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Abstract
Sensitive attributes such as race are rarely avail-
able to learners in real world settings as their col-
lection is often restricted by laws and regulations.
We give a scheme that allows individuals to re-
lease their sensitive information privately while
still allowing any downstream entity to learn non-
discriminatory predictors. We show how to adapt
non-discriminatory learners to work with priva-
tized protected attributes giving theoretical guar-
antees on performance. Finally, we highlight how
the methodology could apply to learning fair pre-
dictors in settings where protected attributes are
only available for a subset of the data.
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A. Deferred Proofs
Two important notation we use throughout are: for empirical versions of quantities based on data set S we use a superscript
S and the "probabilistic" inequality a ≤δ b signifies that a is less than b with probability greater than 1− δ.

A.1. Section 4

The below example illustrates that non-discrimination with respect to A and Z are not equivalent for general predictors.

Example 1. Let |A| = 2, consider the predictors Ŷ1 = h(X,Z) and Ŷ2 = h(X,Z) with the conditional probabilities for

y ∈ {0, 1} defined in table 1 with the function h(x) =

{
0 if x ≤ 1/2
1

2x if x > 1/2
, note that h(x) ∈ [0, 1] so that the predictor Ŷ2 is

valid.

(a,z) P(Ŷ1 = 1|A = a, Z = z, Y = y) P(Ŷ2 = 1|A = a, Z = z, Y = y)

(0,0) 1
2π h(P(A = 0|Z = 0, Y = y))

(0,1) 0 h(P(A = 0|Z = 1, Y = y))

(1,0) 0 h(P(A = 1|Z = 0, Y = y))

(1,1) 1
2π h(P(A = 1|Z = 1, Y = y))

Table 1. Predictors used to show non-equivalence of discrimination with respect to A and Z when predictors are a function of Z.

The predictors Ŷ1 and Ŷ2 are designed by construction to show that non discrimination with respect to A and Z are
not statistically equivalent. We show that Ŷ1 satisfies EO with respect to A but violates it with respect to Z and Ŷ2 is
non-discriminatory with respect to Z but is for A.

Proof. For Ŷ1: first we show it satisfies EO for A:

P(Ŷ1 = 1|A = a, Y = y)

= πP(Ŷ1 = 1|A = a, Z = a, Y = y)

+ (1− π)P(Ŷ1 = 1|A = a, Z = ā, Y = y) =
1

2

Since the above is no different for a, y ∈ {0, 1}, Ŷ1 satisfies EO. Now with respect to Z:

P(Ŷ1 = 1|Z = a, Y = y)

= P(A = a|Z = a, Y = y)P(Ŷ1 = 1|Z = a,A = a, Y = y)

+ P(A = ā|Z = a, Y = y)P(Ŷ1 = 1|Z = a,A = ā, Y = y)

=
P(A = a|Z = a, Y = y)

2π

Therefore if and only if P(A = 0|Z = 0, Y = y) = P(A = 1|Z = 1, Y = y) is it also non discriminatory with respect to
Z.

For Ŷ2: by construction only one of (P(Ŷ2 = 1|A = a, Z = a, Y = y), P(Ŷ2 = 1|A = ā, Z = a, Y = y)) is non-zero as
only one of (P(A = 1|Z = a, Y = y),P(A = 0, Z = a, Y = y)) is greater than 1/2 and so:

P(Ŷ2 = 1|Z = a, Y = y)

= P(A = a|Z = a, Y = y)P(Ŷ2 = 1|Z = a,A = a, Y = y)

+ P(A = ā|Z = a, Y = y)P(Ŷ2 = 1|Z = a,A = ā, Y = y)

=
1

2
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Therefore Ŷ2 satisfies EO with respect to Z, on the other side:

P(Ŷ2 = 1|A = a, Y = y)

= P(Z = a|A = a, Y = y)P(Ŷ2 = 1|Z = a,A = a, Y = y)

+ P(Z = ā|A = a, Y = y)P(Ŷ2 = 1|Z = ā, A = a, Y = y)

= π · h(P(A = a|Z = a, Y = y))

+ (1− π) · h(P(A = a|Z = ā, Y = y))

and is discriminatory with respect to A unless P(A = a, Y = y) = P(A = ā, Y = y) for y ∈ {0, 1} as P(A = a|Z =

a, Y = y) = πP(A=a,Y=y)
P(Z=a,Y=y) .

Proposition 1 Consider any exact non-discrimination notion among equalized odds, demographic parity, accuracy parity,
or equality of false discovery/omission rates. Let Ŷ := h(X) be a binary predictor, then Ŷ is non-discriminatory with
respect to A if and only if it is non-discriminatory with respect to Z.

Proof. The proof of the above proposition relies on the fact that if Ŷ is independent of Z given A, then the conditional
probabilities with respect to Z and A are related via a linear system.

We prove the proposition by considering a general formulation of the constraints we previously mentioned, let E1, E2 be two
probability events defined with respect to (X,Y, Ŷ ), then consider the following probability:

P (E1|E2, Z = a)

=
∑
a′∈A

P (E1|E2, Z = a,A = a′))P(A = a′|E2, Z = z)

(a)
=
∑
a′∈A

P (E1|E2, A = a′))P(A = a′|E2, Z = z)

=
∑
a′∈A

P (E1|E2, A = a′))
P(Z = z|A = a′, E2)P(A = a′, E2)

P(Z = a′, E2)

= P (E1|E2, A = a))
πP(A = a, E2)

P(Z = a, E2)

+
∑

a′∈A\{a}

P (E1|E2, A = a′))
π̄P(A = a′, E2)

P(Z = a′, E2)
(1)

step (a) follows as (X,Y, Ŷ ) are independent of Z given A. We define non-discrimination with respect to A as having
(similarly defined with respect to Z):

P (E1|E2, A = a) = P (E1|E2, A = a′) ∀a, a′ ∈ A

Assume first that the predictor Ŷ is non-discriminatory with respect to A, hence ∃c where ∀a ∈ A we have P(E1|E2, A =
a) = c, hence by (16) for all a ∈ A:

P (E1|E2, Z = a)

= c
πP(A = a, E2)

P(Z = a, E2)
+

∑
a′∈A\{a}

c
π̄P(A = a′, E2)

P(Z = a′, E2)
= c

which proves that Ŷ is also non-discriminatory with respect to A.

Now, assume instead that the predictor Ŷ is non-discriminatory with respect to Z, hence ∃c where ∀a ∈ A we have
P(E1|E2, Z = a) = c. Let P be the following |A| × |A| matrix:{

Pi,i = πP(A=i,E2)
P(Z=i,E2) for i ∈ A

Pi,j = π̄P(A=i,E2)
P(Z=j,E2) for i, j ∈ A s.t.i 6= j
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Then we have the following linear system of equations:

 P(E1|E2, Z = 0)
...

P(E1|E2, Z = |A| − 1)

 = P

 P(E1|E2, A = 0)
...

P(E1|E2, A = |A| − 1)


denoted by z = Pa

In our case a = c · 1, and we show that also z = c · 1. Let us state some properties of the matrix P :

• P is row-stochastic

• P is invertible (we later show the exact form of this inverse implying its existence, however its existence is easy to see
as all rows are linearly independent as π 6= π̄ and ∀a, P(Z = a, E2) > 0 ).

• As P is row-stochastic and invertible, the rows of P−1 sum to 1, this is as P1 = 1 ⇐⇒ 1 = P−11

By the second property z = c · P−11 and by the third property we have P−11 = 1 which in turn means that z = c · 1 and
implies that Ŷ is non-discriminatory with respect to Z.

As an extension, consider fairness notions formulated as:

P (E1, A = a|E2) = P (E1, A = a′|E2) ∀a, a′ ∈ A

Then we have

P (E1, Z = a|E2)

=
∑
a′∈A

P (E1, Z = a|E2, A = a′)P(A = a′|E2)

=
∑
a′∈A

P (E1|E2, A = a′)P (Z = a|A = a′))P(A = a′|E2)

=
∑
a′∈A

P (E1, A = a′|E2)P (Z = a|A = a′))

= πP (E1, A = a′|E2)
∑

a′∈A\{a}

π̄P (E1, A = a′|E2)

By the same arguments as above, for these notions of fairness Ŷ is non-discriminatory with respect to A if and only if it is
non-discriminatory with respect to Z.

For concreteness, we derive equation (16) for each of the fairness notions we mentioned. First a detailed derivation for
equalized odds, we let E1 = {Ŷ = 1} and for EO we need to apply the above reasoning for |Y| events E2y = {Y = y}:



Fair Learning with Private Demographic Data

P(Ŷ = 1|Y = y, Z = a)

=
∑
a′

P(Ŷ = 1|Y = y, Z = a,A = a′)P(A = a′|Z = a, Y = y)

(a)
=
∑
a′

P(Ŷ = 1|Y = y,A = a′)P(A = a′|Z = a, Y = y)

=
∑
a′

P(Ŷ = 1|Y = y,A = a′)
P(Z = a, Y = y|A = a′)P(A = a′)

P(Z = a, Y = y)

(b)
=
∑
a′

P(Ŷ = 1|Y = y,A = a′)
P(Z = a|A = a′)P(Y = y|A = a′)P(A = a′)

P(Z = a, Y = y)

= P(Ŷ = 1|Y = y,A = a)
πPya

πPya +
∑
a′′\a π̄Pya′′

+
∑
a′\a

P(Ŷ = 1|Y = y,A = a′)
π̄Pya′

πPya +
∑
a′′\a π̄Pya′′

First line by conditioning on A and then taking expectation, (a) is by our assumption of the conditional independence of
Z, Ŷ given A and step (b) by the independence of Z and Y given A.

Similarly for demographic parity with denoting pa = P(A = a):

P(Ŷ = 1|Z = a)

=
∑
a′

P(Ŷ = 1|Z = a,A = a′)P(A = a′|Z = a)

=
∑
a′

P(Ŷ = 1|A = a′)P(A = a′|Z = a)

=
∑
a′

P(Ŷ = 1|A = a′)
P(Z = a|A = a′)pa′∑
a′′ P(Z = a|A = a′′)pa′′

=
∑
a′

P(Ŷ = 1|A = a′)
P(Z = a|A = a′)pa′∑
a′′ P(Z = a|A = a′′)pa′′

= P(Ŷ = 1|A = a)
πpa

πpa +
∑
a′′\a π̄pa′′

+
∑
a′\a

P(Ŷ = 1|A = a′)
π̄pa′

πpa +
∑
a′′\a π̄pa′′

Now for equal accuracy among groups:

P(Ŷ 6= Y |Z = a)

=
∑
a′

P(Ŷ 6= Y |Z = a,A = a′)P(A = a′|Z = a)

= P(Ŷ 6= Y |A = a′)
πpa

πpa +
∑
a′′\a π̄pa′′

+
∑
a′\a

P(Ŷ 6= Y |A = a′)
π̄pa′

πpa +
∑
a′′\a π̄pa′′

And finally for equality of false discovery/omission rates, denote pŷ,a := P(Ŷ = ŷ, A = a):
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P(Ŷ 6= Y |Ŷ = ŷ, Z = a)

=
∑
a′

P(Ŷ 6= Y |Ŷ = ŷ, Z = a,A = a′)P(A = a′|Z = a, Ŷ = ŷ)

=
∑
a′

P(Ŷ 6= Y |Ŷ = ŷ, A = a′)P(A = a′|Z = a, Ŷ = ŷ)

=
∑
a′

P(Ŷ 6= Y |Ŷ = ŷ, A = a′)
P(Z = a, Ŷ = ŷ|A = a′)pa′∑
a′′ P(Z = a, Ŷ = ŷ|A = a′′)pa′′

= P(Ŷ 6= Y |Ŷ = ŷ, A = a′)
πpŷ,a

πpŷ,a +
∑
a′′\a π̄pŷ,a′′

+
∑
a′\a

P(Ŷ 6= Y |Ŷ = ŷ, A = a′)
π̄pŷ,a′

πpŷ,a +
∑
a′′\a π̄pŷ,a′′

Note that we did not need the independence of Ŷ and Z given A to express P(Ŷ 6= Y |Ŷ = ŷ, Z = a) in terms of
P(Ŷ 6= Y |Ŷ = ŷ, A = a) so that the equivalence follows without our assumption for equality of FDR. However, to be able
to do the inversion of statistics we require the assumption.

The version of the below Lemma that appears in the text is obtained by plugging in π = eε

|A|−1+eε .

Lemma 1 For any δ ∈ (0, 1/2), any binary predictor Ŷ := h(X), denote by Pya := P(Y = y,A = a), Γya :=∣∣∣qy,a(Ŷ )− γy,0(Ŷ )
∣∣∣ and Γ̃Sya our proposed estimator based on S, let C = π+|A|−1

|A|π−1 , then if n ≥ 8 log(|8A|/δ)
minya Pya

, we have:

P

(
max
ya
|Γ̃Sya − Γya| >

√
log(16/δ)

2n

4|A|C2

minyaP2
ya

)
≤ δ

Proof. Step 1: Deriving our estimator

The following equality allows to invert the statistics of the population with respect to Z that we have sample estimates of to
get population estimates of the true statistics with respect to A. We write

P(Ŷ = 1|Y = y, Z = a) =∑
a′

P(Ŷ = 1|Y = y, Z = a,A = a′)P(A = a′|Z = a, Y = y)

(a)
=
∑
a′

P(Ŷ = 1|Y = y,A = a′)P(A = a′|Z = a, Y = y)

=
∑
a′

P(Ŷ = 1|Y = y,A = a′)
P(Z = a, Y = y|A = a′)P(A = a′)

P(Z = a, Y = y)

(b)
=
∑
a′

P(Ŷ = 1|Y = y,A = a′)
P(Z = a|A = a′)P(Y = y|A = a′)P(A = a′)

P(Z = a, Y = y)

= πP(Ŷ = 1|Y = y,A = a)
P(Y = y,A = a)

P(Z = a, Y = y)
+
∑
a′\a

π̄P(Ŷ = 1|Y = y,A = a′)
P(Y = y,A = a′)

P(Z = a, Y = y)
(2)

First line is by conditioning on A and then taking expectation, step (a) is by our assumption of the conditional independence
of Z, Ŷ given A and step (b) by the independence of Z and Y given A.

Let G be the A×A matrix be as such:

{
Gi,i = π P(Y=y,A=i)

P(Z=i,Y=y) for i ∈ A
Gi,j = π̄ P(Y=y,A=j)

P(Z=i,Y=y) for i, j ∈ A s.t.i 6= j
. Then we can write equation (17)
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as a linear system with qya(Ŷ ) = P(Ŷ = 1|Y = y, Z = a):

 qy0

...
qy,|A−1|

 = G

 P(Ŷ = 1|Y = y,A = 0)
...

P(Ŷ = 1|Y = y,A = |A| − 1)


qy,. = G P

(
Ŷ = 1|Y = y,A

)
(notation)

And thus by inverting G we can recover the population statistics. We show that the inverse of G takes the following form:{
G−1
i,i = π+|A|−2

|A|π−1
P(Z=i,Y=y)
P(Y=y,A=i) for i ∈ A

G−1
i,j = π−1

|A|π−1
P(Z=j,Y=y)
P(Y=y,A=i) for i, j ∈ A s.t.i 6= j

Let i 6= j ∈ A:

GiG
−1
,j

=
∑
k

Gi,kG
−1
k,j

= π
P(Y = y,A = i)

P(Z = i, Y = y)
· π − 1

|A|π − 1

P(Z = j, Y = y)

P(Y = y,A = i)
+ π̄

P(Y = y,A = j)

P(Z = i, Y = y)

π + |A| − 2

|A|π − 1

P(Z = j, Y = y)

P(Y = y,A = j)

+
∑

k\{i,j}

π̄
P(Y = y,A = k)

P(Z = i, Y = y)
· π − 1

|A|π − 1

P(Z = j, Y = y)

P(Y = y,A = k)

=
P(Z = j, Y = y)

P(Z = i, Y = y)
·
π(π − 1) + 1−π

|A|−1 (π + |A| − 2 + (|A| − 2)(π − 1))

|A|π − 1

= 0

And now for i ∈ A

GiG
−1
,i =

∑
k

Gi,kG
−1
k,i

= π
P(Y = y,A = i)

P(Z = i, Y = y)
· π + |A| − 2

|A|π − 1

P(Z = i, Y = y)

P(Y = y,A = i)
+
∑
k\{i}

π̄
P(Y = y,A = k)

P(Z = i, Y = y)
· π − 1

|A|π − 1

P(Z = i, Y = y)

P(Y = y,A = k)

=
π(π + |A| − 2) + 1−π

|A|−1 (π − 1)(|A| − 1)

|A|π − 1

= 1

Which proves that it is indeed the inverse.

The matrix G involves estimating the probabilities P(Y = y,A = a) which we do not have access to but can similarly
recover by noting that:

Qyz =
∑
a∈A

P (Y = y, Z = z|A = a)P (A = a)

=
∑
a∈A

P (Y = y|A = a)P (Z = z|A = a)P(A = a)

= πP (Y = y,A = z) +
∑
a 6=z

π̄P (Y = y,A = a) (3)
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Let the matrix Π ∈ R|A|×|A| be as follows Πi,j = π if i = j and Πi,j = π̄ if i 6= j. We know from equation (18) that: Qy0

...
Qy,|A|−1

 = Π

 P(Y = y,A = 0)
...

P(Y = y,A = |A| − 1)


Qy,. = Π P (Y = y,A) (notation)

Therefore Π−1
k Qy,. = P(Y = y,A = k) where Π−1

k is the k’th row of Π−1. Now Π−1 is as such: Π−1
i,i = π+|A|−2

|A|π−1 and

Π−1
i,j = π−1

|A|π−1 if i 6= j with the same proof as for the inverse of G. Therefore our empirical estimator for P(Ŷ = 1|Y =

y,A = a) is Ĝ−1
a qSy,. where Ĝ−1 is defined with the empirical versions of the probabilities involved where P(Y = y,A = a)

is estimated by Π−1
a QS

y,.. One issue that arises here is that while the sum of our estimator entries sum to 1, some entries
might be in fact negative and therefore we need to project the derived estimator onto the simplex. We later discuss the
implications of this step.

Step 2: Concentration of raw estimator

Let us first denote some things: nSy,z =
∑
i 1(yi = y, zi = z), Qy,z = P(Y = y, Z = z), and the random variables

Sy,z = {i : yi = y, zi = z}.
We have that E[Ĝ−1

z qSy,.|Sy,0, · · · , Sy,|A|−1] = G−1
z qy,. = γy,z . Inspired by the proof of Lemma 2 in (Woodworth et al.,

2017) we have:

P
(
|Ĝ−1

z qSy,. − γyz| > t
)

(a)
=

∑
Sy,0,··· ,Sy,|A|−1

P
(
|Ĝ−1

z qSy,. − γyz| > t|Sy,0, · · · , Sy,|A|−1

)
P
(
Sy,0, · · · , Sy,|A|−1

)
(b)

≤ P
(
∪a∈A{nSy,a <

nQy,a

2
}
)

+
∑

∀z,Syz :nSyz≥
nQyz

2

P
(
|Ĝ−1

z qSy,. − γyz| > t|Sy,0, · · · , Sy,|A|−1

)
P
(
Sy,0, · · · , Sy,|A|−1

)
(c)

≤ |A| exp

(
−mina nQya

8

)
+

∑
∀z,Syz :nSyz≥

nQyz
2

P
(
|Ĝ−1

z qSy,. − γyz| > t|Sy,0, · · · , Sy,|A|−1

)
P
(
Sy,0, · · · , Sy,|A|−1

)
Step (a) follows by conditioning over over all |A|n possible configurations of Sy,0, · · · , Sy,|A|−1 ⊂ [n], step (b) comes by
splitting over configurations where ∀z, Syz : nSyz ≥

nQyz

2 and the complement of the previous event and upper bounding
this complement by the probability that there ∃z s.t. nSyz <

nQyz

2 . Finally step (c) comes from a union bound and then a
Chernoff bound on nSyz ∼ Binomial(n,Qyz) and taking the minimum over Qya.

We now recall McDiarmid’s inequality (McDiarmid, 1989). Let Wn = (W1, · · · ,Wn) ∈ Wn be n independent random
variables and f :Wn → R, if there exists constants c1, · · · , cn such that for all i ∈ [n]:

sup
w1,··· ,wi,w′i,··· ,wn

|f(w1, · · · , wi, · · · , wn)− f(w1, · · · , w′i, · · · , wn)| ≤ ci

Then for all ε > 0:

P (f(W1, · · · ,Wn)− E[f(W1, · · · ,Wn]) ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
Now conditioned on Sy,0, · · · , Sy,|A|−1, our estimator Ĝ−1

z qSy,. is only a function of Ŷ1, · · · , Ŷn, we try to bound how much
can our estimator change on two dataset S and S′ differing by only one value of Ŷi:
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For convenience denote by C1 = π+|A|−2
|A|π−1 and C2 = π−1

|A|π−1 :

sup
S,S′
|Ĝ−1

z qSy,. − Ĝ−1
z qS

′

y,.|

=

∣∣∣∣∣∣C1

Π−1
z QS

y,.

QS
y,z

qSy,z +
∑
a∈A\z

C2

Π−1
a QS

y,.

QS
y,z

qSy,a − C1

Π−1
z QS

y,.

QS
y,z

qS
′

y,z −
∑
a\z

C2

Π−1
a QS

y,.

QS
y,z

qS
′

y,a

∣∣∣∣∣∣
=

∣∣∣∣∣C1

Π−1
z QS

y,.

QS
y,z

(∑
i∈S ŶiI(Yi = y, Zi = z)

nSyz
−
∑
i∈S′ ŶiI(Yi = y, Zi = z)

nSyz

)

+
∑
a∈A\z

C2

Π−1
a QS

y,.

QS
y,z

(∑
i∈S ŶiI(Yi = y, Zi = a)

nSya
−
∑
i∈S′ ŶiI(Yi = y, Zi = a)

nSya

)∣∣∣∣∣
≤

∣∣∣∣∣C1

maxa Π−1
a QS

y,.

QS
y,z

1

nSyz

∣∣∣∣∣ =

∣∣∣∣∣C1

maxa C1n
S
ya + C2(n− nSya)

nSyz

1

nSyz

∣∣∣∣∣
≤

∣∣∣∣∣
(
C1

nSyz

)2

n

∣∣∣∣∣
Therefore by McDiarmid’s inequality we have:∑
∀z,Syz :nSyz≥

nQyz
2

P
(
|Ĝ−1

z qSy,. − γyz| > t|Sy,0, · · · , Sy,|A|−1

)
P
(
Sy,0, · · · , Sy,|A|−1

)

≤
∑

∀z,Syz :nSyz≥
nQyz

2

2 exp

− 2t2(
C1

nSyz

)4

n3

P
(
Sy,0, · · · , Sy,|A|−1

)
(a)

≤ 2 exp

− 2t2(
2C1

nQyz

)4

n3

 = 2 exp

(
−2t2n

(
Qyz

2C1

)4
)

step (a) is by noting that the inner quantity is maximized when nSyz =
nQyz

2 , combining things:

P
(
|Ĝ−1

z qSy,. − γyz| > t
)
≤ |A| exp

(
−mina nQya

8

)
+ 2 exp

(
−2t2n

(
Qyz

2C1

)4
)

Now if n ≥ 8 log(|A|/δ)
minyz nQyz

and t ≥
√

log(2/δ)
2n

4C2
1

minyz Q2
yz

then we have:

P
(
|Ĝ−1

z qSy,. − γyz| > t
)
≤ δ + δ

Step 3: Projecting the estimator onto the simplex

One issue that arises is that our estimator for γy,z does not lie in the range [0, 1], and hence we have to project the whole
vector onto the simplex for it to be valid; note that this is not required if we are only interested in differences i.e. computing
discrimination. Our estimator for the vector of conditional probabilities for a ∈ A of P(Ŷ = 1|Y = y,A = a) is
Proj∆(Ĝ−1qy,.) where Proj∆(x) is the orthogonal projection of x onto the simplex defined as:

Proj∆(x) := arg min
y

1

2
||y − x| |22

s.t. yT1 = 1, y ≥ 0

The above problem can be solved optimally in a non-iterative manner in time O (|A| log(|A|) (Duchi et al. (2008)). Denote
by x′ = Proj∆(x), then by the definition of the projection for any y ∈ ∆|A|:

|x′ − y| ≤ |x− y|
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however it does not hold that ||x′ − y||∞ ≤ ||x− y||∞, but : ||x′ − y||∞ ≤ |A| · ||x− y||∞. Therefore:

P
(∣∣∣Proj∆(Ĝ−1

k qSy,.)− P(Ŷ = 1|Y = y,A = k)
∣∣∣ > t

)
≤ P

(
max
k

∣∣∣Ĝ−1
k qSy,. − P(Ŷ = 1|Y = y,A = k)

∣∣∣ > t

|A|

)

Step 4: Difference of Equalized odds

Let hya = Proj∆(Ĝ−1
a qSy,.), using a series of triangle inequality,∣∣|hSya − hSy0| − |hya − hy0|

∣∣ ≤ |hSya − hSy0 − hya + hy0| ≤ |hSya − hya|+ |hSy0 − hy0|

hence

P
(∣∣|hSya − hSy0| − |hya − hy0|

∣∣ > 2t
)
≤ P

(
|hSya − hya|+ |hSy0 − hy0| > 2t

)
(a)

≤ P
(
|hSya − hya| > t

)
+ P

(
|hSy0 − hy0| > t

)
≤ 4δ

where (a) follows from union bound, and (b) follows from above using n ≥ 8 log(|A|/δ)
minyz nQyz

and t ≥
√

log(2/δ)
2n

4|A|C2
1

minyz Q2
yz

The
lemma follows from collecting the failure probabilities for y = 0, 1, re-scaling δ and noting that minyzQyz ≥ minyaPya.

Now let us write t in terms of ε, we write each of the factors involving π in terms of ε:

C1 =
π + |A| − 2

|A|π − 1
=
|A| − 2 + eε

eε − 1

and:

C2
1 =

e2ε + 2(|A| − 2)eε + (|A| − 2)2

e2ε − 2eε + 1
≤ 2|A|2e2ε

e2ε − 2eε + 1

A.2. Section 5

A.2.1. FIRST STEP ALGORITHM DETAILS

Recall that in Algorithm 1, the learner’s best response gaced a given vector λ (BESTh(λ)) puts all the mass on a single
predictor h ∈ H as the langragian L is linear in Q. (Agarwal et al., 2018) shows that finding the learner’s best response
amounts to solving a cost sensitive classification problem. We now re-establish this reduction:

L(h,λ) = êrr(h) + λ>(Mγ(h)− αn1)

=
1

n

∑
i∈S

Ih(xi)6=yi − αnλ
>1 +

∑
k,j

Mk,jλkγ
S
j (h)

= −αnλ>1 +
1

n

∑
i∈S

Ih(xi)6=yi +
∑
k,j

Mk,jλk
1/n · h(xi)I(yi,ai)=j
1/n

∑
s∈S I(ys,as)=j

(4)

Thus from equation (19) and expanding the form of the matrix M we have that minimizing L(h, λ) over h ∈ H is equivalent
to solving a cost sensitive classification problem on {(xi, c0i , c1i )}ni=1 where the costs are:

c0i = Iyi 6=0

c1i = Iyi 6=1 +
λ(ai,yi,+) − λ(ai,yi,−)

pSai,yi
Iai 6=0 −

∑
a∈A\{0}

λ(a,yi,+) − λ(a,yi,−)

pS0,yi
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where pSa,y = 1
n

∑
s∈S I(ys=y,as=a).

The goal of Algorithm 1 is to return for any degree of approximation ϑ ∈ R+ a ϑ-approximate saddle point (Q̂, λ̂) defined
as:

L(Q̂, λ̂) ≤ L(Q, λ̂) + ϑ ∀Q ∈ ∆H (5)

L(Q̂, λ̂) ≥ L(Q̂,λ)− ϑ ∀λ ∈ R|K|+ , ||λ||1 ≤ B (6)

From Theorem 1 in (Agarwal et al., 2018), if we run the algorithm for at least 16 log(4|A|+1)
ϑ2 iterations with learning rate

η = ϑ
8B it returns a ϑ-approximate saddle point.

A.2.2. FIRST STEP GUARANTEES

Lemma 1. Denote by Qyz = P(Y = y, Z = z), qyz(Ŷ ) = P(Ŷ = 1|Y = y, Z = z), for δ ∈ (0, 1/2) and h any binary
predictor, if n ≥ 8 log 8|A|/δ

minyz Qyz
, then:

P

(
max
ya

∣∣|qSya − qSy0| − |qya − qy0|
∣∣ > 2

√
log 16|A|/δ
nminyzQyz

)
≤ δ

Proof. Let a ∈ A, denote Qyz = P(Y = y, Z = z), qyz(Ŷ ) = P(Ŷ = 1|Y = y, Z = z), then by (Woodworth et al., 2017)
or step 1 of Lemma 1:

P
(
|qSyz − qyz| > t

)
≤ exp

(
− nQyz

8

)
+ 2 exp (−t2nQyz)

Now using a series of triangle inequality identical to step 4 of Lemma 1,∣∣|qSya − qSy0| − |qya − qy0|
∣∣ ≤ |qSya − qSy0 − qya + qy0| ≤ |qSya − qy0|+ |qSy0 − qy0|

hence

P
(∣∣|qSya − qSy0| − |qya − qy0|

∣∣ > 2t
)
≤ P

(
|qSya − qy0|+ |qSy0 − qy0| > 2t

)
(a)

≤ P
(
|qSya − qy0| > t

)
+ P

(
|qSy0 − qy0| > t

)
≤ 2 exp

(
− nminyzQyz

8

)
+ 4 exp (−t2nmin

yz
Qyz)

(b)

≤ δ

2|A|

where (a) follows from union bound, and (b) follows if n ≥ 8 log 8|A|/δ
minyz Qyz

and t =
√

log 16|A|/δ
nminyz Qyz

The lemma follows from collecting the failure probabilities for y = 0, 1 and ∀a ∈ A.

Lemma 2. If a binary predictor Ŷ is independent of Z given A, then if the groups are binary it holds that:

qy1(Ŷ )− qy0(Ŷ ) =
(
γy1(Ŷ )− γy0(Ŷ )

) (2π − 1)Py1Py0

Qy1Qy0
(7)

For general |A| different groups, we have ∀k, j ∈ A the following relation:

|γy,k − γy,j | ≤ 5C
maxi P(Z = i, Y = y)

minj P(A = j, Y = y)2

∣∣∣max
z
qy,z −min

z′
qy,z′

∣∣∣
where C = π+|A|−2

|A|π−1 .
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Proof. We begin by noting the following relationship established in step 4 of Lemma 1:

P(Ŷ = 1|Y = y, Z = a) = πP(Ŷ = 1|Y = y,A = a)
P(Y = y,A = a)

P(Z = a, Y = y)

+
∑
a′\a

π̄P(Ŷ = 1|Y = y,A = a′)
P(Y = y,A = a′)

P(Z = a, Y = y)

From the above equation, we can evaluate for any a, b ∈ A the difference between qya and qyb in terms of γy., denoting
Pya = P(Y = y,A = a) :

qya − qyb = γya
πPya
Qya

+
∑
a′\a

γya′
π̄Pya′

Qya
− γyb

πPyb
Qyb

−
∑
b′\b

γyb′
π̄Pyb′

Qyb

=
γyaπPyaQyb + γybπ̄PybQyb +

∑
a′\{a,b} π̄γya′Pya′Qyb

QyaQyb

−
γybπPybQya + γyaπ̄PyaQya +

∑
b′\{a,b} π̄γyb′Pyb′Qya

QyaQyb

=
γyaPya(πQyb − π̄Qya)− γybPyb(πQya − π̄Qyb)

QyaQyb
+

∑
c\{a,b} π̄γycPyc(Qyb −Qya)

QyaQyb

(a)
=

γyaPya(π(πPyb + π̄Pya + π̄
∑
c\{a,b}Pyc)− π̄(πPya + π̄Pyb + π̄

∑
c\{a,b}Pyc)

QyaQyb

−
γybPyb(π(πPya + π̄Pyb + π̄

∑
c\{a,b}Pyc)− π̄(πPyb + π̄Pya + π̄

∑
c\{a,b}Pyc))

QyaQyb

+

∑
c\{a,b} π̄γycPyc(Qyb −Qya)

QyaQyb

=
γyaPya(π2Pyb − π̄2Pyb + (π − π̄)π̄

∑
c\{a,b}Pyc)

QyaQyb

−
γybPyb(π

2Pya − π̄2Pya + (π − π̄)π̄
∑
c\{a,b}Pyc)

QyaQyb
+

∑
c\{a,b} π̄γycPyc(Qyb −Qya)

QyaQyb

=
(γya − γyb)PyaPyb(π2 − π̄2)

QyaQyb

+
(γyaPya − γybPyb)(π − π̄)π̄

∑
c\{a,b}Pyc

QyaQyb
+

∑
c\{a,b} π̄γycPyc(Qyb −Qya)

QyaQyb

where step (a) follows from expanding by equation (18). If A = {0, 1} then the above reduces to:

qy1 − qy0 = (γy1 − γy0)
(2π − 1)Py1Py0

Qy1Qy0

Now when the groups are not binary we instead rely on an upper bound.

Let qy = [P(Ŷ = 1|Y = y, Z = 0), · · · ,P(Ŷ = 1|Y = y, Z = |A| − 1)]>, γ = [P(Ŷ = 1|Y = y,A = 0), · · · ,P(Ŷ =
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1|Y = y,A = |A| − 1)]>, in the proof of Lemma 1 we established that G−1qy = γy , now let k, j ∈ A then we have:

|γy,k − γy,j | = |G−1
k qy −G−1

j qy|
(a)
= |G−1

k (qy − q′)−G−1
j (qy − q′)|

= |(qy − q′)(G−1
k −G

−1
j )|

≤ |qy − q′|∞|G−1
k −G

−1
j |1 (Holder’s Inequality)

= |max
z
qy,z −min

z′
qy,z′ | · |G−1

k −G
−1
j |1 (8)

in step (a) we introduce q′ = [minz qy,z, · · · ,minz qy,z]
>, and note that G−1

k q′ = minz qy,z as the rows of G sum to 1 by
the proof of Proposition 1, therefore G−1

k q′ = G−1
j q′ and the difference in the previous step is unchanged. Now let us take

expand the right most term in equation (23), for ease of notation let P(Z = i, Y = y) = zi and P(A = i, Y = y) = ai:

|G−1
k −G

−1
j |1

=
∑

a∈A\{k,j}

∣∣∣∣C2(
za
ak
− za
ai

)

∣∣∣∣+

∣∣∣∣C1
zk
ak
− C2

zk
ai

∣∣∣∣+

∣∣∣∣C2
zi
ak
− C1

zi
ai

∣∣∣∣
=

∑
a∈A\{k,j}

∣∣∣∣C2(
zaai − zaak

akai
)

∣∣∣∣+

∣∣∣∣C1
zkai
akai

− C2
zkak
akai

∣∣∣∣+

∣∣∣∣C2
ziai
akai

− C1
ziak
akai

∣∣∣∣
=

∑
a∈A\{k,j}

∣∣∣∣C2
za(ai − ak)

akai

∣∣∣∣+

∣∣∣∣zk(C1ai − C2ak)

akai

∣∣∣∣+

∣∣∣∣zi(C2ai − C1ak)

akai

∣∣∣∣
≤ max

a
za ·

(
(|A| − 2)

∣∣∣∣C2
(ai − ak)

akai

∣∣∣∣+

∣∣∣∣ (C1ai − C2ak)

akai

∣∣∣∣+

∣∣∣∣ (C2ai − C1ak)

akai

∣∣∣∣)
≤ max

a
za ·

(
(|A| − 2)

∣∣∣∣C2
1

minz a2
z

∣∣∣∣+

∣∣∣∣2C1
1

minz a2
z

∣∣∣∣+

∣∣∣∣2C1
1

minz a2
z

∣∣∣∣)
≤ maxa za

minz a2
z

· ((|A| − 2) |C2|+ 4C1) ≤ maxi P(Z = i, Y = y)

minj P(A = j, Y = y)2
5C1

Hence we have the following inequality:

|γy,k − γy,j | ≤ 5C1
maxi P(Z = i, Y = y)

minj P(A = j, Y = y)2

∣∣∣max
z
qy,z −min

z′
qy,z′

∣∣∣
where C1 = π+|A|−2

|A|π−1 .

We now recall some helper lemmas from (Agarwal et al., 2018).

Lemma 3 (Lemma 2 (Agarwal et al., 2018)). For any distribution Q satisfying the empirical constraints on dataset S:
MγS(Q) ≤ αn1, Q̂ the output Ŷ of Algorithm 1 satisfies:

errS(Ŷ ) ≤ err(Q) + 2ϑ (9)

Lemma 4 (Lemma 3 (Agarwal et al., 2018)). The discrimination of Ŷ , output of Algorithm 1, satisfies:

max
y,a
|qSy,a(Ŷ )− qSy,0(Ŷ )| ≤ 2αn + 2

1 + 2ϑ

B
(10)

Lemma 2 [Guarantees for Step 1] Given a hypothesis classH, a distribution over (X,A, Y ), B ∈ R+ and any δ ∈ (0, 1/2),

then with probability greater than 1− δ, if n ≥ 16 log 8|A|/δ
minya Pya

, αn = 2
√

log |A|/δ
nminya Pya

and we let ϑ = Rn/2(H) +
√

log 8/δ
n ,
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then running Algorithm 1 on dataset S with T ≥ 16 log(4|A|+1)
ϑ2 and learning rate η = ϑ

8B returns a predictor Ŷ satisfying
the following:

err(Ŷ ) ≤δ/2 err(Y ∗) + 4Rn/2(H) + 4

√
log 1/δ

n

disc(Ŷ ) ≤δ/2
5C

minyaP2
ya

(
2

B
+ 6Rminya nPya

4

(H) + 10

√
2 log 64|A|/δ
nminyaPya

)

Proof. From Theorem 1 in (Agarwal et al., 2018), if we run the algorithm for at least 16 log(4|A|+1)
ϑ2 iterations with learning

rate η = ϑ
8B it returns a ϑ-approximate saddle point. We set ϑ at the end of the proof to balance the bounds.

For step 1 we have access to S1 = {(xi, yi, zi)}n/2i=1, denote by err(Ŷ ) = P(Ŷ 6= Y ), using the Rademacher complexity
bound (Theorem 3.5 (Mohri et al., 2018)) and the fact that Rn(∆H) = Rn(H) we have:

err(Ŷ ) ≤δ/4 errS(Ŷ ) + Rn/2(H) +

√
log 8/δ

n
(11)

Now from Lemma 5 of (Woodworth et al., 2017), with probability greater than 1− δ/4, Y ∗ is in the feasible set of step 1 if

αn ≥ 2
√

2 log 64|A|/δ
nminyz Qyz

, hence we can apply Lemma 7 with Y ∗ and the concentration bound (26) :

err(Ŷ ) ≤δ/2 err(Y ∗) + 2ϑ+ 2Rn/2(H) + 2

√
log 8/δ

n

For the constraint, from Lemma 5, if n ≥ 16 log 8|A|/δ
minyz Qyz

, then

max
ya

∣∣|qSya − qSy0| − |qya − qy0|
∣∣ ≤δ/4 2

√
2 log 64|A|/δ
nminyzQyz

Similarly from the standard Rademacher complexity bound (Theorem 3.3 (Mohri et al., 2018)) and since our function class
for the constraint isH it holds that (by Lemma 6 (Agarwal et al., 2018)):

max
ya
|qya − qy0| ≤δ/4 |qSya − qSy0|+ 2Rminyz nQyz

4

(H) + 2

√
2 log 64|A|/δ
nminyzQyz

Applying Lemma 8:

|qSya − qSy0| ≤ 2αn + 2
1 + 2ϑ

B
(12)

Combining things with αn = 2
√

2 log 64|A|/δ
nminyz Qyz

:

max
ya
|qya − qy0| ≤δ/4

2 + 4ϑ

B
+ 2Rminyz nQyz

4

(H) + 6

√
2 log 64|A|/δ
nminyzQyz

Now by Lemma 6 we can re-state the above in terms of A:

max
a
|γy,a − γy,0| ≤δ/4

5C

minyaP2
ya

(
2 + 4ϑ

B
+ 2Rminyz nQyz

4

(H) + 6

√
2 log 64|A|/δ
nminyzQyz

)

For simplicity, we can thus set ϑ = Rn/2(H) +
√

log 8/δ
n , by noting that minyzQyz ≥ minyaPya we obtain the lemma

statement.
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A.2.3. SECOND STEP ALGORITHM DETAILS

Given a predictor Ŷ , Hardt et al. give a simple procedure to obtain a derived predictor Ỹ that is non-discriminatory (Hardt
et al., 2016) by solving a constrained linear program (LP). One of the caveats of the approach is that it requires the use of
the protected attribute at test time, and in our setting we do not have access to A but Z. We have seen in section 4 that
predictors that rely on Z cannot be trusted even if they are completely non-discriminatory with respect to the privatized
attribute. Despite this difficulty, it turns out if the base predictor Ŷ is independent of Z given A, then we can re-write the LP
to obtain a derived predictor Ỹ = h(Ŷ , Z) that minimizes the error while being non-discriminatory with respect to A.

The approach boils down to solving the following linear program (LP):

min P(Ỹ 6= Y )

s.t. P(Ỹ = 1|A = a, Y = y) = P(Ỹ = 1|Y = y,A = 0)

∀y ∈ {0, 1},∀a ∈ A

We can write this objective by optimizing over 2|A| probabilities pŷ,a := P(Ỹ = 1|Ŷ = ŷ, A = a) that completely specify
the behavior of Ỹ :

Ỹ = arg min
p.,.

∑
ŷ,a

(P(Ŷ = ŷ, A = a, Y = 0)− P(Ŷ = ŷ, A = a, Y = 1)) · pŷ,a (13)

s.t. p0,aP(Ŷ = 0|Y = y,A = a) + p1,aP(Ŷ = 1|Y = y,A = a) (14)

= p0,0P(Ŷ = 0|Y = y,A = 0) + p1,0P(Ŷ = 1|Y = y,A = 0), ∀y ∈ {0, 1},∀a ∈ A (15)
0 ≤ pŷ,a ≤ 1 ∀ŷ ∈ {0, 1},∀a ∈ A

Unfortunately we cannot directly solve the above program as we do not have access to A, however we can solve the problem
with Z replacing A; we denote this as the nav̈e program and as we have previously mentioned it cannot assure any degree
of non-discrimination with respect to A. Now let us see how we can transform this nav̈e program to satisfy equalized
odds. We optimize over the set of variables that denote pŷ,z := P(Ỹ = 1|Ŷ = ŷ, Z = z). Now for the constraint note that
P(Ỹ = 1|Ŷ = ŷ, A = a) can be expressed as a mixture of our decision variables:

P(Ỹ = 1|Ŷ = ŷ, A = a) =
∑
a′

P(Ỹ = 1|Ŷ = ŷ, Z = a′, A = a)P(Z = a′|A = a, Ŷ = ŷ)

= πP(Ỹ = 1|Ŷ = ŷ, Z = a) +
∑
a′\a

π̂P(Ỹ = 1|Ŷ = ŷ, Z = a′)

Since we assumed the base predictor Ŷ is independent of Z given A then P(Ŷ = ŷ|Y = y,A = a) can be recovered from
the following linear system by using the same estimator we developed previously in Lemma 1:

P(Ŷ = ŷ|Y = y,A = a) = πP(Ŷ = ŷ|Y = y,A = a)
P(A = a, Y = y)

P(Z = a, Y = y)

+
∑
a′ 6=a

π̄P(Ŷ = ŷ|Y = y,A = a)
P(A = a′, Y = y)

P(Z = a, Y = y)

On the other hand for the objective we have:

P(Ŷ = ŷ, Z = a, Y = y) = πP(Ŷ = ŷ, A = a, Y = y) + π̄
∑
a′ 6=a

P(Ŷ = ŷ, A = a′, Y = y)

And hence our estimator for P(Ŷ = ŷ, A = a, Y = y) is constructed by multiplying by the inverse of Π and projecting onto
the simplex.
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Denote by p̃ŷ,a = πpŷ,a +
∑
a′\a π̂pŷ,a′ and P̃S(Ŷ = ŷ|Y = y,A = a) our estimator for P(Ŷ = ŷ|Y = y,A = a) and

similarly P̃S(Ŷ = ŷ, Y = y,A = a). We propose to solve the following optimization problem:

Ỹ = arg min
p.,.

∑
ŷ,a

(P̃S(Ŷ = ŷ, Z = a, Y = 0)− P̃S(Ŷ = ŷ, Z = a, Y = 1)) · p̃ŷ,a (16)

s.t. p̃0,aP̃S(Ŷ = 0|Y = y,A = a) + p̃1,aP̃S(Ŷ = 1|Y = y,A = a)

= p̃0,0P̃S(Ŷ = 0|Y = y,A = 0) + p̃1,0P̃S(Ŷ = 1|Y = y,A = 0), ∀y ∈ {0, 1},∀a ∈ A (17)
0 ≤ pŷ,a ≤ 1 ∀ŷ ∈ {0, 1},∀a ∈ A

A.2.4. SECOND STEP GUARANTEES

Lemma 5 (Step 2 guarantees). Let Ŷ be a binary predictor that is independent of Z given A, for any δ ∈ (0, 1/2), if

n ≥ 32 log(8|A|/δ)
minya Pya

, α̃n =
√

log(64/δ)
2n

4|A|C2

minya P2
ya∗

and with Ỹ ∗ an optimal 0-discriminatory predictor derived from Ŷ , then

with probability greater than 1− δ/2 we have:

err(Ỹ ) ≤ err(Ỹ ∗) + 4|A|C
√

log(32|A|/δ)
2n

disc(Ỹ ) ≤

√
log( 64

δ )

2n

8|A|C2

minyaP2
ya

Proof. Denote err(Ỹ ) = P(Ỹ 6= Y ) and qŷ,a,y := P(Ŷ = ŷ, Z = a, Y = 1) , then for any Ỹ in the derived set of Ŷ (also
by Lemma B.2 Jagielski et al. (2018)):

∣∣∣errS(Ỹ )− err(Ỹ )
∣∣∣ =

∣∣∣∣∣∣
∑
ŷ,a

p̃ŷ,a ·
(
(q̃Sŷ,a,0 − qŷ,a,0) + (qŷ,a,1 − q̃Sŷ,a,1)

)∣∣∣∣∣∣
≤ |
∑
ŷ,a

q̃Sŷ,a,0 − qŷ,a,0|+ |
∑
ŷ,a

qŷ,a,1 − q̃Sŷ,a,1|

≤
∑
ŷ,a

|q̃Sŷ,a,0 − qŷ,a,0|+
∑
ŷ,a

| qŷ,a,1 − q̃Sŷ,a,1| (18)

Now our estimator q̃Sŷ,a,y for qŷ,a,y is obtained by multiplying by the inverse of the matrix Π and projecting onto the simplex,
as was done in Lemma 1. Using the same arguments of step 2 of the proof of Lemma 1 using Mcdirmid’s inequality we
have:

P
(
|q̃Sŷ,a,y − qŷ,a,y| > t

)
≤ 2 exp(−2t2n

C2
)

Hence

P(
∣∣∣errS(Ỹ )− err(Ỹ )

∣∣∣ > t) ≤ P(
∑
ŷ,a

|qSŷ,a,0 − qŷ,a,0|+
∑
ŷ,a

| qŷ,a,1 − qSŷ,a,1| > t)

≤ 8|A| exp(−2n

(
t

4|A|
|A|π − 1

π + |A| − 2

)2

) (19)

Thus if t ≥ 4|A|(π+|A|−2)
|A|π−1

√
log(32|A|/δ)

2n :

P

(∣∣∣errS(Ỹ )− err(Ỹ )
∣∣∣ > 4|A|(π + |A| − 2)

|A|π − 1

√
log(32|A|/δ)

2n

)
≤ δ/4
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Now for the fairness constraint, denote Γy,a(Ỹ ) = |P(Ỹ = 1|Y = ŷ, A = a)− P(Ỹ = 1|Y = y,A = 0)|, then:

|Γ̃Sy,a(Ỹ )− Γy,a(Ỹ )| =

|p̃0,a(1− P̃S(Ŷ = 1|Y = y,A = a)) + p̃1,aP̃S(Ŷ = 1|Y = y,A = a)

− p̃0,0(1− P̃S(Ŷ = 1|Y = y,A = 0))− p̃1,0P̃S(Ŷ = 1|Y = y,A = 0)

− p̃0,a(1− P̃(Ŷ = 1|Y = y,A = a))− p̃1,aP̃(Ŷ = 1|Y = y,A = a)

+ p̃0,0(1− P̃(Ŷ = 1|Y = y,A = 0)) + p̃1,0P̃(Ŷ = 1|Y = y,A = 0)|

≤ |P̃S(Ŷ = 1|Y = y,A = a)− P̃(Ŷ = 1|Y = y,A = a)| · |p̃1,a − p̃0,a|

+ |P̃S(Ŷ = 1|Y = y,A = 0)− P̃(Ŷ = 1|Y = y,A = 0)| · |p̃1,0 − p̃0,0|

≤ |P̃S(Ŷ = 1|Y = y,A = a)− P̃(Ŷ = 1|Y = y,A = a)|

+ |P̃S(Ŷ = 1|Y = y,A = 0)− P̃(Ŷ = 1|Y = y,A = 0)|

From the proof of Lemma 1, let C = π+|A|−2
|A|π−1 , then if n ≥ 32 log(8|A|/δ)

minya Pya
, we have:

P

(
max
ya
|Γ̃Sya − Γya| >

√
log(64/δ)

2n

4|A|C2

minyaP2
ya

)
≤ δ/4

Now if α̃n ≥
√

log(64/δ)
2n

4|A|C2

minya P2
ya

, then by the same argument of Lemma 5 in Woodworth et al. (2017), any 0-discriminatory

Ỹ ∗ derived from Ŷ is in the feasible set of step 2 with probability greater than 1− δ/4, hence by the optimality of Ỹ on S2:

err(Ỹ ) ≤δ/2 err(Ỹ ∗) +
4|A|(π + |A| − 2)

|A|π − 1

√
log(32|A|/δ)

2n

We are now ready for the proof of Theorem 1.

Theorem 1 For any hypothesis classH, any distribution over (X,A, Y ) and any δ ∈ (0, 1/2), then with probability 1− δ,

if n ≥ 16 log(8|A|/δ)
minya Pya

, αn =
√

8 log 64/δ
nminyz Qyz

and α̃n =
√

log(64/δ)
2n

4|A|C2

minya P2
ya

then the predictor resulting from the two-step
procedure satisfies:

err(Ỹ ) ≤δ err(Y ∗) +
5C

minyaP2
ya

(
2

B
+ 10Rminya nPya

4

(H) + 18|A|

√
2 log 64|A|/δ
nminyaPya

)

disc(Ỹ ) ≤δ

√
log( 64

δ )

2n

8|A|C2

minyaP2
ya

Proof. Since the predictor obtained in step 1 is only a function of X , then the guarantees of step 2 immediately apply by
Lemma 9:

err(Ỹ ) ≤δ/2 err(Ỹ ∗) + 4|A|C
√

log(32|A|/δ)
2n

disc(Ỹ ) ≤δ/2

√
log( 64

δ )

2n

8|A|C2

minyaP2
ya
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Now we have to relate the loss of the optimal derived predictor from Ŷ , denoted by Ỹ ∗, to the loss of the optimal non-
discriminatory predictor inH. We can apply Lemma 4 in Woodworth et al. (2017) as the solution of our derived LP is in
expectation equal to that in terms of A. Lemma 4 in Woodworth et al. (2017) tells us that the optimal derived predictor has a
loss that is less or equal than the sum of the loss of the base predictor and its discrimination:

err(Ỹ ∗) ≤ err(Ŷ ) + disc(Ŷ ) (20)

We have then by Lemma 9 the loss of the optimal derived predictor:

err(Ỹ ∗) ≤δ err(Y ∗) + 4

√
log 1/δ

n
+ 4Rn/2(H) +

5C

minyaP2
ya

(
2

B
+ 6Rminya nPya

4

(H) + 10

√
2 log 64|A|/δ
nminyaPya

)

≤δ err(Y ∗) +
5C

minyaP2
ya

(
2

B
+ 10Rminya nPya

4

(H) + 14

√
2 log 64|A|/δ
nminyaPya

)

Hence our derived predictor satisfies:

err(Ỹ ) ≤δ/2 err(Ỹ ∗) + 4|A|C
√

log(32|A|/δ)
2n

≤δ err(Y ∗) +
5C

minyaP2
ya

(
2

B
+ 10Rminya nPya

4

(H) + 18|A|

√
2 log 64|A|/δ
nminyaPya

)

A.3. Section 6

Lemma 3 Given a hypothesis classH, a distribution over (X,A, Y ), B ∈ R+ and any δ ∈ (0, 1/2), then with probability

greater than 1− δ, if n` ≥ 8 log 4|A|/δ
minya Pya

, αn = 2
√

log 32|A|/δ
n` minya Pya

and we let ϑ = Rn(H) +
√

log 4/δ
n , then running Algorithm

1 on data set S with T ≥ 16 log(4|A|+1)
ϑ2 and learning rate η = ϑ

8B returns a predictor Ŷ satisfying the following:

err(Ŷ ) ≤δ err(Y ∗) + 4Rn(H) + 4

√
log 4/δ

n

disc(Ŷ ) ≤δ
2

B
+ 6Rminya n`Pya

2

(H) + 10

√
2 log 32|A|/δ
n` minyaPya

Proof. The proof follows immediately from Lemma 2 with the identical error bound and replacing n by nl in the discrimi-
nation bound. The two dataset langragian does not impact Theorem 1 in (Agarwal et al., 2018) and the definition of an
approximate saddle point remains the same as both players have the same objective.

Lemma 4 Let S = {(xi, ai, yi)}ni=1 i.i.d. ∼ Pn(A,X, Y ), the estimator γ̃Sya is consistent. As n→∞

γ̃Sya →p γya.
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Proof.

γ̃ya(Ŷ ) = lim
n→∞

1
n

∑n
i=1 Ŷ (xi)1(yi = y)P(A = a|xi, yi)

1
n

∑n
i=1 1(yi = y)P(A = a|xi, yi)

→ E[Ŷ (X)I(Y = y)P(A = a|X,Y )]

E[I(Y = y)P(A = a|X,Y )]

=
E[Ŷ (X)I(Y = y)P(A = a|X,Y )]∫

x
P(X = x, Y = y)P(A = a|X = x, Y = y)dx

=

∫
x
P(X = x, Y = y)Ŷ (x)P(A = a|X = x, Y = y)dx

P(Y = y,A = a)

=

∫
x
P(X = x|Y = y,A = a)P(Y = y,A = a)Ŷ (x)dx

P(Y = y,A = a)

= EX|Y=y,A=aŶ (X) = P(Ŷ = 1|Y = y,A = a) = γya
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