to 224×224, and the color
values were scaled to [−1, 1]. For evaluation, the random
crop was replaced by a central crop.

Representations were then obtained by passing the images
through the pre-trained models and extracting the pre-logits
activations. For patch-based models, we obtained represen-
tations of the full image by averaging the representations
of nine patches created from the full image. To create the
patches, the the central 192× 192 section of the 224× 224
input image was divided into a 3× 3 grid of patches. Each
patch was passed through the feature extraction network and
the representations were averaged.

The logistic regression model was trained with a batch size
of 2048 and an initial learning rate of 0.8. We trained
for 90 epochs and reduced the learning rate by a factor
of 10 after epoch 50 and epoch 70. For both ImageNet and
Places205, training was performed on the full training set
and the performance is reported for the public validation
set.

C. Adversarial training with FGSM
For the comparison to adversarial training (Table 1), we
used the fast gradient-sign method (FGSM) as described by

Automatic Shortcut Removal for Self-Supervised Representation Learning

64

128

256

512

Residual unit

1024

3 64 64 3

128

256

512
2×2 Max pool with stride 2

2× Bilinear upsampling

Channel-wise concatenation

In
pu

t i
m

ag
e

1×1 Convolution

In
pu

t i
m

ag
e

Le
ns

 o
ut

pu
t

Figure 11. Lens architecture. The number of channels is indicated above each block. Based on (Ronneberger et al., 2015).

Table 2. Evaluation of representations from models trained on ImageNet with different self-supervised pretext tasks, using lensed-image
representations only, without concatenating non-lensed representations. Otherwise like Table 1: The scores are accuracies (in %) of a
logistic regression model trained on representations obtained from the frozen models. Mean ± s.e.m over three random initializations.
Values in bold are better than the next-best method at a significance level of 0.05. Training images are preprocessed as suggested by the
respective original works.

Dataset Method Pretext task

Rotation Exemplar Rel. patch loc. Jigsaw

ImageNet Baseline 45.9± 0.04 42.2± 0.27 37.5± 0.17 34.6± 0.10
Lens 46.9± 0.09 (+1.06) 44.5± 0.12 (+2.26) 39.1± 0.13 (+1.63) 38.2± 0.09 (+3.63)

Places205 Baseline 41.3± 0.13 41.8± 0.15 40.2± 0.09 38.8± 0.21
Lens 41.8± 0.14 (+0.53) 42.4± 0.20 (+0.60) 40.9± 0.05 (+0.70) 40.5± 0.11 (+1.74)

Kurakin et al. (2016). Analogously to our sweeps over λ
for the lens models, we swept over the perturbation scale
ε ∈ {0.01, 0.02, 0.04, 0.08, 0.16} and report the accuracy
for the best ε in Table 1. As suggested by Kurakin et al.
(2016), we randomized the perturbation scale for each im-
age by using the absolute value of a sample from a truncated
normal distribution with mean 0 and standard deviation
ε. Since this randomization already includes nearly un-
processed images, we do not include further unprocessed
images during training.

D. Case study: SimCLR
Concurrently with our work, a powerful new self-supervised
approach based on contrastive learning, called SimCLR, was
published (Chen et al., 2020). Here, we describe our experi-
ence applying automatic shortcut removal to SimCLR as an
informal “case study”. Our goal is to provide a practical ex-
ample for how our method can be applied to understand and
improve new self-supervised tasks. Even though we find
that the lens does not improve the linear evaluation perfor-
mance of SimCLR, the lens provided insights that allowed
us to improve SimCLR performance on other tasks.

D.1. Linear evaluation on ImageNet

As a first step, we applied automatic shortcut removal as
described in the main paper to SimCLR4 and evaluated the
learned representations with the linear protocol. As we
suggest in the main paper, we ran a sweep across the recon-
struction loss scale λ and left the other hyperparameters at
their default values. Figure 12 shows that applying the lens
to SimCLR does not improve representation quality under
the linear evaluation protocol. The performance increases
monotonically with λ and always remains below the base-
line performance of 68.90 % (ResNet50x1), suggesting that
any amount of lens-induced perturbation is harmful for this
task under the linear evaluation protocol. To understand this
result, we turned to inspecting the lens outputs.

D.2. Lens outputs

The lens outputs (Figure 13) indicate that the lens primar-
ily reduces color saturation and causes blurring of high-
frequency image components. This suggests that the lens
attacks features in a way that is similar to the augmenta-
tions that are part of the standard SimCLR code, specifically

4Code available at https://github.com/google-research/simclr;
we used SimCLRv1.

Automatic Shortcut Removal for Self-Supervised Representation Learning

400 1600 3200
Rec. loss scale ()

55

60

65

D
ow

ns
tr

ea
m

 a
cc

ur
ac

y
(%

)

400 1600 3200
Rec. loss scale ()

30

35

40

45

"S
ha

pe
"

de
cis

io
ns

 (%
)

Baseline
Lens

Figure 12. Left: Linear evaluation performance of SimCLR on
ImageNet. Right: Fraction of “shape” decisions on the conflict
stimuli from Geirhos et al. (2019)

Gaussian blur and Color jitter. These augmentations are an
integral part of SimCLR. We hypothesize that the augmenta-
tions were already so highly optimized that any additional
image perturbation leads to a decrease in performance. Con-
sistently, in separate experiments, we found that if we ablate
the Gaussian blur and Color jitter augmentations, apply-
ing the lens improves over the ablated baseline (but not
beyond the un-ablated baseline performance). While the
lens does not provide further improvements on top of the
hand-designed augmentations, it is encouraging that the lens
identifies the same perturbations that were chosen by the
expert authors of SimCLR.

In
pu
t

Le
ns

ou
tp
ut

D
iff
er
en
ce

(n
or
m
al
ize
d)

λ=800

In
pu
t

Le
ns

ou
tp
ut

D
iff
er
en
ce

(n
or
m
al
ize
d)

λ=1600

Figure 13. Example lens outputs for SimCLR.

Table 3. Fine-tuning performance of SimCLR R50x1 on the Visual
Task Adaptation Benchmark (Zhai et al., 2019). Abbreviations:
Spec., Specialized; Struct., Structured.

mean Natural Spec. Struct.

Baseline 48.79 51.08 74.74 33.82
Lens 51.51 (+2.72) 49.96 76.89 40.17

D.3. Semanticity

The lens output suggests that high-frequency patterns, as
well as colors, are important shortcut features for SimCLR.
We therefore hypothesized that the representations learned
by SimCLR primarily encode texture details, rather than
high-level shape information. Indeed, evaluating SimCLR
on the dataset from Geirhos et al. (2019) as in Section 4.2.5,
showed that SimCLR makes shape-based decisions in only
28.86% of cases (Figure 12). Applying the lens to Sim-
CLR increases the proportion of shape-based decisions to
over 40%, which indicates that the lens strongly shifts the
network towards more semantic representations.

D.4. Improvements on other tasks

While it has been shown that natural image classification
tasks such as ImageNet classification can be solved accu-
rately based on texture information (Geirhos et al., 2019),
other tasks might benefit from the additional semantic in-
formation that is learned when the lens is used. To investi-
gate this question, we turned to the Visual Task Adaptation
Benchmark (VTAB, Zhai et al. 2019), which is a collection
of 19 tasks that span natural, specialized and structured
domains. Indeed, we find that automatic shortcut removal
improves the mean score of SimCLR on VTAB by 2.72%
(Table 3). This improvement comes primarily from the Spe-
cialized and Structured datasets, while the score on Natural
datasets is slightly reduced. These results suggest that Sim-
CLR representations are highly adapted to ImageNet, and
their performance on a wider variety of tasks may suffer
from shortcuts that can be mitigated with our method.

D.5. Summary

The SimCLR case study shows how our method can be
used to understand and improve a new pretext task. While
our method does not always result in a quick win on all
benchmarks, it provides a deeper understanding of the task-
specific shortcut features, which may guide the practitioner
towards opportunities for improvement.

Automatic Shortcut Removal for Self-Supervised Representation Learning
In
pu
t

1 2 3 4 5 6 7 8 9 10

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

11 12 13 14 15 16 17 18 19 20

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

21 22 23 24 25 26 27 28 29 30

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

31 32 33 34 35 36 37 38 39 40

Le
ns

ou
tp
ut

D
iff
.

Figure 14. Further example lens outputs for models trained on ImageNet with the Rotation task. Images were randomly sampled from the
ImageNet validation set.

Automatic Shortcut Removal for Self-Supervised Representation Learning
In

pu
t

1 2 3 4 5 6 7 8 9 10

Le
ns

ou
tp

ut
D

iff
. ×

 5
In

pu
t

11 12 13 14 15 16 17 18 19 20

Le
ns

ou
tp

ut
D

iff
. ×

 5
In

pu
t

21 22 23 24 25 26 27 28 29 30

Le
ns

ou
tp

ut
D

iff
. ×

 5
In

pu
t

31 32 33 34 35 36 37 38 39 40

Le
ns

ou
tp

ut
D

iff
. ×

 5

Figure 15. Further example lens outputs for models trained on ImageNet with the Exemplar task. Images were randomly sampled from
the ImageNet validation set.

Automatic Shortcut Removal for Self-Supervised Representation Learning
In
pu
t

1 2 3 4 5 6 7 8 9 10

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

11 12 13 14 15 16 17 18 19 20

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

21 22 23 24 25 26 27 28 29 30

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

31 32 33 34 35 36 37 38 39 40

Le
ns

ou
tp
ut

D
iff
.

Figure 16. Further example lens outputs for models trained on ImageNet with the Relative patch location task. Images were randomly
sampled from the ImageNet validation set.

Automatic Shortcut Removal for Self-Supervised Representation Learning
In
pu
t

1 2 3 4 5 6 7 8 9 10

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

11 12 13 14 15 16 17 18 19 20

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

21 22 23 24 25 26 27 28 29 30

Le
ns

ou
tp
ut

D
iff
.

In
pu
t

31 32 33 34 35 36 37 38 39 40

Le
ns

ou
tp
ut

D
iff
.

Figure 17. Further example lens outputs for models trained on ImageNet with the Jigsaw task. Images were randomly sampled from the
ImageNet validation set.

Automatic Shortcut Removal for Self-Supervised Representation Learning
In
pu
t

(I
m
ag
eN
et
) 1 2 3 4 5 6 7 8 9 10

Le
ns
ed

Im
ag
eN
et
-tr
ai
ne
d

D
iff
er
en
ce

Le
ns
ed

Y
ou
Tu
be
-tr
ai
ne
d

D
iff
er
en
ce

In
pu
t

(I
m
ag
eN
et
) 11 12 13 14 15 16 17 18 19 20

Le
ns
ed

Im
ag
eN
et
-tr
ai
ne
d

D
iff
er
en
ce

Le
ns
ed

Y
ou
Tu
be
-tr
ai
ne
d

D
iff
er
en
ce

Figure 18. Further example lens outputs for models trained on YouTube1M with the Rotation task. Outputs from ImageNet-trained models
are provided for comparison. Images were randomly sampled from the ImageNet validation set.

Automatic Shortcut Removal for Self-Supervised Representation Learning
In
pu
t

(I
m
ag
eN
et
) 1 2 3 4 5 6 7 8 9 10

Le
ns
ed

Im
ag
eN
et
-tr
ai
ne
d

D
iff
er
en
ce

Le
ns
ed

Y
ou
Tu
be
-tr
ai
ne
d

D
iff
er
en
ce

In
pu
t

(I
m
ag
eN
et
) 11 12 13 14 15 16 17 18 19 20

Le
ns
ed

Im
ag
eN
et
-tr
ai
ne
d

D
iff
er
en
ce

Le
ns
ed

Y
ou
Tu
be
-tr
ai
ne
d

D
iff
er
en
ce

Figure 19. Further example lens outputs for images containing text, comparing models trained on YouTube1M and ImageNet with the
Rotation task. Images containing artificially overlaid text (logos, watermarks, etc.) were manually selected from a random sample of 1000
ImageNet validation images, before inspecting lens outputs. A random sample of these images is shown.

