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Abstract
Learning algorithms are often used in conjunction
with expert decision makers in practical scenarios,
however this fact is largely ignored when design-
ing these algorithms. In this paper we explore
how to learn predictors that can either predict
or choose to defer the decision to a downstream
expert. Given only samples of the expert’s deci-
sions, we give a procedure based on learning a
classifier and a rejector and analyze it theoreti-
cally. Our approach is based on a novel reduction
to cost sensitive learning where we give a con-
sistent surrogate loss for cost sensitive learning
that generalizes the cross entropy loss. We show
the effectiveness of our approach on a variety of
experimental tasks.

1. Introduction
Machine learning systems are now being deployed in set-
tings to complement human decision makers such as in
healthcare (Hamid et al., 2017; Raghu et al., 2019a), risk
assessment (Green & Chen, 2019a) and content moderation
(Link et al., 2016). These models are either used as a tool to
help the downstream human decision maker: judges relying
on algorithmic risk assessment tools (Green & Chen, 2019b)
and risk scores being used in the ICU (Futoma et al., 2017),
or instead these learning models are solely used to make the
final prediction on a selected subset of examples (Madras
et al., 2018; Raghu et al., 2019a). A current application of
the latter setting is Facebook’s and other online platforms
content moderation approach (Vincent, 2019; Jhaver et al.,
2019): an algorithm is used to filter easily detectible inap-
propriate content and the rest of the examples are screened
by a team of human moderators. Another motivating appli-
cation arises in health care settings, for example deep neural
networks can outperform radiologists in detecting pneumo-
nia from chest X-rays (Irvin et al., 2019), however, many
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obstacles are limiting complete automation, an intermediate
step to automating this task will be the use of models as
triage tools to complement radiologist expertise. Our focus
in this work is to give theoretically sound approaches for
machine learning models that can either predict or defer
the decision to a downstream expert to complement and
augment their capabilities.

The learned model should adapt to the underlying human
expert in order to achieve better performance than deploy-
ing the model or expert individually. In situations where
we have limited data or model capacity, the gains from al-
lowing the model to focus on regions where the expert is
less accurate are expected to be more significant. However,
even when data or model capacity are not concerns, the
expert may have access to side-information unavailable to
the learner due to privacy concerns for example, the hard
task is then to identify when we should defer without having
access to this side-information. We will only assume in this
work that we are allowed access to samples of the experts
decisions or to costs of deferring, we believe that this is a
reasonable assumption that can be achieved in practical set-
tings. Inspired by the literature on rejection learning (Cortes
et al., 2016b), our approach will be to learn two functions:
a classifier that can predict the target and a rejector which
decides whether the classifier or the expert should predict.

We start by formulating a natural loss function for the com-
bined machine-expert system in section 3 and show a re-
duction from the expert deferral setting to cost sensitive
learning. With this reduction in hand, we are able to give a
novel convex surrogate loss that upper bounds our system
loss and that is furthermore consistent in section 4. This
surrogate loss settles the open problem posed by Ni et al.
(2019) for finding a consistent loss for multiclass rejection
learning. Our proposed surrogate loss and approach re-
quires only adding an additional output layer to existing
model architectures and changing the loss function, hence
it necessitates minimal to no added computational costs.
In section 5, we show the limitations of approaches in the
literature from a consistency point-of-view and then provide
generalization bounds for minimizing the empirical loss. To
show the efficacy of our approach, we give experimental
evidence on image classification datasets CIFAR-10 and
CIFAR-100 using synthetic and human experts based on
CIFAR10H (Peterson et al., 2019), on a hate speech and
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offensive language detection task (Davidson et al., 2017),
and on classification of chest X-rays with synthetic experts
in section 6. To summarize, the contributions of this paper
are the following:

• We formalize the expert deferral setup and analyze it
theoretically giving a generalization bound for solving
the empirical problem.

• We propose a novel convex consistent surrogate loss
LCE (6) for expert deferral easily integrated into cur-
rent learning pipelines.

• We provide a detailed experimental evaluation of our
method and baselines from the literature on image and
text classification tasks.

2. Related Work
Learning with a reject option, rejection learning, has long
been studied starting with Chow (1970) who investigated the
trade-off between accuracy and the rejection rate. The frame-
work of rejection learning assumes a constant cost c of defer-
ring and hence the problem becomes to predict only if one is
1− c confident. Numerous works have proposed surrogate
losses and uncertainty estimation methods to solve the prob-
lem (Bartlett & Wegkamp, 2008; Ramaswamy et al., 2018;
Ni et al., 2019; Jiang et al., 2018). Cortes et al. (2016b;a)
proposed a different approach by learning two functions: a
classifier and a rejection function and analyzed the approach
giving a kernel based algorithm in the binary setting. Ni
et al. (2019) tried to extend their approach to the multiclass
setting but failed to give a consistent surrogate loss and
hence resorted to confidence based methods.

Recent work has started to explore models that defer to
downstream experts, Madras et al. (2018) considers an iden-
tical framework to the one considered here however their
approach does not allow the model to adapt to the underly-
ing expert and the loss used is not consistent and requires an
uncertainty estimate of the expert decisions. On the other
hand, De et al. (2019) gives an approximate procedure to
learn a linear model that picks a subset of the training data
on which to defer and uses a nearest neighbor algorithm to
defer on new examples, the approach used is only feasible
for small dataset sizes and does not generalize beyond ridge
regression. Raghu et al. (2019a) considers binary classi-
fication with expert deferral, their approach is to learn a
classifier ignoring the expert and obtain uncertainty esti-
mates for both the expert and classifier and then defer based
on which is higher, we detail the limitations of this approach
in section 5. Concurrent work (Wilder et al., 2020) learns
a model with the mixtures of expert loss first introduced in
(Madras et al., 2018) and defers based on estimated model
and expert confidence as in Raghu et al. (2019a). Work on

AI-assisted decision making has focused on the reverse set-
ting considered here: the expert chooses to accept or reject
the decision of the classifier instead of a learned rejector
(Bansal et al., 2019; 2020). Additionally, the fairness in
machine learning community has started to consider the fair-
ness impact of having downstream decision makers (Madras
et al., 2018; Canetti et al., 2019; Green & Chen, 2019a;
Dwork & Ilvento, 2018) but in slightly different frameworks
than the ones considered here and work has started to con-
sider deferring in reinforcement learning (Meresht et al.,
2020).

A related framework to our setting is selective classifica-
tion (El-Yaniv & Wiener, 2010) where instead of setting
a cost for rejecting to predict one sets a constraint on the
probability of rejection; here is no assumed downstream
expert. Approaches range from deferring based on confi-
dence scores (Geifman & El-Yaniv, 2017), learning a deep
network with two heads, one for predicting and the other
for deferring (Geifman & El-Yaniv, 2019) and learning with
portfolio theory inspired loss functions (Ziyin et al., 2019).
Finally, our work bears resemblance to active learning with
weak (the expert) and strong labelers (the ground truth)
(Zhang & Chaudhuri, 2015).

3. Problem Formulation
We are interested in predicting a target Y ∈ Y =
{1, · · · ,K} based on covariates X ∈ X where X,Y ∼ P.
We assume that we have query access to an expert M that
has access to a domain Z that may contain additional infor-
mation than X to classify instances according to the target
Y . Querying the expert implies deferring the decision which
incurs a cost lexp(x, y,m) that depends on the target y, co-
variate x and the expert’s prediction m. On the other hand,
predicting without querying the expert implies that a clas-
sifier makes the final decision and incurs a cost l(x, y, ŷ)
where ŷ is the prediction of the classifier. Our goal is to
build a predictor Ŷ : X → Y ∪ {⊥} that can either predict
or defer the decision to the expert denoted by ⊥. Our strat-
egy for learning the predictor Ŷ will be to learn two separate
functions h : X → Y (classifier) and r : X → {0, 1} (rejec-
tor). We can now formulate a natural system loss function
L for the system consisting of the classifier in conjunction
with the expert:

L(h, r) = E(x,y)∼P,m∼M |(x,y) [ l(x, y, h(x))︸ ︷︷ ︸
classifier cost

Ir(X)=0︸ ︷︷ ︸
predict

(1)

+

expert cost︷ ︸︸ ︷
lexp(x, y,m)

defer︷ ︸︸ ︷
Ir(x)=1 ]

The above formulation is a generalization of the learning
with rejection framework studied by Cortes et al. (2016b)
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as by setting lexp(x, y,m) = c for a constant c > 0 the
two objectives coincide. In Madras et al. (2018), the loss
proposed assumes that the classifier and expert costs are the
logistic loss between the target and their predictions in the
binary target setting.

While our treatment extends to general forms of expert
and classifier costs, we will pay particular attention in our
theoretical analysis when the costs are the misclassification
error with the target. Formally, we define a 0−1 loss version
of our system loss:

L0−1(h, r) = (2)
E(x,y)∼P,m∼M |(x,y) [ Ih(x)6=yIr(x)=0 + Im6=yIr(x)=1 ]

One may also assume a constant additive cost function c(x)
for querying the expert depending on the instance x making
lexp(x, y,m) = Im6=y + c(x); such additive costs can be
easily integrated into our analysis.

Our approach will be to cast this problem as a cost sen-
sitive learning problem over an augmented label space
that includes the action of deferral. Let the random costs
c ∈ RK+1

+ where for i ∈ [K], c(i) is the i′th component of
c represents the cost of predicting i ∈ Y while c[K+ 1] rep-
resents the cost of deferring to the expert. The goal of this
setup is to learn a predictor h : X → [K+1] minimizing the
cost sensitive loss L̃(h) := E[c(h(x))]. For example, giv-
ing an instance (x, y,m), our loss (1) is obtained by setting
c(i) = l(x, y, i) for i ∈ [K] and c(K + 1) = lexp(x, y,m).

For the majority of this paper we assume access to samples
S = {(xi, yi,mi)}ni=1 where {(xi, yi)}ni=1 are drawn i.i.d.
from the unknown distribution P and mi is drawn from the
distribution of the random variable M |(X = xi, Y = yi)
and access to the realizations of lexp and l when required .

4. Proposed Surrogate Loss
It is clear that the system loss function (1) is not only non-
convex but also computationally hard to optimize. The
usual approach in machine learning is to formulate upper
bounding convex surrogate loss functions and optimize them
in hopes of approximating the minimizers of the original loss
(Bartlett et al., 2006). Work from rejection learning (Cortes
et al., 2016b; Ni et al., 2019) suggested learning two separate
functions h and r and provided consistent convex surrogate
loss functions only for the binary setting. We extend their
proposed surrogates for our expert deferral setting for binary
labels with slight modifications in appendix C. Consistency
is used to prove that a proposed surrogate loss is a good
candidate and is often treated as a necessary condition. The
issue with the proposed surrogates in (Cortes et al., 2016b)
for rejection learning is that when extended to the multiclass
setting, it is impossible for them to be consistent as was
shown by (Ni et al., 2019). Aside the consistency issue, Ni

et al. (2019) found that simple baselines can outperform the
proposed losses in practice.

The construction of our proposed surrogate loss for the
multiclass expert deferral setting will be motivated via two
ways, the first is through a novel reduction to cost sensitive
learning and the second is inspired by the Bayes minimizer
for the 0−1 system loss (3). Let gi : X → R for i ∈ [K+1]
and define h(x) = arg maxi∈[K+1] gi, motivated by the
success of the cross entropy loss, our proposed surrogate for
cost-sensitive learning L̃CE takes the following form:

L̃CE(g1, · · · , gK+1, x, c(1), · · · , c(K + 1)) = (3)

−
K+1∑
i=1

( max
j∈[K+1]

c(j)− c(i)) log

(
exp(gi(x))∑
k exp(gk(x))

)

The loss L̃CE is a surrogate loss for cost sensitive learn-
ing that generalizes the cross entropy loss when the costs
correspond to multiclass misclassification. The following
proposition shows that the loss is consistent, meaning it’s
minimizer over all measurable functions agrees with the
Bayes solution.

Proposition 1. L̃CE is convex in g and is a consistent loss
function for L̃:

let g̃ = arg infg E
[
L̃CE(g, c)|X = x

]
, then:

arg maxi∈[K+1] g̃i = arg mini∈[K+1] E[c(i)|X = x]

Proof of Proposition 1 can be found in Appendix C; L̃CE is
a simpler consistent alternative to the surrogates derived in
(Chen et al., 2019) for cost sensitive learning.
Now we consider when the system loss function is L0−1 (3),
our approach is to treat deferral as a new class and construct
a new label space Y⊥ = Y∪⊥ and a corresponding distribu-
tion P(Y ⊥|X = x) such that minimizing the misclassifica-
tion loss on this new space will be equivalent to minimizing
our system loss L0−1. The Bayes optimal classifier on
Y⊥ is clearly h⊥ = arg maxy⊥∈Y⊥ P(Y⊥ = y⊥|X = x),
and we need it to match the decision of the Bayes solution
hB , rB of L0−1 (3):

hB , rB = arg inf
h,r

L0−1(h, r) (4)

where the infimum is over all measurable functions. Denote
by ηy(x) = P(Y = y|X = x), it is clear that for x ∈ X the
best classifier is the same as the Bayes solution for standard
classification since if we don’t defer we have to do our
best. Now we only reject the classifier if it’s expected error
is higher than the expected error of the expert which we
formalize in the below proposition:

Proposition 2. The minimizers of the loss L0−1 (3) are
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defined point-wise for all x ∈ X as:

hB(x) = arg max
y∈Y

ηy(x)

rB(x) = Imaxy∈Y ηy(x)≤P(Y=M |X=x) (5)

Proof of the above proposition can be found in Appendix C
and equation (5) give us sufficient conditions for consistency
to check our proposed loss. Let gy : X → R for y ∈ Y and
define h(x) = arg maxy∈Y gy, similarly let g⊥ : X → R
and define r(x) = Imaxy∈Y gy(x)≤g⊥ the proposed surrogate
loss for L0−1 (1) in the multiclass setting is then:

LCE(h, r, x, y,m) = − log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(6)

− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
The proposed surrogate LCE is in fact consistent and upper
bounds L0−1 as the following theorem demonstrates.
Theorem 1. The loss LCE is convex in g, upper bounds
L0−1 and is consistent: infh,r Ex,y,m[LCE(h, r, x, y,m)]
is attained at (h∗CE , r

∗
CE) such that hB(x) = h∗CE(x) and

rB(x) = r∗CE(x) for all x ∈ X .

Proof of Theorem 1 can be found in Appendix C. When
the costs c(1), · · · , c(K + 1) are in accordance with our
expert deferral setting the loss L̃CE reduces to LCE . Now
stepping back and looking more closely at our loss LCE , we
can see that the loss on examples where the expert makes a
mistake becomes the cross entropy loss with the target. On
the other hand, when the expert agrees with the target, the
learner faces two opposing decisions whether to defer or
predict the target. We can encourage or hinder the action of
deferral by modifying the loss with an additional parameter
α ∈ R+ as LαCE(h, r, x, y,m):

− (α · Im=y + Im6=y) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(7)

− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
Note that L1

CE = LCE . The effect of α is to re-weight ex-
amples where the expert is correct to discourage the learner
of fitting them and instead focus on examples where the
expert makes a mistake. In practice, one would treat α as
an additional hyperparameter to optimize for.

5. Theoretical analysis
In this section we focus on the zero-one system loss function
L0−1 and try to understand previous proposed solutions

Figure 1. Setting of two groups, red and blue, the task is binary
classification with labels {o,+}, the expert fits the red majority
group, hence the classifier should attempt to fit the blue group with
the rejector (black line) separating the groups.

in the literature in comparison with our method from a
theoretical perspective.

5.1. Failure of Confidence Scores Method

The form of the Bayes solution in Proposition 5 above sug-
gests a very natural approach: 1) learn a classifier minimiz-
ing the misclassification loss with the target and obtain confi-
dence scores for predictions, 2) obtain confidence scores for
expert agreement with the target, this can be done by learn-
ing a model where the target is whether the expert agrees
with the task label and extracting confidence scores from
this model (Raghu et al., 2019b), and finally 3) compare
who between the classifier and the expert is more confident
and accordingly defer. We refer to this as the confidence
score method (Confidence), this approach leads to a consis-
tent estimator for both the rejector and classifier and was
proposed by Raghu et al. (2019a).

In fact this is the standard approach in rejection learning
(Bartlett & Wegkamp, 2008; Ramaswamy et al., 2018; Ni
et al., 2019), a host of different methods exist for estimating
a classifier’s confidence on new examples including trust
scores (Jiang et al., 2018), Monte-Carlo dropout for neural
networks (Gal & Ghahramani, 2016) among many others.
However, the key pitfall of this method in the expert deferral
setup it that it does not allow h to adapt to the expert’s
strengths and weaknesses. When we restrict our search
space to a limited class of functionsH andR this approach
can easily fail. We now give a toy example where learning
the classifier independently fails which motivates the need
to jointly learn both the classifier and rejector.

Assume that there exists two sub-populations in the data
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denoted A = 1 and A = 0 where P(A = 1) ≥ P(A = 0)
from which X ∈ Rd is generated from and conditional on
the target and population, X|(Y = y,A = 0) is normally
distributed according toN (µy,0,Σ) andX|(Y = y,A = 1)
consists of two clusters: cluster (1) is normally distributed
but the means are not well separated and cluster (2) is only
separable by a complex non-linear boundary; the data is il-
lustrated in Figure 1. Finally we assume the expert to be able
to perfectly classify group A = 1, on cluster (1) the expert
is able to compute the complex nonlinear boundary and on
cluster (2) the expert has side-information Z that allows him
to separate the classes which is not possible from only X .
We restrict our classifier and rejector to be d−dimensional
hyperplanes. If we start by learning h, then the resulting
hyperplane will try to minimize the average error across
both groups, this will likely result into a hyperplane that
separates neither group as the data is not linearly separable,
especially on group A = 1. If we assume that the boundary
between the groups is linear as shown, then we can achieve
the error of the Bayes solution within our hypothesis space:
the optimal behavior in this setting is clearly to have h fit
group A = 0, note here the Bayes solution corresponds to a
hyperplane via linear discriminant analysis for 2 classes on
A = 0, and the rejector r separating the groups as illustrated
in Figure 1. This example illustrates the complexities of this
setting, due to model capacity there are significant gains to
be achieved from adapting to the expert by focusing only
group A = 0. Setting aside model capacity, the nonlinear
boundary of cluster (1) is sample intensive to learn as we
only have access to finite data. Finally, cluster (2) cannot
be separated even with infinite data, the side information of
the expert is needed, and so the hard task is to identify the
region of cluster (2).

5.2. Inconsistency of Mixtures of Experts Loss

Note that the expert deferral setting considered here can be
thought of as a hard mixture of two experts problem where
one of the experts is fixed (Jordan & Jacobs, 1994; Shazeer
et al., 2017; Madras et al., 2018). This observation motivates
a natural mixture of experts type loss, let gy : X → R for
y ∈ Y , h(x) = arg maxy∈Y gy, ri : X → R for i ∈ {0, 1}
and r(x) = arg maxi∈{0,1} ri(x), the mixture of experts
loss is defined as:

Lmix(g, r, x, y,m) = − log

(
exp(gy(x))∑

y′∈Y exp(gy′(x))

)
·

(8)

exp(r0(x))∑
i∈{0,1} exp(ri(x))

+ Im 6=y
exp(r1(x))∑

i∈{0,1} exp(ri(x))

The above loss extends Madras et al. (2018) approach to
the multiclass setting. As the next proposition demonstrates,
Lmix is in general not classification consistent.

Proposition 3. Lmix is not a consistent surrogate loss func-
tion for L (3).

Proof of proposition (3) can be found in Appendix C. In our
experimental section we show how the mismatch between
the model and expert loss and their actual errors arising from
the inconsistency causes this method to learn the incorrect
behavior.

5.3. Generalization Bound for Joint Learning

In this subsection we analyze the sample complexity to
jointly learn a rejector and classifier. The goal is to find the
minimizer of the empirical version of our system loss when
our hypothesis space for h and r areH,R respectively:

ĥ∗, r̂∗ = arg min
h∈H,r∈R

LS0−1(h, r) (9)

By going after the system loss directly, we can approximate
the population minimizers h∗, r∗ overH×R of L0−1 (3).
The optimum h∗ may not necessarily coincide with the
optimal minimizer of the misclassification loss with the
target which is why learning jointly is critical. We now
give a generalization bound for our empirical minimization
procedure for a binary target.

Theorem 2. For any expertM and data distribution P over
X × Y , let 0 < δ < 1

2 , then with probability at least 1− δ,
the following holds for the empirical minimizers (ĥ∗, r̂∗):

L0−1(ĥ∗, r̂∗) ≤ L0−1(h∗, r∗) + Rn(H) + Rn(R) (10)

+ RnP(M 6=Y )/2(R) + 2

√
log 2

δ

2n

+
P(M 6= Y )

2
exp

(
−nP(M 6= Y )

8

)

Proof of the above theorem can be found in Appendix C.
We can see that the performance of our empirical minimizer
is controlled by the Rademacher complexity Rn(R) and
Rn(H) of both the classifier and rejector model classes and
the error of the expert. Note that when P(M 6= Y ) = 0
we recover the bound proved in Theorem 1 (Cortes et al.,
2016b) for rejection learning when c = 0; this gives evi-
dence that deferring to an expert is a more sample intensive
problem then rejection learning. Both our loss LCE and the
confidence scores approach lead to consistent estimators,
however, as we will later show in our experiments, one dif-
ferentiating factor will be that of sample complexity. We can
already see in the bound (10), that we pay the complexity
of the rejector and classifier model classes, however, our
approach combines the rejector and classifier in one model
to avoid these added costs.
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6. Experiments
We provide code to reproduce our experiments 1. Additional
experimental details and results are left to Appendix B.

6.1. Synthetic Data

As a first toy example to showcase that our proposed loss
LαCE is able to adapt to the underlying expert behavior, we
perform experiments in a Gaussian mixture setup akin to
the example in section 5. The covariate space is X = Rd
and target Y = {0, 1}, we assume that there exists two
sub-populations in the data denoted A = 1 and A = 0.
Furthermore, X|(Y = y,A = a) is normally distributed
according to N (µy,a,Σy,a). The expert follows the Bayes
solution for group A = 1 which here corresponds to a hy-
perplane. Our hypothesis spacesH andR will be the set of
all d−dimensional hyperplanes.
Setup: We perform 200 trials where on each trial we gen-
erate: random group proportions P(A = 1) ∼ U(0, 1)
fixing P(Y = 1|A = a) = 0.5, random means and vari-
ances for each Gaussian component X|Y = y,A = a ∼
N (µy,a,Σy,a) where µy,a ∼ U(0, 10)d and similarly for
the diagonal components of Σy,a(i, i) ∼ U(0, 10) keeping
non-diagonal components 0 with dimension d = 10; we
generate in total 1000 samples each for training and testing.
We compare against oracle behavior and two baselines: 1)
An oracle baseline (Oracle) that trains only on A = 0 data
and trains the rejector to separate the groups with knowl-
edge of group labels and 2) the confidence score baseline
(Confidence) that trains a linear model on all the data and
then trains a different linear model on all the data where
labels are the expert’s agreement with the target and finally
compares which of the two is more confident according to
the probabilities assigned by the corresponding models and
3) our implementation of the approach in (Madras et al.,
2018) (MixOfExp).
Results: We train a multiclass logistic regression model
with our loss LαCE with α ∈ {0, 0.5, 1} and record in ta-
ble 1 the difference in accuracy between our method and
baselines for the best performing α. We can see that our
method with α = 0 outperforms the confidence baseline by
6.39 on average in classification accuracy and matches the
oracle method with 0.22 positive difference which shows
the success of our method.

6.2. CIFAR-10

As our first real data experimental evaluation we conduct
experiments on the celebrated CIFAR-10 image classifica-
tion dataset (Krizhevsky et al., 2009) consisting of 32× 32
color images drawn from 10 classes split into 50,000 train

1https://github.com/clinicalml/learn-to-
defer

Table 1. Average difference in accuracy for our method compared
to the baselines and a 95% confidence interval for the average for
the synthetic data experiment.

DIFFERENCE IN SYSTEM ACCURACY AVERAGE 95% INTERVAL

L0
CE -CONFIDENCE (RAGHU ET AL., 2019A) 6.39 [3.71,9.06]

L0
CE -ORACLE 0.22 [-1.71,2.15]

L0
CE - MIXOFEXP (MADRAS ET AL., 2018) 2.01 [0.14,4.06]

and 10,000 test images.
Synthetic Expert. We simulate multiple synthetic experts
of varying competence in the following way: let k ∈ [10],
then if the image belongs to the first k classes the expert
predicts perfectly, otherwise the expert predicts uniformly
over all classes. The classifier and expert costs are assumed
to be the misclassification costs.
Base Network. Our base network for classification will be
the Wide Residual Networks (WideResNets) (Zagoruyko &
Komodakis, 2016) which with data augmentation and hyper-
parameter tuning can achieve a 96.2% test accuracy. Since
our goal is not to achieve better accuracies but to show the
merit of our approach for a given fixed model, we disadvan-
tage the model by not using data augmentation and a smaller
network size. The WideResNet with 28 layers minimizing
the cross-entropy loss achieves 90.47% test accuracy with
training until fitting the data in 200 epochs; this will be our
benchmark model. We use SGD with momentum and a
cosine annealing learning rate schedule.
Proposed Approach: Following section 4, we parameter-
ize h and r (specifically g⊥) by a WideResNet with 11
output units where the first 10 units represent h and the
11′th unit is g⊥ and minimize the proposed surrogate LαCE
(6). We also experimented with having h be a WideResNet
with 10 output units and g⊥ a WideResNet with a single
output unit and observed identical results. We show results
for α ∈ {0.5, 1}.
Baselines: We compare against three baselines. The first
baseline trains the rejector to recognize if the image is in the
first k classes and accordingly defers, we call this baseline
"LearnedOracle"; this rejector is a learned implementation
of what the optimal rejector should do. The second baseline
is the confidence score method (Raghu et al., 2019a) and the
third is the mixture-of-experts loss of (Madras et al., 2018),
details of the implementation of this final baseline are left
to Appendix B.5.

Results. In figure 2a we plot the accuracy of the combined
algorithm and expert system versus k, the number of classes
the expert can predict perfectly. We can see that the model
trained with L0.5

CE and L1
CE outperforms the baselines by

1.01% on average for the confidence score baseline and by
1.94 on average for LearnedOracle. To look more closely
at the behavior of our method, we plot in figure 2b the

https://github.com/clinicalml/learn-to-defer
https://github.com/clinicalml/learn-to-defer
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Figure 2. Left figure shows overall system accuracy of our method and baselines (k is the number of classes the expert can predict) and
right figure compares the accuracy on the non-deferred examples versus the coverage for every k

accuracy on the non-deferred examples versus the coverage,
the fraction of the examples non-deferred, for each k. We
can see that that the model trained with L1

CE dominates all
other baselines giving better coverage and accuracy for the
classifier’s predictions. This gives evidence that our loss
allows the model to only predict when it is highly confident.

Why do we outperform the baselines?
1) Sample complexity: The Confidence baseline (Raghu
et al., 2019a) requires training two networks while ours only
requires one, when data is limited our approach gives sig-
nificant improvements in comparison. We experiment with
increasing training set sizes while keeping the test set fixed
and training our model with L1

CE and the Confidence base-
line. With expert k = 5, when data is limited our approach
massively improves on the baseline, for example with 2000
training points, Confidence achieves 62.33% accuracy while
our method achieves 70.12%, a 7.89 point increase.
2) Taking into consideration both expert and model con-
fidence: the LearnedOracle baseline ignores model confi-
dence entirely and only focuses on the region where the
expert is correct. While this is the behavior of the Bayes
classifier in this setup, when dealing with a limited model
class and limited data, this no longer is the correct behavior.
For this reason, our model outperforms the LearnedOracle
baseline.
3) Consistency: the mixtures of experts loss of (Madras
et al., 2018) fails in this setup and learns never to defer. The
reason is that when training, the loss of the classifier will
converge to zero and validation classifier accuracy will still
improve in the mean-time, however the loss of the expert
remains constant, thus we never defer.

6.3. CIFAR10H and Limited Expert Data

In the following experiments we assume access to fully la-
beled data Sl = {(xi, yi,mi)}mi=1 and data without expert
labels Su = {(xi, yi)}ni=m+1. The goal is to learn a classi-
fier h and rejector r from the two datasets Sl and Su.
Data. To experiment in settings where we have limited
expert data, we use the dataset CIFAR10H (Peterson et al.,
2019) initially developed to improve model robustness.
CIFAR10H contains for each data point in the CIFAR-10
test set fifty crowdworker annotations recorded as counts
for each of the 10 classes. The training set of CIFAR-10
will constitute Su, and we randomly split the test set in half
where one half constitutes Sl and the other is for testing; we
randomize the splitting over 10 trials.
Expert. We simulate the behavior of an average human
annotator by sampling from the class counts for each data
point. The performance of our simulated expert has an
average classification accuracy of 95.22 with a standard
deviation of 0.18 over 100 runs. The performance of the
expert is non uniform over the classes, for example on the
class cat the expert has 91.0% accuracy while on horse a
97.8% accuracy.
Proposed Approach. Our method will be to impute expert
disagreement labels Iy 6=m on Su by learning a model that
predicts whether the expert will err and obtain an imputed
dataset Ŝu. We train using our loss LCE on Ŝu ∪ Sl; we
refer to our method as "LCE impute".
Results. We compare against a confidence score baseline
where we train a classifier on Su and then model the expert
on Sl. Results are shown in table 2 and we can see that our
method outperforms the confidence method by 1.2 points
on system accuracy and an impressive 3.1 on data points
where the classifier has to predict. To show the effect of
imputing expert labels on Su, we train first our model using
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Table 2. Comparing our proposed methods on CIFAR10H and a
baseline based on confidence scores recording system accuracy,
coverage and classifier accuracy on non-deferred examples.

METHOD SYSTEM COVERAGE CLASSIFIER

LCE IMPUTE 96.29±0.25 51.67±1.46 99.2 ± 0.08
LCE 2-STEP 96.03±0.21 60.81±0.87 98.11 ± 0.22
CONFIDENCE (RAGHU ET AL., 2019A) 95.09±0.40 79.48±5.93 96.09 ± 0.42

LCE on Su and then fine tune to learn deferral on Sl, we
refer to this as "LCE 2-step".

6.4. CheXpert

Task. CheXpert is a large chest radiograph dataset that
contains over 224 thousand images of 65,240 patients auto-
matically labeled for the presence of 14 observations using
radiology reports (Irvin et al., 2019). We focus here on
the detection of only the 5 observations that make up the
"competition tasks" (Irvin et al., 2019): Atelectasis, Car-
diomegaly, Consolidation, Edema, and Pleural Effusion.
This is a multi-task problem, we have 5 separate binary
tasks, we will learn to defer on an individual task basis.
Expert. We create a simulated expert as follows: if the
chest X-ray contains support devices (the presence of sup-
port devices is part of the label) then the expert is correct
with probability p on all tasks independently and if the X-ray
does not contain support devices, then the expert is correct
with probability q.
Data. We use the downsampled resolution version of CheX-
pert (Irvin et al., 2019) and split the training data set with an
80-10-10 split on a patient basis for training, validation and
testing respectively, no patients are shared among the splits.
Images are normalized and resized to be compatible with
pre-trained ImageNet models, we use data augmentation
in the form of random resized crops, horizontal flips and
random rotations of up to 15° while training.
Baselines. We implement two baselines: a threshold confi-
dence baseline that learns a threshold to maximize system
AU-ROC on just the confidence of the classifier model to
defer (ModelConfidence), this is the post-hoc thresholding
method in (Madras et al., 2018), and the Confidence base-
line (Raghu et al., 2019a). We use temperature scaling (Guo
et al., 2017) to ensure calibration of all baselines on the
validation set.
Model. Following (Irvin et al., 2019), we use the
DenseNet121 architecture for our model with pre-trained
weights on ImageNet, the loss for the baseline models is
the average of the binary cross entropy for each of the tasks.
We train the baseline models using Adam for 4 epochs. For
our approach we train for 3 epochs using the cross entropy
loss and then train for one epoch using LαCE with α chosen
to maximize the area under the receiver operating charac-

teristic curve (AU-ROC) of the combined system on the
validation set for each of the 5 tasks (each task is treated
separately).
Experimental setup. In a clinical setting there might be a
cost associated to querying a radiologist, this then imposes
a constraint on how often we can query the radiologist i.e.
our model’s coverage . We constrain our method and the
baselines to achieve c% coverage for c ∈ [100] to simulate
the spectrum between complete automation and none.
We achieve this for our method by first sorting the test set
based on g⊥(x)−max(g0(x), g1(x)) := q(x) across all pa-
tients x in the test set, then to achieve coverage c, we define
τ = q(xc) where q(xc) is the c’th percentile of the outputs
q(x), then we let r(x) = 1 ⇐⇒ q(x) ≥ τ . The definition
of τ ensures that we obtain exactly c% coverage. We do the
this similarly for ModelConfidence and Confidence.
Results. In Figure 3a we plot the overall system (expert and
algorithm combined) AU-ROC for each desired coverage
for the methods and in Figure 3b we plot the overall system
area under the precision-recall curve (AU-PR) versus the
coverage; this is for the expert with q = 0.7 and p = 1.
We can see that the curve for our method dominates the
baselines over the entire coverage range for both AU-ROC
and AU-PR, moreover the curves are concave and we can
achieve higher performance by combining expert and al-
gorithm than using both separately. Our method is able to
achieve a higher maximum AU-ROC and AU-PR than both
baselines: the difference between the maximum attainable
AU-ROC of our method and Confidence is 0.039, 0.026,
0.018, 0.022 and 0.027 respectively for each of the five
tasks.

6.5. Hate Speech and Offensive Language Detection

We conduct experiments on the dataset created by Davidson
et al. (2017) consisting of 24,783 tweets annotated as hate
speech, offensive language or neither.
Expert. We create a synthetic expert that has differing error
rates according to the demographic of the tweet’s author,
using the probabilistic language model of (Blodgett et al.,
2016) we predict that a tweet is in African-American En-
glish (AAE) if the probability predicted by the model is
higher than 0.5. Our expert model is as follows: if the
tweet is in AAE then with probability p we predict the cor-
rect label and otherwise predict uniformly at random. On
the other hand if the tweet is not in AAE, we predict with
probability q the correct label. We experiment with 3 dif-
ferent expert probabilities for p and q: 1) a fair expert with
{p = 0.9, q = 0.9}, 2) a biased expert towards AAE tweets
{p = 0.75, q = 0.9} and 3) a biased expert towards non
AAE tweets {p = 0.9, q = 0.75}.
Our Approach. For our model we use the CNN developed
in (Kim, 2014) for text classification with 100 dimensional
Glove embeddings (Pennington et al., 2014) and 300 filters
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Figure 3. Plot of AU-ROC of the ROC curve (a) for each level of coverage and of the AU-PR (AP) (b) for each of the 5 tasks comparing
our method with the baselines on the training derived test set for the toy expert with q = 0.7, p = 1. We report the maximum AU-ROC
and AU-PR achieved on each task, error bars are standard deviations derived from 10 runs (averaging over the expert’s randomness).

of sizes {3, 4, 5} using dropout. This CNN achieves a 89.5%
average accuracy on the classification task, comparable to
the 91% achieved by (Davidson et al., 2017) with a feature
heavy linear model.
We randomly split the dataset with a 60, 10, 30% split into
a training, validation and test set respectively; we repeat the
experiments for 5 random splits. We used a grid search over
the validation set to find α.
Results. We compare against two baselines: the first is
Confidence, the second is an oracle baseline that trains first
a model on the classification task and then implements the
Bayes rejector rB(x) equipped with the knowledge of p, q
and the tweet’s demographic group. Both our model trained
with L1

CE and the confidence score baseline achieve similar
accuracy and coverage with the oracle baseline perform-
ing only slightly better across the three experts. For the
AAE biased expert, our model trained with L1

CE achieves
92.91±0.17 system accuracy, Confidence 92.42±0.40 and
Oracle 93.22±0.11. This suggests that both approaches are
performing optimally in this setting.
Bias. A major concern in this setting is whether the end to
end system consisting of the classifier and expert is discrim-
inatory. We define the discrimination of a predictor as the
difference in the false positive rates of AAE tweets versus
non AAE tweets where false positives indicate tweets that

were flagged as hate speech or offensive when they were
not. Surprisingly, the confidence score baseline with the
fair expert doubles the discrimination of the overall system
compared to the classifier acting on it’s own: the classifier
has a discrimination of 0.226 , the fair expert 0.03 while
the confidence score baseline has a discrimination of 0.449.
This again reiterates the established fact that fairness does
not compose (Dwork & Ilvento, 2018). In fact, the end-to-
end system can be less discriminatory even if the individual
components are more discriminatory, for the second expert
that has higher error rates on non AAE tweets with discrim-
ination of 0.084, the discrimination of the confidence score
method reduces to 0.151.

7. Conclusion
In this work we explored a framework where the learning
model can choose to defer to an expert or predict. We an-
alyzed the framework theoretically and proposed a novel
surrogate loss via a reduction to multiclass cost sensitive
learning. We showcased on image and text classifications
tasks the empirical benefits of our method compared to the
literature. We hope that our method will inspire machine
learning practitioners to integrate downstream decision mak-
ers into their learning algorithms.
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