Explainable k-Means and k-Medians Clustering

Sanjoy Dasgupta1 Nave Frost2 Michal Moshkovitz1 Cyrus Rashtchian1

Abstract

Many clustering algorithms lead to cluster assignments that are hard to explain, partially because they depend on all the features of the data in a complicated way. To improve interpretability, we consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner. We study this problem from a theoretical viewpoint, measuring cluster quality by the k-means and k-medians objectives. In terms of negative results, we show that popular top-down decision tree algorithms may lead to clusterings with arbitrarily large cost, and any clustering based on a tree with k leaves must incur an $\Omega(\log k)$ approximation factor compared to the optimal clustering. On the positive side, for two means/medians, we show an efficient algorithm that leads to an $O(k)$ approximation to the optimal k-medians and an $O(k^2)$ approximation to the optimal k-means. Prior to our work, no algorithms were known with provable guarantees independent of dimension and input size.

1. Introduction

A central direction in machine learning is understanding the reasoning behind decisions made by learned models (Lipton, 2018; Molnar, 2019; Murdoch et al., 2019). Prior work on AI explainability focuses on the interpretation of a black-box model, known as post-modeling explainability (Baehrens et al., 2010; Deutch & Frost, 2019). While methods such as LIME (Ribeiro et al., 2016) or Shapley explanations (Lundberg & Lee, 2017) have made progress in this direction, they depend on all the features of the data in a complicated way. To improve interpretability, we consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner. We study this problem from a theoretical viewpoint, measuring cluster quality by the k-means and k-medians objectives. In terms of negative results, we show that popular top-down decision tree algorithms may lead to clusterings with arbitrarily large cost, and any clustering based on a tree with k leaves must incur an $\Omega(\log k)$ approximation factor compared to the optimal clustering. On the positive side, for two means/medians, we show an efficient algorithm that leads to an $O(k)$ approximation to the optimal k-medians and an $O(k^2)$ approximation to the optimal k-means. Prior to our work, no algorithms were known with provable guarantees independent of dimension and input size.

We address the challenge of developing machine learning systems that are explainable by design, starting from an unlabeled data set. Specifically, we consider pre-modeling explainability in the context of clustering. A common use of clustering is to identify patterns or discover structural properties in a data set by quantizing the unlabeled points. For instance, k-means clustering may be used to discover coherent groups among a supermarket’s customers. While there are many good clustering algorithms, the resulting cluster assignments can be hard to understand because the clusters may be determined using all the features of the data, and there may be no concise way to explain the inclusion of a particular point in a cluster. This limits the ability of users to discern the commonalities between points within a cluster or understand why points ended up in different clusters.

Our goal is to develop accurate, efficient clustering algorithms with concise explanations of the cluster assignments. There should be a simple procedure using a few features to explain why any point belongs to its cluster. Small decision trees have been identified as a canonical example of an easily explainable model (Molnar, 2019; Murdoch et al., 2019), and previous work on explainable clustering uses an unsupervised decision tree (Bertsimas et al., 2018; Fraiman et al., 2013; Geurts et al., 2007; Ghattas et al., 2017; Liu et al., 2005). Each node of the binary tree iteratively partitions the data by thresholding on a single feature. We focus on finding k clusters, and hence, we use trees with k leaves. Each leaf corresponds to a cluster, and the tree is as small as possible. We refer to such a tree as a threshold tree.

There are many benefits of using a small threshold tree to produce a clustering. Any cluster assignment is explained by computing the thresholds along the root-to-leaf path. By restricting to k leaves, we ensure that each such path accesses at most $k - 1$ features, independent of the data dimension. In general, a threshold tree provides an initial quantization of the data set, which can be combined with other methods for future learning tasks. While we consider static data sets, new data points can be easily clustered by using the tree, leading to explainable assignments.
Explainable k-Means and k-Medians Clustering

To analyze clustering quality, we consider the k-means and k-medians objectives (MacQueen, 1967; Steinhaus, 1956). The goal is to efficiently determine a set of k centers that minimize either the squared ℓ_2 or the ℓ_1 distance, respectively, of the input vectors to their closest center.

Figure 1 provides an example of standard and explainable k-means clustering on the same data set. The left figure shows an optimal 5-means clustering. The figure in the middle shows an explainable 5-means clustering, determined by the tree on the right. The tree has five leaf nodes, and vectors are assigned to clusters based on the thresholds. Geometrically, the tree defines a set of axis-aligned cuts that determine the clusters. While the two clusterings are very similar, using the threshold tree leads to easy explanations, whereas using a standard k-means clustering algorithm leads to more complicated clusters. The difference between the two approaches becomes more evident in higher dimensions, because standard algorithms will likely determine clusters based on all of the feature values.

To reap the benefits of explainable clusters, we must ensure that the data partition is a good approximation of the optimal clustering. While many efficient algorithms have been developed for k-means/medians clustering, the resulting clusters are often hard to interpret (Arthur & Vassilvitskii, 2007; Kannan, Ostrovsky et al., 2002; Shalev-Shwartz & Ben-David, 2014). For example, Lloyd’s algorithm alternates between determining the best center for the clusters and reassigning points to the closest center (Lloyd, 1982). The resulting set of centers depends in a complex way to the other points in the data set. Therefore, the relationship between a point and its nearest center may be the result of an opaque combination of many feature values. This issue persists even after dimension reduction or feature selection, because a non-explainable clustering algorithm is often invoked on the modified data set. As our focus is on pre-modeling explanability, we aim for simple explanations that use the original feature vectors.

Figure 1 depicts a situation where the optimal clustering is approximated by one that is induced by a tree. But it is not clear whether this is possible in general. Our first technical challenge is to understand the *price of explainability* in the context of clustering: that is, the multiplicative blowup in k-means (or k-medians) cost that is inevitable if we force our final clustering to have an interpretable form. The second challenge is to actually find such a tree efficiently. This is non-trivial because it requires a careful, rather than random or exhaustive, choice of a subset of features. As we will see, the analysis that is ultimately needed is quite novel even given the vast existing literature on clustering.

1.1. Our contributions

We provide several new theoretical results on explainable k-means and k-medians clustering. Our new algorithms and lower bounds are summarized in Table 1.

Basic limitations. A partition into k clusters can be realized by a binary threshold tree with $k-1$ internal splits. This uses at most $k-1$ features, but is it possible to use even fewer, say $\log k$ features? In Section 3, we demonstrate a simple data set that requires $\Omega(k)$ features to achieve an explainable clustering with bounded approximation ratio compared to the optimal k-means/medians clustering. The depth of the tree might need to be $k-1$ in the worst case.

One idea for building a tree is to begin with a good k-means (or k-medians) clustering, use it to label all the points, and then apply a supervised decision tree algorithm that

![Figure 1:](image-url)

(a) Optimal 5-means clusters
(b) Tree based 5-means clusters
(c) Threshold tree
Explainable k-Means and k-Medians Clustering

Attempts to capture this labeling. In Section 3, we show that standard decision tree algorithms, such as ID3, may produce clusterings with arbitrarily high cost. Thus, existing splitting criteria are not suitable for finding a low-cost clustering, and other algorithms are needed.

New algorithms. On the positive side, we provide efficient algorithms to find a small threshold tree that comes with provable guarantees on the cost. We note that using a small number of clusters is preferable for easy interpretations, and therefore k is often relatively small. For the special case of two clusters ($k = 2$), we show (Theorem 1) that a single threshold cut provides a constant-factor approximation to the optimal 2-medians/means clustering, with a closely-matching lower bound (Theorem 2), and we provide an efficient algorithm for finding the best cut. For general k, we show how to approximate any clustering by using a threshold tree with k leaves (Algorithm 1). The main idea is to minimize the number of mistakes made at each node in the tree, where a mistake occurs when a threshold separates a point from its original center. Overall, the cost of the explainable clustering will be close to the original cost up to a factor that depends on the tree depth (Theorem 3). In the worst-case, we achieve an approximation factor of $O(k^2)$ for k-means and $O(k)$ for k-medians compared to the cost of any clustering (e.g., the optimal cost). These results do not depend on the dimension or input size, and hence, we get a constant factor approximation when k is a constant.

Approximation lower bounds. Since our upper bounds depend on k, it is natural to wonder whether it is possible to achieve a constant-factor approximation, or whether the cost of explainability grows with k. On the negative side, we identify a data set such that any threshold tree with k leaves must incur an $\Omega(k\log k)$-approximation for both k-medians and k-means (Theorem 4). For this data set, our algorithm achieves a nearly matching bound for k-medians.

Table 1: Summary of our new lower and upper bounds on approximating k-medians/means with explainable clusters.

<table>
<thead>
<tr>
<th></th>
<th>k-medians</th>
<th>k-means</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>$\Omega(\log k)$</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>$k > 2$</td>
<td>$O(k^2)$</td>
<td>$\Omega(\log k)$</td>
</tr>
</tbody>
</table>

1.2. Related work

It is NP-hard to find the optimal k-means clustering (Aloise et al., 2009; Dasgupta, 2008) or even a very close approximation (Awasthi et al., 2015). Previous algorithms for k-medians/means use iterative algorithms to produce a good approximate clustering, but this leads to complicated clusters that depend on subtle properties of the data set (Aggarwal et al., 2009; Arthur & Vassilvitskii, 2007; Kanungo et al., 2002; Ostrovsky et al., 2013). Several papers have considered the use of decision trees for explainable clustering (Bertsimas et al., 2018; Fraiman et al., 2013; Geurts et al., 2007; Ghattas et al., 2017; Liu et al., 2005). However, all prior work on this topic is empirical, without any theoretical analysis of quality compared to the optimal clustering.

One way to cluster based on few features is to use dimensionality reduction. Two main types of dimensionality reduction methods have been investigated for k-medians/means. Work on feature selection shows that it is possible to cluster based on $\Theta(\log k)$ features and obtain a constant factor approximation for k-means/medians (Boutsidis et al., 2009; Cohen et al., 2015). However, after selecting the features, these methods employ existing approximation algorithms to find a good clustering, and hence, the cluster assignments are not explainable. Work on feature extraction shows that it is possible to use the Johnson-Lindenstrauss transform to $\Theta(\log k)$ dimensions, while preserving the clustering cost (Becchetti et al., 2019; Makarychev et al., 2019). Again, this relies on running a k-means/medians algorithm after projecting to the low dimensional subspace. The resulting clusters are not explainable, and moreover, the features are arbitrary linear combinations of the original features.

Besides explainability, many other clustering variants have received recent attention, such as fair clustering (Backurs et al., 2019; Bera et al., 2019; Huang et al., 2019; Kleinbessner et al., 2019; Mahabadi & Vakilian, 2020; Schmidt et al., 2019), online clustering (Bhaskara & Rwanpathirana, 2020; Cohen-Addad et al., 2019; Hess & Sabato, 2019; Liberty et al., 2016; Moshkovitz, 2019), and the use of same-cluster queries (Ailon et al., 2018; Ashtiani et al., 2016; Huleihel et al., 2019; Mazumdar & Saha, 2017).

2. Preliminaries

Throughout we use bold variables for vectors, and we use non-bold for scalars such as feature values. Given a set of points $X = \{x^1, \ldots, x^n\} \subseteq \mathbb{R}^d$ and an integer k the goal of k-medians and k-means clustering is to partition X into k subsets and minimize the distances of the points to the centers of the clusters.

It is known that the optimal centers correspond to means or medians of the clusters, respectively. Denoting the centers as μ^1, \ldots, μ^k, the aim of k-means is to find a clustering that minimizes the following objective

$$
\text{cost}_2(\mu^1, \ldots, \mu^k) = \sum_{x \in X} \|x - c_2(x)\|_2^2,
$$

where $c_2(x) = \arg\min_{\mu \in \{\mu^1, \ldots, \mu^k\}} \|\mu - x\|_2$.

Similarly, the goal of k-medians is to minimize

$$
\text{cost}_1(\mu^1, \ldots, \mu^k) = \sum_{x \in X} \|x - c_1(x)\|_1,
$$

where $c_1(x) = \arg\min_{\mu \in \{\mu^1, \ldots, \mu^k\}} \|\mu - x\|_1$.
2.1. Clustering using threshold trees

Perhaps the simplest way to define two clusters is to use a threshold cut, which partitions the data based on a threshold for a single feature. More formally, the two clusters can be written as $C_m^i = (C^1, C^2)$, which is defined using a coordinate i and a threshold $\theta \in \mathbb{R}$ in the following way. For each input point $x \in \mathcal{X}$, we place $x = [x_1, \ldots, x_d]$ in the first cluster C^1 if $x_i \leq \theta$, and otherwise $x \in C^2$. A threshold cut can be used to explain 2-means or 2-medians clustering because a single feature and threshold determines the division of points into two clusters.

For $k > 2$ clusters, we consider iteratively using threshold cuts as the basis for the cluster explanations. More precisely, we construct a binary threshold tree. This tree is an unsupervised variant of a decision tree. Each internal node contains a single feature and threshold, which iteratively partitions the data, leading to clusters determined by the vectors that reach the leaves. We focus on trees with exactly k leaves, one for each cluster $\{1, 2, \ldots, k\}$, which also limits the depth and total number of features to at most $k - 1$.

When clustering using such a tree, it is easy to understand why x was assigned to its cluster: we may simply inspect the threshold conditions on the root-to-leaf path for x. This also enforces the number of conditions for the cluster assignment is rather small, which is crucial for interpretability. Notice that these tree-based explanations are especially useful in high-dimensional space, when the number of clusters is much smaller than the input dimension ($k \ll d$).

More formally, a threshold tree T with k leaves induces a k-clustering of the data. If we denote these clusters as $\hat{C}^j \subseteq \mathcal{X}$, the k-medians/means cost of the tree is defined as

$$\text{cost}_1(T) = \sum_{j=1}^{k} \sum_{x \in \hat{C}^j} ||x - \text{median}(\hat{C}^j)||_1$$

$$\text{cost}_2(T) = \sum_{j=1}^{k} \sum_{x \in \hat{C}^j} ||x - \text{mean}(\hat{C}^j)||_2$$

Our goal is to understand when it is possible to efficiently produce a tree T such that $\text{cost}(T)$ is not too large compared to the optimal k-medians/means cost. Specifically, we say that an algorithm is an a-approximation, if the cost is at most a times the optimal cost, i.e., if the algorithm returns threshold tree T then we have $\text{cost}(T) \leq a \cdot \text{cost}(opt)$.
clusters $X = X_0 \cup X_1 \cup X_2$. We define two centers $\mu^0 = (-2, 0)$ and $\mu^1 = (2, 0)$ for each $i \in \{0, 1\}$, we define X_i as 500 i.i.d. points $x \sim N(\mu^i, \epsilon)$ for some small $\epsilon > 0$. Then, $X_2 = \{(x, v) | (2, v) \}$ where $v \to \infty$. With high probability, we have that the optimal 3-means clustering is (X_0, X_1, X_2), i.e. $x \in X$ gets label $y \in \{0, 1, 2\}$ such that $x \in X_y$. The ID3 algorithm minimizes the entropy at each step. In the first iteration, it splits between the two large clusters. As a result $(-2, v)$ and $(2, v)$ will also be separated from one another. Since $ID3_n$ outputs a tree with exactly three leaves, one of the leaves must contain a point from X_2 together with points from either X_0 or X_1, this means that $\text{cost}(ID3_n) = \Omega(v) \to \infty$. Note that cost $(ID3_n)$ does not depend on v, and hence, it is substantially smaller than cost $(ID3_n)$. Unlike ID3, the optimal threshold tree first separates X_2 from $X_0 \cup X_1$, and in the second split it separates X_0 and X_1. In other words, putting the outliers in a separate cluster is necessary for an optimal clustering. We note that it is easy to extend this example to larger numbers of clusters or when we allow ID3 to use more leaves.

4. Two Clusters Using a Single Threshold Cut

In this section, we consider the case of $k = 2$ clusters, and we study how well a single threshold cut can approximate the optimal partition into two clusters.

4.1. Algorithm for $k = 2$

We present an algorithm to efficiently minimize the cost using a single threshold cut. We begin by considering a single feature i and determining the value of the best threshold $\theta \in \mathbb{R}$ for this feature. Then, we minimize over all features $i \in [d]$ to output the best threshold cut. We focus on the 2-means algorithm; the 2-medians case is similar.

For feature i, we first sort the input points according to this feature, i.e., assume that the vectors are indexed as $x_i^1 \leq \ldots \leq x_i^n$. Notice that when restricting to this feature, there are only $n - 1$ possible partitions of the data set into two non-empty clusters. In particular, we can calculate the cost of all threshold cuts for the ith feature by scanning the values in this feature from smallest to largest. Then, we compute for each position $p \in [n - 1]$

$$\text{cost}(p) = \sum_{j=1}^{p} \|x^j - \mu^1(p)\|_2^2 + \sum_{j=p+1}^{n} \|x^j - \mu^2(p)\|_2^2,$$

where we denote the optimal centers for these clusters as $\mu^1(p) = \frac{1}{p} \sum_{p}^{j=1} x_j^i$ and $\mu^2(p) = \frac{1}{n-p} \sum_{j=p+1}^{n} x_j^i$ because these are the means of the first p and last $n - p$ points, respectively. Because there are $O(nd)$ possible thresholds, and naively computing the cost of each requires time $O(nd)$, this would lead to a running time of $O(n^2d^2)$. We can improve the time to $O(nd^2 + nd \log n)$ by using dynamic programming. Pseudo-code for the algorithm and description of the dynamic programming are in Appendix F.1.

4.2. Theoretical guarantees for $k = 2$

We prove that there always exists a threshold cut with low cost. Since our algorithm from the previous section finds the best cut, it achieves the guarantees of this theorem.

Theorem 1. For any data set $X \subseteq \mathbb{R}^d$, there is a threshold cut \hat{C} such that the 2-means cost satisfies

$$\text{cost}(\hat{C}) \leq 2 \cdot \text{cost}(\text{opt}),$$

and there is a threshold cut C such that the 2-means cost satisfies

$$\text{cost}(\hat{C}) \leq 4 \cdot \text{cost}(\text{opt}),$$

where opt is the optimal 2-medians or means clustering.

The key idea of the analysis is to bound the cost of the threshold clustering in terms of the number of points on which it disagrees with an optimal clustering. Intuitively, if any threshold cut must lead to a fairly different clustering, then the cost of the optimal 2-medians/means clustering must also be large.

We note that it is possible to prove a slightly weaker bound by using the midpoint (for each feature) between the centers. When there are t changes, using the midpoint shows that cost (opt) is at least t times half of the distance between the two centers. In other words, this argument only captures half of the cost. Using Hall’s theorem, we show that each change corresponds to a pair in the matching, and each such pair contributes to cost (opt) the distance between the
centers (not half as before). This improves the bound by a factor of two. The proof for 2-means is in Appendix D.

Notation. We denote the optimal clusters as C^1 and C^2 with optimal centers μ^1 and μ^2. Notice that we can assume $\mu^1_i \leq \mu^2_i$ for each coordinate i because negating the ith coordinate for all points in the dataset does not change the 2-means/means cost. Assume that a single threshold partitions X into \hat{C}^1, \hat{C}^2 such that $t = \min(|C^1 \Delta \hat{C}^1|, |C^1 \Delta \hat{C}^2|)$. We refer to these t points as changes, and we assume that t is the minimum possible over all threshold cuts.

If C^1, C^2 is an optimal 2-medians clustering, then we prove that the cost of \hat{C}^1, \hat{C}^2 is at most twice the optimal 2-medians cost. Similarly, if C^1, C^2 is an optimal 2-medians clustering, then we prove that the cost of \hat{C}^1, \hat{C}^2 is at most four times the optimal 2-means cost. We simply need that the threshold cut $\hat{C} = (\hat{C}^1, \hat{C}^2)$ minimizes the number of changes t compared to the optimal clusters.

We begin with a structural claim regarding the best threshold cut. This will allow us to obtain a tighter bound on the optimal 2-medians/means cost, compared to the general $k > 2$ case, in terms of the necessary number of changes. We utilize Hall’s theorem on perfect matchings.

Proposition 1 (Hall’s Theorem). Let (P, Q) be a bipartite graph. If all subsets $P' \subseteq P$ have at least $|P'|$ neighbors in Q, then there is a matching of size $|P|$.

Lemma 1. Let C^1 and C^2 be the optimal clustering of $X \subseteq \mathbb{R}^d$, and assume that any threshold cut requires t changes. For each $i \in [d]$, there are t disjoint pairs of vectors (p^i, q^i) in X such that $p^i \in C^1$ and $q^i \in C^2$ and $q^i_j \leq p^i_j$ for every $j \in [t]$.

Proof. Let μ^1 and μ^2 be the centers for the optimal clusters C^1 and C^2. Focus on index $i \in [d]$, and assume without loss of generality that $\mu^1_i \leq \mu^2_i$. The t pairs correspond to a matching the following bipartite graph (P, Q). Let $Q = C^2$ and define $P \subseteq C^1$ as the t points in C^1 with largest value in their ith coordinate. Connect $p \in P$ and $q \in Q$ by an edge if only if $q_i \leq p_i$. By construction, a matching with t edges implies our claim. By Hall’s theorem, we just need to prove that $P' \subseteq P$ has at least $|P'|$ neighbors.

Index $P = \{p^1, \ldots, p^t\}$ by ascending value of ith coordinate, $p^1_i \leq \cdots \leq p^t_i$. Now, notice that vertices in P have nested neighborhoods: for all $j > j'$, the neighborhood of p^j is a subset of the neighborhood of $p^{j'}$. It suffices to prove that p^j has at least j neighbors, because this implies that any subset $P' \subseteq P$ has at least $|P'|$ neighbors, guaranteeing a matching of size $|P| = t$. Indeed, if $|P'| = b$ then we know that $p^j \in P'$ for some $j \geq b$, implying that P' has at least $j \geq b = |P'|$ neighbors.

Assume for contradiction that p^j has at most $j - 1$ neighbors. We argue that the threshold cut $x_i \leq p^j_i$ has fewer than t changes, which contradicts the fact that all threshold cuts must make at least t changes. By our assumption, there are at most $j - 1$ points that are smaller than p^j_i and belong to the second cluster. By the definition of P, there are exactly $t - j$ points with a larger ith coordinate than p^j_i in the first cluster. Therefore, the threshold cut $x_i \leq p^j_i$ makes at most $(t - j) + (j - 1) < t$ changes, a contradiction.

Proof for 2-medians. Suppose μ^1, μ^2 are optimal 2-medians centers for clusters C^1 and C^2, and that the threshold cut \hat{C} minimizes the number of changes t, which is the minimum possible. Applying Lemma 4 (see Appendix B) in the special case of $k = 2$ implies that $\text{cost}(\hat{C}) \leq \text{cost}(\text{opt}) + t \|\mu^1 - \mu^2\|_1$.

We simply need to prove that $t \|\mu^1 - \mu^2\|_1 \leq \text{cost}(\text{opt})$.

Applying Lemma 1 for each coordinate $i \in [d]$ guarantees t pairs of vectors (p^i, q^i) with the following properties. Each p^i_j corresponds to the ith coordinate of some point in C^1 and q^i_j corresponds to the ith coordinate of some point in C^2. Furthermore, for each coordinate, the t pairs correspond to $2t$ distinct points in X. Finally, we can assume without loss of generality that $\mu^1_i \leq \mu^2_i$ and $q^i_j \leq p^i_j$, which implies that

\[
\text{cost}(\text{opt}) \geq \sum_{i=1}^{d} \sum_{j=1}^{t} |\mu^2_i - q^i_j| + |p^i_j - \mu^1_i| \\
\geq \sum_{i=1}^{d} \sum_{j=1}^{t} (\mu^2_i - q^i_j) + (p^i_j - \mu^1_i) \\
\geq \sum_{i=1}^{d} \sum_{j=1}^{t} (\mu^2_i - q^i_j) + (q^i_j - p^i_j) + (p^i_j - \mu^1_i) \\
= t \cdot \sum_{i=1}^{d} (\mu^2_i - \mu^1_i) = t \|\mu^2 - \mu^1\|_1.
\]

4.3. Lower bounds for $k = 2$

We next show that optimal clustering is not, in general, realizable with a single threshold cut, except in a small number of dimensions (e.g., $d = 1$). Our lower bounds on the approximation ratio increase with the dimension, approaching two for 2-medians or three for 2-means.

The two lower bounds are based on a data set $X \subseteq \mathbb{R}^d$ consisting of $2d$ points, split into two optimal clusters each with d points. The first cluster contains the d vectors of the form $1 - e^i$, where e^i is the ith coordinate vector and 1 is the all-ones vector. The second cluster contains their negations, $-1 + e^i$. Due to the zero-valued coordinate in each vector, any threshold cut must separate at least one
We provide an efficient algorithm to produce a threshold tree with k leaves that constitutes an approximate k-medians or k-means clustering of a data set X. Our algorithm, Iterative Mistake Minimization (IMM), starts with a reference set of cluster centers, for instance from a polynomial-time constant-factor approximation algorithm for k-medians/means (Aggarwal et al., 2009), or from a domain-specific clustering heuristic. These centers may use all the features and produce complicated clusters in the d-dimensional space.

We then begin the process of finding an explainable approximation to this reference clustering, in the form of a threshold tree with k leaves, whose internal splits are based on single features. The way we do this is almost identical for k-medians and k-means, and the analysis is nearly the same. Our algorithm is deterministic and its run time is $O(kdn \log n)$, after finding the initial centers.

As discussed in Section 3, existing decision tree algorithms use greedy criteria that are not suitable for our tree-building process. However, we show that an alternative greedy criterion—minimizing the number of mistakes at each split (the number of points separated from their corresponding cluster center)—leads to a favorable approximation ratio to the optimal k-medians or k-means cost.

5.1. Our algorithm

Algorithm 1 takes as input a data set $X \subseteq \mathbb{R}^d$. The first step is to obtain a reference set of k centers $\{\mu_1, \ldots, \mu_k\}$, for instance from a standard clustering algorithm. We assign each data point x the label y of its closest center. We then call the build_tree procedure, which looks for a tree-induced clustering that fits these labels.

The tree is built top-down, using binary splits. Each node u of the tree can be associated with the portion of the input space that passes through that node, a hyper-rectangular region $\text{cell}(u) \subseteq \mathbb{R}^d$. If this cell contains two or more of the centers μ_j, then it needs to be split. We do so by picking the feature $i \in [d]$ and threshold value $\theta \in \mathbb{R}$ such that the resulting split $x_i < \theta$ sends at least one center to each side and moreover produces the fewest mistakes: that is, separates the fewest points in $X \cap \text{cell}(u)$ from their corresponding centers in $\{\mu_j : 1 \leq j \leq k\} \cap \text{cell}(u)$. We do not count points whose centers lie outside cell(u), since they are associated with mistakes in earlier splits. Figure 4 in Appendix A shows a step-by-step example.

We find the optimal split (i, θ) by searching over all pairs efficiently using dynamic programming. We then add this node to the tree, and discard the mistakes (the points that got split from their centers) before recursing on the left and right children. We terminate at a leaf node whenever all points have the same label (i.e., the subset of the data is homogeneous). Because there were k different labels to begin with, the resulting tree has exactly k leaves.

We next describe how to speed-up the algorithm using dynamic programming. In Section 5.2, we provide the main ideas for analyzing the IMM approximation guarantees.

5.2. Time analysis of the tree-building algorithm. We sketch how to execute the algorithm in time $O(kdn \log n)$ for an n-point data set. At each step of the top-down procedure,
we find a coordinate and threshold pair that minimizes the mistakes at this node (line 10 in \texttt{build_tree} procedure). We use dynamic programming to avoid recomputing the cost from scratch for each potential threshold. For each coordinate \(i \in [d]\), we first sort the data points and centers. Then, we iterate over the possible thresholds. We claim that each internal node can be processed in time \(O(dn \log n)\). The key observation is that each point will affect the number of mistakes at most two times. Indeed, when the threshold moves, either a data point or a center moves to the other side of the threshold. Since we know the number of mistakes from the previous threshold, we efficiently count the new mistakes as follows. If a single data point changes sides, then the number of mistakes changes by at most one. If a center switches sides, which happens at most once, then we can update the mistakes for this center. Overall, each data point affects the mistakes at most twice (once when changing sides, and once when its center changes sides). Thus, the running time for each internal node is \(O(dn \log n)\). As the tree has \(k - 1\) internal nodes, the total time is \(O(kdn \log n)\).

5.2. Approximation guarantee for the IMM algorithm

Our main theoretical result of this section is the following.

Theorem 3. Suppose that IMM takes centers \(\mu^1, \ldots, \mu^k\) and returns a tree \(T\) of depth \(H\). Then,

1. The \(k\)-medians cost is at most
 \[
 \text{cost}(T) \leq (2H + 1) \cdot \text{cost}(\mu^1, \ldots, \mu^k)
 \]
2. The \(k\)-means cost is at most
 \[
 \text{cost}(T) \leq (8Hk + 2) \cdot \text{cost}(\mu^1, \ldots, \mu^k)
 \]

In particular, IMM achieves worst case approximation factors of \(O(k)\) and \(O(k^2)\) using any \(O(1)\) approximation to \(k\)-means or \(k\)-medians, respectively.

We state the theorem in terms of the depth of the tree to highlight that the approximation guarantee may depend on the structure of the input data. If the optimal clusters can be easily identified by a small number of salient features, then the tree may have depth \(O(\log k)\). In the next section we provide a lower bound showing that an \(\Omega(\log k)\) approximation factor is necessary for \(k\)-medians and \(k\)-means. For this data set, our algorithm produces a threshold tree with depth \(O(\log k)\), and therefore, the analysis is tight for \(k\)-medians. We leave it as an intriguing open question whether the bound can be improved for \(k\)-means.

The proof of the approximation bound rests upon a simple characterization of the excess clustering cost induced by the tree. For any internal node \(u\) of the final tree \(T\), let \(\text{cell}(u) \subseteq \mathbb{R}^d\) denote the region of the input space that ends up in that node, and let \(B(u)\) be the bounding box of the centers that lie in this node, \(\{\mu^j : 1 \leq j \leq k\} \cap \text{cell}(u)\). We will be interested in the diameter of this bounding box, measured either by \(\ell_1\) or squared \(\ell_2\) norm, and denoted \(\text{diam}_1(B(u))\) and \(\text{diam}_2^2(B(u))\), respectively.

Lemma 2. If IMM takes centers \(\mu^1, \ldots, \mu^k\) and returns a tree \(T\) that incurs \(t_u\) mistakes at node \(u \in T\), then

1. The \(k\)-medians cost of \(T\) satisfies
 \[
 \text{cost}(T) \leq \text{cost}(\mu^1, \ldots, \mu^k) + \sum_{u \in T} t_u \text{diam}_1(B(u))
 \]
2. The \(k\)-means cost of \(T\) satisfies
 \[
 \text{cost}(T) \leq 2\text{cost}(\mu^1, \ldots, \mu^k) + 2\sum_{u \in T} t_u \text{diam}_2^2(B(u))
 \]

A detailed proof is given in Appendix B. Briefly, any point \(x\) that ends up in a different leaf from its correct center \(\mu^j\) incurs some extra cost. To bound this, consider the internal node \(u\) at which \(x\) is separated from \(\mu^j\). Node \(u\) also contains the center \(\mu^j\) that ultimately ends up in the same leaf as \(x\). For \(k\)-medians, the excess cost for \(x\) can then be bounded by \(\|\mu^j - \mu^i\|_1 \geq \text{diam}_1(B(u))\). The argument for \(k\)-means is similar.

These \(\sum_u t_u \text{diam}(B(u))\) terms can in turn be bounded in terms of the cost of the reference clustering.

Lemma 3. If IMM takes centers \(\mu^1, \ldots, \mu^k\) and returns a tree \(T\) of depth \(H\) that makes \(t_u\) mistakes at node \(u \in T\), then

1. The \(k\)-medians cost satisfies
 \[
 \sum_{u \in T} t_u \text{diam}_1(B(u)) \leq 2H \cdot \text{cost}(\mu^1, \ldots, \mu^k).
 \]
2. The \(k\)-means cost satisfies
 \[
 \sum_{u \in T} t_u \text{diam}_2^2(B(u)) \leq 4Hk \cdot \text{cost}(\mu^1, \ldots, \mu^k).
 \]

The proof for this lemma is significantly more complicated, and it contains the main new techniques in our analysis. We provide a sketch of the proof; full details are in Appendix B.

The core challenge is that we aim to lower bound the cost of the given centers using only information about the number of mistakes at each internal node. Moreover, the IMM algorithm only minimizes the number of mistakes, and not the cost of each mistake. Therefore, we must show that if every axis-aligned cut in \(B(u)\) separates at least \(t_u\) points \(x\) from their centers, then there must be a considerable distance between the points in \(\text{cell}(u)\) and their centers.
To prove this, we analyze the structure of points in each cell. Specifically, we consider the single-coordinate projection of points in the box $B(u)$, and we order the centers in $B(u)$ from smallest to largest for the analysis. If there are k' centers in node u, we consider the partition of $B(u)$ into $2(k' - 1)$ disjoint segments, splitting at the centers and at the midpoints between consecutive centers. Since t_u is the minimum number of mistakes, we must in particular have at least t_u mistakes from the threshold cut at each midpoint. We argue that each of these segments is covered at least t_u times by a certain set of intervals. Specifically, we consider the intervals between mistake points and their true centers, and we say that an interval covers a segment if the segment is contained in the interval. This allows us to capture the cost of mistakes at different distance scales. For example, if a point is very far from its true center, then it covers many disjoint segments, and we show that it also implies a large contribution to the cost. Claim 2 in Appendix B provides our main covering result, and we use this to argue that the cost of the given centers can be lower bounded in terms of the distance between consecutive centers in $B(u)$. For k-medians, we can directly derive a lower bound on the cost in terms of the ℓ_1 diameter $\text{diam}_1(B(u))$. For k-means, however, we employ Cauchy-Schwarz, which incurs an extra factor of k in the bound with $\text{diam}_2^2(B(u))$. Overall, we sum these bounds over the height H of the tree, leading to the claimed upper bounds in the above lemma.

5.3. Approximation lower bound

To complement our upper bounds, we show that a threshold tree with k leaves cannot, in general, yield better than an $\Omega(\log k)$ approximation to the optimal k-medians or k-means clustering.

Theorem 4. For any $k \geq 2$, there exists a data set with k clusters such that any threshold tree T with k leaves must have k-medians and k-means cost at least

$$\text{cost}(T) \geq \Omega(\log k) \cdot \text{cost} (\text{opt}),$$

where opt is the optimal k-medians or k-means clustering.

The data set is produced by first picking k random centers from the hypercube $[-1, 1]^d$, for large enough d, and then using each of these to produce a cluster consisting of the d points that can be obtained by replacing one coordinate of the center by zero. Thus the clusters have size d and radius $O(1)$. To prove the lower bound, we use ideas from the study of pseudo-random binary vectors, showing that projecting the centers to any subset of $m \leq \log_2 k$ coordinates take on all 2^m possible values, with each occurring roughly equally often. Then, we show that (i) the threshold tree must be essentially a complete binary tree with depth $\Omega(\log_2 k)$ to achieve a clustering with low cost, and (ii) any such tree incurs a cost of $\Omega(\log k)$ times more than the optimal for this data set (for both k-medians and k-means). The proof of Theorem 4 appears in Appendix C.

It would be interesting to improve our upper bounds on explainable clustering for well-separated data. Our lower bound of $\Omega(\log k)$ utilizes clusters with diameter $O(1)$ and separation $\Omega(d)$, where the hardness stems from the randomness of the centers. In this case, the approximation factor $\Theta(\log k)$ is tight because our upper bound proof actually provides a bound in terms of the tree depth (which is about $\log k$, see Appendix C.5). Therefore, an open question is whether a $\Theta(\log k)$ approximation is possible for any well-separated clusters (e.g., mixture of Gaussians with separated means and small variance).

6. Conclusion

In this paper we discuss the capabilities and limitations of explainable clusters. For the special case of two clusters ($k = 2$), we provide nearly matching upper and lower bounds for a single threshold cut. For general $k > 2$, we present the IMM algorithm that achieves an $O(H)$ approximation for k-medians and an $O(Hk)$ approximation for k-means when the threshold tree has depth H and k leaves. We complement our upper bounds with a lower bound showing that any threshold tree with k leaves must have cost at least $\Omega(\log k)$ more than the optimal for certain data sets. Our theoretical results provide the first approximation guarantees on the quality of explainable unsupervised learning in the context of clustering. Our work makes progress toward the larger goal of explainable AI methods with precise objectives and provable guarantees.

An immediate open direction is to improve our results for k clusters, either on the upper or lower bound side. One option is to use larger threshold trees with more than k leaves (or allowing more than k clusters). It is also an important goal to identify natural properties of the data that enable explainable, accurate clusters. Beyond k-medians/means, it would be interesting to develop other clustering methods using a small number of features (e.g., hierarchical clustering). Finally, we believe our algorithms would be useful in practice, as they are efficient and easily implementable.

Acknowledgements

Sanjoy Dasgupta has been supported by NSF CCF-1813160. Nave Frost has been funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 804302). The contribution of Nave Frost is part of a Ph.D. thesis research conducted at Tel Aviv University.
References

Explainable k-Means and k-Medians Clustering

