7. Supplementary material

7.1. Sub-regions corresponding to system (9)

All sub-regions related to (9) can be defined as follows (Monfared \& Durstewitz, 2020):

$$
\begin{align*}
& S_{\Omega^{1}}=\hat{S}_{0}=\hat{S}_{(\underbrace{000 \cdots 0}_{M})_{2}^{*}}=\hat{S}_{\underbrace{000 \cdots 0}}^{\underbrace{}_{M}} \tag{18}\\
& =\left\{Z_{t} \in \mathbb{R}^{M} ; z_{i t} \leq 0, i=1,2, \cdots, M\right\}, \\
& S_{\Omega^{2}}=\hat{S}_{1}=\hat{S}_{(\underbrace{00 \cdots 01}_{M})_{2}^{*}}=\hat{S}_{\underbrace{100 \cdots 0}_{M}} \tag{19}\\
& =\left\{Z_{t} \in \mathbb{R}^{M} ; z_{1 t}>0, z_{i t} \leq 0, i \neq 1\right\}, \\
& S_{\Omega^{3}}=\hat{S}_{2}=\hat{S}_{(\underbrace{0 \cdots 010}_{M})_{2}^{*}}=\hat{S}_{S_{0}^{010 \cdots 0}} \tag{20}\\
& =\left\{Z_{t} \in \mathbb{R}^{M} ; z_{2 t}>0, z_{i t} \leq 0, i \neq 2\right\}, \\
& S_{\Omega^{4}}=\hat{S}_{3}=\hat{S}_{(\underbrace{0 \cdots 011}_{M})_{2}^{*}}=\hat{S}_{\underbrace{110 \cdots 0}_{M}} \tag{21}\\
& =\left\{Z_{t} \in \mathbb{R}^{M} ; z_{1 t}, z_{2 t}>0, z_{i t} \leq 0, i \neq 1,2\right\}, \\
& S_{\Omega^{5}}=\hat{S}_{4}=\hat{S}_{(\underbrace{0 \cdots 100}_{M})_{2}^{*}}=\hat{S}_{0_{0}}^{010 \cdots 0} \tag{22}\\
& =\left\{Z_{t} \in \mathbb{R}^{M} ; z_{3 t}>0, z_{i t} \leq 0, i \neq 3\right\}, \\
& \vdots \\
& S_{\Omega^{2^{M}}}=\hat{S}_{2^{M}-1}=\hat{S}_{(\underbrace{111 \cdots 1}_{M})_{2}^{*}}=\hat{S}_{\underbrace{111 \cdots 1}_{M}}^{11 \cdots} \tag{23}\\
& =\left\{Z_{t} \in \mathbb{R}^{M} ; z_{i t}>0, i=1,2, \cdots, M\right\} .
\end{align*}
$$

where each subindex d of $\hat{S}, 0 \leq d \leq 2^{M}-1$, is associated with a sequence $d_{M} d_{M-1} \cdots d_{2} d_{1}$ of binary digits. The notation $\left(d_{1} d_{2} \cdots d_{M}\right)_{2}^{*}$ in building each corresponding sequence stands for the mirror image of the binary representation of d with M digits. By mirror image here we mean writing digits $d_{1} d_{2} \cdots d_{M}$ from right to left, i.e. $d_{M} d_{M-1} \cdots d_{2} d_{1}$. For example, for $M=2$ there are 4 sub-regions $S_{\Omega^{k}}, k=1,2,3,4$, associated with 4 matrices $D_{\Omega^{k}}:=\operatorname{diag}\left(d_{2}, d_{1}\right)$, where $d_{2} d_{1}=\left(d_{1} d_{2}\right)_{2}^{*}$ and $d_{i} \in\{0,1\}$ (Fig. S1).

Denoting switching boundaries $\Sigma_{i j}=\bar{S}_{\Omega^{i}} \cap \bar{S}_{\Omega^{j}}$ between every pair of successive sub-regions $S_{\Omega^{i}}$ and $S_{\Omega^{j}}$ with $i, j \in$
$\left\{1,2, \cdots, 2^{M}\right\}$, we can rewrite map (7) as

$$
Z_{t+1}=F\left(Z_{t}\right)
$$

$$
=\left\{\begin{array}{lc}
F_{1}\left(Z_{t}\right)=W_{\Omega^{1}} Z_{t}+h ; & Z_{t} \in \bar{S}_{\Omega^{1}} \tag{24}\\
F_{2}\left(Z_{t}\right)=W_{\Omega^{2}} Z_{t}+h ; & Z_{t} \in \bar{S}_{\Omega^{2}} \\
F_{3}\left(Z_{t}\right)=W_{\Omega^{3}} Z_{t}+h ; & Z_{t} \in \bar{S}_{\Omega^{3}} \\
F_{4}\left(Z_{t}\right)=W_{\Omega^{4}} Z_{t}+h ; & Z_{t} \in \bar{S}_{\Omega^{4}} \\
\vdots & \vdots \\
F_{2^{M}}\left(Z_{t}\right)=W_{\Omega^{2}} Z_{t}+h ; & Z_{t} \in \bar{S}_{\Omega^{2}}
\end{array}\right.
$$

7.2. Discontinuity boundaries

Consider map (7) and two sub-regions $S_{\Omega^{i}}$ and $S_{\Omega^{j}}(i, j \in$ $\left\{1,2, \cdots, 2^{M}\right\}$) as defined in Section 4 (subsection 4.2). Suppose that subindices $i-1$ and $j-1$ of \hat{S}_{i-1} and \hat{S}_{j-1} are associated with $i-1=i_{1} i_{2} \cdots i_{M}$ and $j-1=$ $j_{1} j_{2} \cdots j_{M}$. Then $S_{\Omega^{i}}$ and $S_{\Omega^{j}}$ are two successive subregions with the switching boundary $\Sigma_{i j}=\bar{S}_{\Omega^{i}} \cap \bar{S}_{\Omega^{j}}$, iff there is exactly one $1 \leq s \leq M$ such that for all $\left(z_{i_{1} t}, \cdots, z_{i_{M} t}\right)^{T} \in \stackrel{\circ}{S}_{\Omega^{i}}$ and $\left(z_{j_{1} t}, \cdots, z_{j_{M} t}\right)^{T} \in \stackrel{\circ}{S}_{\Omega^{j}}$

$$
\left\{\begin{array}{l}
z_{i_{s} t} \cdot z_{j_{s} t}<0 \tag{25}\\
z_{i_{r} t} \cdot z_{j_{r} t}>0,1 \leq \underset{r \neq s}{r} \leq M
\end{array}\right.
$$

Moreover, $\Sigma_{i j}$ is a closed set $\left(\bar{\Sigma}_{i j}=\Sigma_{i j}\right)$ and $\Sigma_{i j}=$ $\stackrel{\circ}{\Sigma}_{i j} \cup \partial \Sigma_{i j}$ such that

$$
\begin{align*}
\stackrel{\circ}{\Sigma}_{i j}=\Sigma_{r}^{s}=\{ & Z_{t} \in \mathbb{R}^{M} ; z_{s t}=0, \text { and } \operatorname{sgn}\left(z_{r t}\right)= \\
& \left.\operatorname{sgn}\left(z_{i_{r} t}\right)=\operatorname{sgn}\left(z_{j_{r} t}\right), 1 \leq \underset{r \neq s}{r} \leq M\right\}, \tag{26}
\end{align*}
$$

$$
\begin{align*}
& \text { and } \partial \Sigma_{i j}=\bigcup_{\substack{s_{m}=1 \\
s_{m} \neq s}}^{M} \Sigma_{\nu}^{s, s_{m}} \text { where } \\
& \begin{aligned}
\Sigma_{\nu}^{s, s_{m}}= & \left\{Z_{t} \in \mathbb{R}^{M} ; z_{s_{m} t}=z_{s t}=0, \text { and } \operatorname{sgn}\left(z_{\nu t}\right)\right. \\
& \left.=\operatorname{sgn}\left(z_{r t}\right), 1 \leq \underset{\nu \neq s, s_{m}}{\nu} \leq M\right\} .
\end{aligned}
\end{align*}
$$

Furthermore, it can be proven that

$$
\begin{equation*}
\bigcup_{i, j=1}^{2^{M}} \Sigma_{i j}=\bigcup_{l=1}^{M 2^{M-1}} \Sigma_{l} \subset \bigcup_{k=1}^{2^{M}} S_{\Omega^{k}}=\mathbb{R}^{M} \tag{28}
\end{equation*}
$$

7.3. Proof of theorem 3

(1) Without loss of generality let $t_{0}=0$. Assume that there exists an equivalent continuous-time system for (10)

$D_{\Omega^{3}}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
$D_{\Omega^{4}}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

0 \& 0\end{array}\right)\)

Figure $S 1$. Example of subregions $S_{\Omega^{k}}$ and related matrices $D_{\Omega^{k}}$ for $M=2$.
on $[0, \Delta t]$, in the form of equation (12). By equivalency in the sense of equation (13), we must have

$$
\begin{equation*}
Z_{0}=\zeta(0), \quad Z_{1}=W_{\Omega^{k}} Z_{0}+h=\zeta(\Delta t) \tag{29}
\end{equation*}
$$

According to theorem 1, the solution of system (10) on $[0, \Delta t]$ is
$\zeta(t)=e^{\tilde{W}_{\Omega^{k}} t} \zeta(0)+e^{\tilde{W}_{\Omega^{k}} t} \int_{0}^{t} e^{-\tilde{W}_{\Omega^{k}} \tau} \tilde{h} d \tau, \quad t \in[0, \Delta t]$.

If $\tilde{W}_{\Omega^{k}}$ is invertible, then

$$
\begin{equation*}
\int_{0}^{t} e^{-\tilde{W}_{\Omega^{k}} \tau} \tilde{h} d \tau=-\tilde{W}_{\Omega^{k}}^{-1}\left(e^{-\tilde{W}_{\Omega^{k}} t}-I\right) \tilde{h} \tag{31}
\end{equation*}
$$

and thus

$$
\begin{array}{r}
\zeta(t)=e^{\tilde{W}_{\Omega^{k}} t} \zeta(0)+\left[e^{\tilde{W}_{\Omega^{k}} t}\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) e^{-\tilde{W}_{\Omega^{k}} t}\right. \\
\left.-e^{\tilde{W}_{\Omega^{k}} t}\left(-\tilde{W}_{\Omega^{k}}^{-1}\right)\right] \tilde{h} . \tag{32}
\end{array}
$$

Furthermore, since

$$
\begin{equation*}
\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) e^{-\tilde{W}_{\Omega^{k}} t}=e^{-\tilde{W}_{\Omega^{k}} t}\left(-\tilde{W}_{\Omega^{k}}^{-1}\right), \tag{33}
\end{equation*}
$$

we have
$\zeta(t)=e^{\tilde{W}_{\Omega^{k}} t} \zeta(0)+\left[I-e^{\tilde{W}_{\Omega^{k}} t}\right]\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) \tilde{h} \quad t \in[0, \Delta t]$.

Putting conditions (29) in

$$
\begin{equation*}
\zeta(\Delta t)=e^{\tilde{W}_{\Omega^{k}} \Delta t} \zeta(0)+\left[I-e^{\tilde{W}_{\Omega^{k}} \Delta t}\right]\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) \tilde{h} \tag{35}
\end{equation*}
$$

yields
$W_{\Omega^{k}} Z_{0}+h=e^{\tilde{W}_{\Omega^{k}} \Delta t} Z_{0}+\left[I-e^{\tilde{W}_{\Omega^{k}} \Delta t}\right]\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) \tilde{h}$.

Equation (36) has to hold for all Z_{0} including $Z_{0}=0$. Hence, it is deduced that

$$
\left\{\begin{array}{l}
W_{\Omega^{k}}=e^{\tilde{W}_{\Omega^{k}} \Delta t} \tag{37}\\
h=\left[I-e^{\tilde{W}_{\Omega^{k}} \Delta t}\right]\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) \tilde{h}
\end{array}\right.
$$

According to (37), matrix $W_{\Omega^{k}}$ should be invertible and cannot have any zero eigenvalue. Also, since $\tilde{W}_{\Omega^{k}}$ is invertible, it does not have any zero eigenvalue, which implies that $W_{\Omega^{k}}$ has no eigenvalue equal to one. Then, $P_{W_{\Omega^{k}}}(1) \neq 0$, which means $\left[I-W_{\Omega^{k}}\right]$ is invertible and (37) becomes equivalent to (14).

Now, considering $\tilde{W}_{\Omega^{k}}$ and \tilde{h} as in (14), we can obtain the desired equivalent continuous-time system (12) for (10) on $[0, \Delta t]$. It is just required to prove that every fixed point Z^{*} of map (10) is also an equilibrium point of system (12), and (14) is a solution of (36) for all Z^{*}. For this purpose, let Z^{*} be a fixed point of (10), then

$$
\begin{equation*}
F\left(Z^{*}\right)=W_{\Omega^{k}} Z^{*}+h=Z^{*} . \tag{38}
\end{equation*}
$$

Z^{*} must be an equilibrium of (12), i.e.

$$
\begin{equation*}
G\left(Z^{*}\right)=\tilde{W}_{\Omega^{k}} Z^{*}+\tilde{h}=0 \tag{39}
\end{equation*}
$$

From (38) and (39) it is concluded that

$$
\begin{equation*}
h=\left[I-W_{\Omega^{k}}\right]\left(-\tilde{W}_{\Omega^{k}}^{-1}\right) \tilde{h} \tag{40}
\end{equation*}
$$

which shows that (37) or, equivalently, (14) is a solution of (36) for all Z^{*} satisfying both relations (38) and (39). Finally, let each Jordan block of $W_{\Omega^{k}}$ associated with a negative eigenvalue occur an even number of times. Then, by theorem (2), the logarithm of real matrix $W_{\Omega^{k}}$, i.e. the matrix $\tilde{W}_{\Omega^{k}}$ defined in (14), will be real.
(2) Let $W_{\Omega^{k}}$ be diagonalizable, then

$$
\begin{equation*}
W_{\Omega^{k}}=V E_{k} V^{-1} \tag{41}
\end{equation*}
$$

where $E_{k}=\operatorname{diag}\left(\lambda_{1}^{k}, \lambda_{2}^{k}, \cdots, \lambda_{M}^{k}\right)$ and V is the matrix of eigenvectors of $W_{\Omega^{k}}$. Since $W_{\Omega^{k}}$ is also invertible, by (14)

$$
\begin{align*}
\tilde{W}_{\Omega^{k}} & =\frac{1}{\Delta t} \log \left(W_{\Omega^{k}}\right)=\frac{1}{\Delta t} \log \left(V E_{k} V^{-1}\right) \\
& =V \frac{1}{\Delta t} \log \left(E_{k}\right) V^{-1} \tag{42}
\end{align*}
$$

such that

$$
\log \left(E_{k}\right)=\operatorname{diag}\left(\log \left(\lambda_{1}^{k}\right), \log \left(\lambda_{2}^{k}\right), \cdots, \log \left(\lambda_{M}^{k}\right)\right)
$$

which completes the proof.

Remark. Due to (37) and (14), one can see that system (12) is homogeneous ($\tilde{h}=0$) if and only if system (10) is homogeneous ($h=0$).

7.4. Proof of theorem 4

Again we prove the theorem for $t_{0}=0$ without loss of generality. Suppose that there is the equivalent continuous-time system (12) for (10) with non-invertible and diagonalizable matrix $\tilde{W}_{\Omega^{k}}$. Similar to the proof of the previous theorem, relations (29) and (30) must hold for (10) and (12). On the other hand, non-invertibility and diagonalizability of $\tilde{W}_{\Omega^{k}}$ demand that it has at least one eigenvalue equal to zero and

$$
\tilde{W}_{\Omega^{k}}=V\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \tag{43}\\
0 & C
\end{array}\right) V^{-1}
$$

where $\mathrm{O}_{n \times n}$ is a zero matrix corresponding to zero eigenvalues (n denotes the number of zero eigenvalues) and C is an invertible matrix corresponding to nonzero eigenvalues of $\tilde{W}_{\Omega^{k}}$. Therefore, for relation (31) we obtain

$$
\left.\begin{array}{l}
\int_{0}^{t} e^{-\tilde{W}_{\Omega^{k}} \tau} \tilde{h} d \tau= \\
V\left(\left(\begin{array}{ccc}
t & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & t
\end{array}\right)_{n \times n}\right. \\
\begin{array}{c}
0
\end{array} \\
-C^{-1}\left(e^{-C t}-I\right)
\end{array}\right) V^{-1} \tilde{h} .
$$

In this case, relation (35) becomes
$\zeta(\Delta t)=e^{\tilde{W}_{\Omega^{k}} \Delta t} \zeta(0)+e^{\tilde{W}_{\Omega^{k}} \Delta t} V \times$

$$
\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
\Delta t & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \Delta t
\end{array}\right)_{n \times n} & 0 \tag{45}\\
& 0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) V^{-1} \tilde{h}
$$

Inserting conditions (29) into (45) gives
$W_{\Omega^{k}} Z_{0}+h=e^{\tilde{W}_{\Omega^{k}} \Delta t} Z_{0}+e^{\tilde{W}_{\Omega^{k}} \Delta t} V \times$

$$
\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
\Delta t & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \Delta t
\end{array}\right)_{n \times n} & 0 \tag{46}\\
& 0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) V^{-1} \tilde{h}
$$

Denoting

$$
H=\left(\begin{array}{ccc}
\Delta t & \cdots & 0 \tag{47}\\
\vdots & \ddots & \vdots \\
0 & \cdots & \Delta t
\end{array}\right)_{n \times n}
$$

and considering equality (46) for all Z_{0}, particularly for $Z_{0}=0$, yields

$$
\left\{\begin{array}{l}
W_{\Omega^{k}}=e^{\tilde{W}_{\Omega^{k}} \Delta t} \tag{48}\\
h=e^{\tilde{W}_{\Omega^{k}} \Delta t} V\left(\begin{array}{cc}
H & 0 \\
0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) V^{-1} \tilde{h}
\end{array}\right.
$$

Since

$$
e^{\tilde{W}_{\Omega^{k}} \Delta t}=V\left(\begin{array}{lc}
I & 0 \tag{49}\\
0 & e^{C \Delta t}
\end{array}\right) V^{-1}
$$

we can simplify h in (48) and rewrite it as

$$
\left\{\begin{array}{l}
W_{\Omega^{k}}=e^{\tilde{W}_{\Omega^{k}} \Delta t} \tag{50}\\
h=V\left(\begin{array}{cc}
H & 0 \\
0 & -C^{-1}\left(I-e^{C \Delta t}\right)
\end{array}\right) V^{-1} \tilde{h}
\end{array}\right.
$$

or equivalently

$$
\left\{\begin{array}{l}
\tilde{W}_{\Omega^{k}}=\frac{1}{\Delta t} \log \left(W_{\Omega^{k}}\right) \tag{51}\\
\tilde{h}=V\left(\begin{array}{cc}
H & 0 \\
0 & -C^{-1}\left(I-e^{C \Delta t}\right)
\end{array}\right)^{-1} V^{-1} h
\end{array}\right.
$$

In addition, we can write

$$
\begin{align*}
& \tilde{h}=V\left(\begin{array}{cc}
H & 0 \\
0 & -C^{-1}\left(I-e^{C \Delta t}\right)
\end{array}\right)^{-1} V^{-1} h \\
& =V\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
\frac{1}{\Delta t} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{\Delta t}
\end{array}\right)_{n \times n} & 0 \\
& 0 & C\left(e^{C \Delta t}-I\right)^{-1}
\end{array}\right) V^{-1} h \\
& =V\left[\frac{1}{\Delta t}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \mathrm{O}
\end{array}\right)+\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \\
0 & C
\end{array}\right)\right] \\
& \times\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \left(e^{C \Delta t}-I\right)^{-1}
\end{array}\right) V^{-1} h \\
& =V\left[\frac{1}{\Delta t}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \mathrm{O}
\end{array}\right)+V^{-1} \tilde{W}_{\Omega^{k}} V\right] \\
& \times\left[\left(\begin{array}{cc}
I_{n} & 0 \\
0 & e^{C \Delta t}
\end{array}\right)-\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \\
0 & I
\end{array}\right)\right]^{-1} V^{-1} h \\
& =\left[\frac{1}{\Delta t}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \mathrm{O}
\end{array}\right)+\tilde{W}_{\Omega^{k}}\right] \\
& \times\left[e^{\tilde{W}_{\Omega^{k}} \Delta t}-\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \\
0 & I
\end{array}\right)\right]^{-1} h . \tag{52}
\end{align*}
$$

Therefore

$$
\begin{align*}
\tilde{W}_{\Omega^{k}}= & \frac{1}{\Delta t} \log \left(W_{\Omega^{k}}\right) \\
\tilde{h}= & {\left[-\frac{1}{\Delta t}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \mathrm{O}
\end{array}\right)-\tilde{W}_{\Omega^{k}}\right] } \\
& \times\left[\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \\
0 & I
\end{array}\right)-e^{\tilde{W}_{\Omega^{k}} \Delta t}\right]^{-1} h \tag{53}
\end{align*}
$$

which is equivalent to (15).

Finally, from $W_{\Omega^{k}}=e^{\tilde{W}_{\Omega^{k}} \Delta t}$ it is deduced that $W_{\Omega^{k}}$ is invertible. It is only necessary to prove that for every point Z^{*} satisfying both equations (38) and (39), i.e. equations

$$
\left\{\begin{array}{l}
\left(W_{\Omega^{k}}-I\right) Z^{*}=-h \tag{54}\\
\tilde{W}_{\Omega^{k}} Z^{*}=-\tilde{h}
\end{array}\right.
$$

relation (15) is a solution of (46). Note that here we cannot simplify (54) to find some equation similar to (40), as neither $\left(W_{\Omega^{k}}-I\right)$ or $\tilde{W}_{\Omega^{k}}$ is invertible. Hence, we show that
(54) fulfills solution (15) or, identically, solution (50). Thus, inserting $\tilde{h}=-\tilde{W}_{\Omega^{k}} Z^{*}$ in (50), we have

$$
\begin{align*}
h & =e^{\tilde{W}_{\Omega^{k}} \Delta t} V\left(\begin{array}{cc}
H & 0 \\
0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) V^{-1} \tilde{h} \\
& =e^{\tilde{W}_{\Omega^{k}} \Delta t} V\left(\begin{array}{cc}
H & 0 \\
0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) V^{-1}\left(-\tilde{W}_{\Omega^{k}} Z^{*}\right) \\
& =e^{\tilde{W}_{\Omega^{k}} \Delta t} V\left(\begin{array}{cc}
H & 0 \\
0 & -\left(e^{-C \Delta t}-I\right) C^{-1}
\end{array}\right) V^{-1} V \\
& \times\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \\
0 & -C
\end{array}\right) V^{-1} Z^{*} \\
& =e^{\tilde{W}_{\Omega^{k}} \Delta t} V\left(\begin{array}{cc}
\mathrm{O}_{n \times n} & 0 \\
0 & \left(e^{-C \Delta t}-I\right)
\end{array}\right) V^{-1} Z^{*} \\
& =e^{\tilde{W}_{\Omega^{k}} \Delta t} V\left[\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \left.e^{-C \Delta t}\right)-\left(\begin{array}{c}
I_{n} \\
0
\end{array}\right. \\
0
\end{array}\right)\right] V^{-1} Z^{*} \tag{55}\\
& =\left(I-e^{\tilde{W}_{\Omega^{k}} \Delta t}\right) \begin{array}{l}
Z^{*}=\left(I-W_{\Omega^{k}}\right) Z^{*},
\end{array}
\end{align*}
$$

which demonstrates that (54) meets solution (50).

If every Jordan block of $W_{\Omega^{k}}$ associated with a negative eigenvalue occurs an even number of times, then theorem (2) guarantees that $\tilde{W}_{\Omega^{k}}$ will be real. Also, similar to the proof of theorem 3 , it is easy to see that $\tilde{W}_{\Omega^{k}}$ will be diagonalizable when $W_{\Omega^{k}}$ has no negative real eigenvalues.

7.5. Proof of theorem 5

Let $t_{0}=0$ without loss of generality and assume there exists the equivalent continuous-time system (12) for (10), for which matrix $W_{\Omega^{k}}$ is non-invertible. Then, relations (29) and (30) must hold for (10) and (12), analogously to the proofs of the previous theorems. Also, by similar reasoning we have

$$
\begin{equation*}
\zeta(\Delta t)=e^{\tilde{W}_{\Omega^{k}} \Delta t} \zeta(0)+\left[e^{\tilde{W}_{\Omega^{k}} \Delta t} \int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau\right] \tilde{h} \tag{56}
\end{equation*}
$$

Inserting conditions (29) in equation (56) and solving the resulting equation for all Z_{0}, including $Z_{0}=0$, yields

$$
\left\{\begin{array}{l}
W_{\Omega^{k}}=e^{\tilde{W}_{\Omega^{k}} \Delta t} \tag{57}\\
h=e^{\tilde{W}_{\Omega^{k}} \Delta t}\left(\int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau\right) \tilde{h}
\end{array}\right.
$$

Now let

$$
\begin{equation*}
\lambda \in \operatorname{Spectrum}\left(\tilde{W}_{\Omega^{k}}\right) \Rightarrow \lambda \Delta t \notin 2 i \pi \mathbb{Z}^{*} \tag{58}
\end{equation*}
$$

Then, by proposition $1, \int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau$ is invertible and so

$$
\left\{\begin{array}{l}
\tilde{W}_{\Omega^{k}}=\frac{1}{\Delta t} \log \left(W_{\Omega^{k}}\right) \tag{59}\\
\tilde{h}=\left(\int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau\right)^{-1} e^{-\tilde{W}_{\Omega^{k}} \Delta t} h
\end{array}\right.
$$

which is equal to equation (17). The last point which still has to be proven is that equation (54) meets solution (17) or, identically, (57), for every Z^{*}. Since $\tilde{W}_{\Omega^{k}}$ is non-invertible, it can be written in the following Jordan form:

$$
\tilde{W}_{\Omega^{k}}=U\left(\begin{array}{ll}
B & 0 \tag{60}\\
0 & C
\end{array}\right) U^{-1}
$$

where B is a strictly upper triangular matrix and C is an invertible matrix. Then

$$
\begin{align*}
& e^{-\tilde{W}_{\Omega^{k}} \Delta t}=U\left(\begin{array}{cc}
e^{-B \Delta t} & 0 \\
0 & e^{-C \Delta t}
\end{array}\right) U^{-1} \tag{61}\\
& \int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} \tilde{h} d \tau= \\
& U\left(\begin{array}{cc}
\int_{0}^{\Delta t} e^{-B \tau} d \tau & 0 \\
0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) U^{-1} \tag{62}
\end{align*}
$$

Now, substituting $\tilde{h}=-\tilde{W}_{\Omega^{k}} Z^{*}$ in (57) we have

$$
\left.\left.\begin{array}{rl}
h= & e^{\tilde{W}_{\Omega^{k}} \Delta t}\left(\int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau\right) \tilde{h} \\
= & e^{\tilde{W}_{\Omega^{k}} \Delta t} U\left(\begin{array}{cc}
\int_{0}^{\Delta t} e^{-B \tau} d \tau & 0 \\
0 & -C^{-1}\left(e^{-C \Delta t}-I\right)
\end{array}\right) \\
& \times U^{-1}\left(-\tilde{W}_{\Omega^{k}} Z^{*}\right) \\
= & 0 e^{\tilde{W}_{\Omega^{k}} \Delta t} U\left(\begin{array}{cc}
\int_{0}^{\Delta t} e^{-B \tau} d \tau & 0 \\
0 & -\left(e^{-C \Delta t}-I\right) C^{-1}
\end{array}\right) \\
\quad \times U^{-1} U\left(\begin{array}{cc}
-B & 0 \\
0 & -C
\end{array}\right) U^{-1} Z^{*} \\
=e^{\tilde{W}_{\Omega^{k}} \Delta t} U\left(\begin{array}{cc}
\int_{0}^{\Delta t}-B e^{-B \tau} & d \tau \\
0 & \left(e^{-C \Delta t}-I\right)
\end{array}\right) \\
\quad \times U^{-1} Z^{*} \quad\left(e^{-C \Delta t}-I\right)
\end{array}\right) U^{-1} Z^{*}\right)
$$

which completes the proof.

Finally, due to theorem (2), $\tilde{W}_{\Omega^{k}}$ will be real, provided that each Jordan block of $W_{\Omega^{k}}$ related to a negative eigenvalue occurs an even number of times.

Remark. In theorem 5, by (62) we have

$$
\begin{align*}
& \left(\int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau\right)^{-1}= \tag{64}\\
& U\left(\begin{array}{cc}
\left(\int_{0}^{\Delta t} e^{-B \tau} d \tau\right)^{-1} & 0 \\
0 & \left(I-e^{-C \Delta t}\right)^{-1} C
\end{array}\right) U^{-1} h \tag{65}
\end{align*}
$$

On the other hand, since C is invertible, $\operatorname{det}\left(I-e^{-C \Delta t}\right) \neq$ 0 . Therefore, $\int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau$ is invertible if and only if $\int_{0}^{\Delta t} e^{-B \tau} d \tau$ is invertible. Thus, for invertibility of $\int_{0}^{\Delta t} e^{-\tilde{W}_{\Omega^{k}} \tau} d \tau$, it is required that relation (58) holds only for any pair of eigenvalues of B.

7.6. Grazing bifurcation

Here we investigate a grazing bifurcation of periodic orbits for the continuous PLRNN derived from the van-der-Pol oscillator (Example 1). For this purpose, we consider the converted continuous-time system locally in the neighborhood of only one border

$$
\Sigma=\left\{\zeta=\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{10}\right)^{T} \in \mathbb{R}^{10} \mid H(\zeta)=\zeta_{2}=0\right\}
$$

where the scalar function $H: \mathbb{R}^{10} \rightarrow \mathbb{R}$ defines the border and has non-vanishing gradient. According to (di Bernardo \& Hogani, 2010; Monfared et al., 2017), a periodic orbit $\hat{\zeta}(t)$ undergoes a grazing bifurcation for some critical value of a bifurcation parameter, if it is a grazing orbit for some $t=t^{*}$. This means $\hat{\zeta}(t)$ hits Σ tangentially at the grazing point $\hat{\zeta}^{*}=\hat{\zeta}\left(t^{*}\right)$ and satisfies the following conditions:

$$
\begin{aligned}
& H\left(\hat{\zeta}^{*}\right)=\hat{\zeta}_{2}^{*}=0 \\
& \nabla H\left(\hat{\zeta}^{*}\right)=(0,1,0, \cdots, 0)^{T} \neq 0 \\
& \left\langle\nabla H\left(\hat{\zeta}^{*}\right), \tilde{W}_{\Omega^{1}} \hat{\zeta}^{*}+\tilde{h}_{1}\right\rangle=\sum_{\substack{j=1 \\
j \neq 2}}^{10} \tilde{w}_{2 j}^{(1)} \hat{\zeta}_{j}^{*}+\tilde{h}_{12}=0, \\
& \left\langle\nabla H\left(\hat{\zeta}^{*}\right), \tilde{W}_{\Omega^{2}} \hat{\zeta}^{*}+\tilde{h}_{2}\right\rangle=\sum_{\substack{j=1 \\
j \neq 2}}^{10} \tilde{w}_{2 j}^{(2)} \hat{\zeta}_{j}^{*}+\tilde{h}_{22}=0,
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\nabla H\left(\hat{\zeta}^{*}\right), \tilde{W}_{\Omega^{1}}^{2} \hat{\zeta}^{*}+\tilde{W}_{\Omega^{1}} \tilde{h}_{1}\right\rangle+\left\langle\nabla ^ { 2 } H (\hat { \zeta } ^ { * }) \left(\tilde{W}_{\Omega^{1}} \hat{\zeta}^{*}\right.\right. \\
& \left.\left.+\tilde{h}_{1}\right), \tilde{W}_{\Omega^{1}} \hat{\zeta}^{*}+\tilde{h}_{1}\right\rangle=\sum_{\substack{j=1 \\
j \neq 2}}^{10} \tilde{v}_{2 j}^{(1)} \hat{\zeta}_{j}^{*}+\sum_{\substack{j=1 \\
j \neq 2}}^{10} \tilde{w}_{2 j}^{(1)} \tilde{h}_{1 j}=0, \\
& \left\langle\nabla H\left(\hat{\zeta}^{*}\right), \tilde{W}_{\Omega^{2}}^{2} \hat{\zeta}^{*}+\tilde{W}_{\Omega^{2}} \tilde{h}_{2}\right\rangle+\left\langle\nabla ^ { 2 } H (\hat { \zeta } ^ { * }) \left(\tilde{W}_{\Omega^{2}} \hat{\zeta}^{*}\right.\right. \\
& \left.\left.+\tilde{h}_{2}\right), \tilde{W}_{\Omega^{2}} \hat{\zeta}^{*}+\tilde{h}_{2}\right\rangle=\sum_{\substack{j=1 \\
j \neq 2}}^{10} \tilde{v}_{2 j}^{(2)} \hat{\zeta}_{j}^{*}+\sum_{\substack{j=1 \\
j \neq 2}}^{10} \tilde{w}_{2 j}^{(2)} \tilde{h}_{2 j}=0,
\end{aligned}
$$

where $\tilde{W}_{\Omega^{1}}=\left[\tilde{w}_{i j}^{(1)}\right], \tilde{W}_{\Omega^{2}}=\left[\tilde{w}_{i j}^{(2)}\right], \tilde{W}_{\Omega^{1}}^{2}=\left[\tilde{v}_{i j}^{(1)}\right]$ and $\tilde{W}_{\Omega^{2}}^{2}=\left[\tilde{v}_{i j}^{(2)}\right]$.
In this case the periodic orbit $\hat{\zeta}(t)$ crosses Σ transversally as the bifurcation parameter passes through the bifurcation value. The grazing bifurcation leads to a transition or a sudden jump in the system's response by the dis-/appearance of a tangential intersection between the trajectory and the switching boundary. The occurrence of a grazing bifurcation in the continuous PLRNN is illustrated in Fig. 2.

