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Table 3. Association tests code names

FLvINS Flowers vs. insects (Greenwald et al., 1998)
INSTvWP Instruments vs. weapons (Greenwald et al., 1998)
MNTvPHS Mental vs. physical disease (Monteith & Pettit, 2011)
EAvAA Europ-Amer vs Afr-Amer names (Caliskan et al., 2017)
EAvAA(Bertrand & Mullainathan, 2004) Europ-Amer vs Afr-Amer names (Bertrand & Mullainathan, 2004)
MNvFN Male vs. female names (Nosek et al., 2002a)
MTHvART Math vs. arts (Nosek et al., 2002a)
SCvART(Nosek et al., 2002b) Science vs. arts (Nosek et al., 2002b)
YNGvOLD Young vs. old people’s names (Nosek et al., 2002a)

PLvUPL Pleasant vs. unpleasant (Greenwald et al., 1998)
TMPvPRM Temporary vs. permanent (Monteith & Pettit, 2011)
PLvUPL(Nosek et al., 2002a) Pleasant vs. unpleasant (Nosek et al., 2002a)
CARvFAM Career vs. family (Nosek et al., 2002a)
MTvFT Male vs. female terms (Nosek et al., 2002a)
MTvFT(Nosek et al., 2002b) Male vs. female terms (Nosek et al., 2002b)

A. Relation between groupwise and pairwise comparison
In case of pairwise comparison, we have |I1| = · · · = |IG| = 2. As mentioned in the Algorithm 1, we at first mean-
center each group, which is assumed to nullify the variability along the directions of the relevant attributes. Lets consider
I1 = {ϕ11

, ϕ12
}. Then:

HΦI1 =

(
ϕ11
− ϕ11 + ϕ12

2
, ϕ12

− ϕ11
+ ϕ12

2

)>
=

(
ϕ11
− ϕ12

2
,
ϕ12
− ϕ11

2

)>
Hence the combined matrix can be written as:

Mpairs =
1

4|G|

|G|∑
i=1

(ϕi1 − ϕi2) (ϕi1 − ϕi2)
>

which is equivalent to consider the difference between the pairs of each individual groups (upto a constant). On the other
hand, we have more than two observations in each group, the grand matrix following Algorithm 1 becomes:

Mgeneral =
1

N

G∑
i=1

|IG|∑
j=1

(
ϕij − ϕ̄i

) (
ϕij − ϕ̄i

)>
where N =

∑G
i=1 |IG|, total number of observations. Hence, in case of |IG| = 2, we essentially don’t need to mean center

as we are taking the difference between the observations of each pair. When G is essentially fixed, i.e. |IG| ≈ N , the error
in estimating ranA∗ due to mean centering contributes a higher order term (See Theorem 3.2 for more details) which is
essentially negligible. In case of pairwise comparison, although there is no error due to mean centering, we pay a constant
as we are effectively loosing one observation in the each pair.

B. Theoretical properties of EXPLORE
In this section, we investigate the theoretical properties of EXPLORE. We provide statistical guarantees corresponding
to the estimation using the scaled logistic link (Section 2.2). To keep things simple, we tweak (2.5) so that it is strongly
identifiable:

yi | zi1 , zi2 ∼ Ber((2− ε)σ(−〈Di,Σ0〉))
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for some small ε > 0. The log-likelihood of samples (x1, y1), . . . , (xn, yn) is

`n(Σ) = 1
n

∑n
i=1 [yi logF∗(x

′
iΣxi)

+(1− yi) log (1− F∗(x′iΣxi))] ,

where F∗ = (2− ε)σ.

Proposition B.1. The population version of the likelihood function `(Σ) is concave in Σ and uniquely maximized at Σ0.

Proof. The population version of the likelihood function is:

`(Σ) = E [Y logF∗(X
′ΣX) + (1− Y ) log (1− F∗(X ′ΣX))] = g(X ′ΣX) (B.1)

As the function Σ −→ X ′ΣX is affine in Σ, we only need to show that g is concave. From equation B.1, the function g(.)
can be define as: g(t) = y logF∗(t) + (1 − y) log (1− F∗(t)) on t ∈ R+ for any fixed y ∈ {0, 1}. The function F∗ is
double differentiable with the derivatives as below:

F∗(x) =
2− ε
1 + et

, 1− F∗(t) =
et − 1 + ε

1 + et

F ′∗(t) = −(2− ε) et

(1 + et)2

F ′′∗ (t) = −(2− ε)e
t(1− et)

(1 + et)3

We show below that g′′(t) ≤ 0 for all t which proves the concavity of `(Σ):

g(t) = y logF∗(t) + (1− y) log (1− F∗(t))

⇒g′(t) = y
F ′∗(t)

F∗(t)
− (1− y)

F ′∗(t)

1− F∗(t)

⇒g′′(t) = y
F∗(t)F

′′
∗ (t)− (F ′∗(t))

2

F 2
∗ (t)

− (1− y)
(1− F∗(t))F ′′∗ (t) + (F ′∗(t))

2

(1− F∗(t))2
(B.2)

For the first summand in the double derivative we have:

F∗(t)F
′′
∗ (t)− (F ′∗(t))

2

F 2
∗ (t)

=
−(2− ε)2 e

t(1−et)
(1+et)4 − (2− ε)2 e2t

(1+et)4

(2−ε)2
(1+et)4

= −e
t(1− et) + e2t

(1 + et)2
= − et

(1 + et)2
< 0 ∀ t ∈ R+ (B.3)

For the second summand:

(1− F∗(t))F ′′∗ (t) + (F ′∗(t))
2

(1− F∗(t))2
=
−(2− ε) (et−1+ε)et(1−et)

(1+et)4 + (2− ε)2 e2t

(1+et)4

(et−1+ε)2

(1+et)2

=
(2− ε)

[
(2− ε)e2t − (et − 1 + ε)et(1− et)

]
(et − 1 + ε)2(1 + et)2

=
(2− ε)

[
(2− ε)e2t + (et − 1 + ε)et(et − 1)

]
(et − 1 + ε)2(1 + et)2

≥ 0 ∀ t ∈ R+ (B.4)

Combining equations B.2, B.3 and B.4 we get:

g′′(t) = −y et

(1 + et)2
− (1− y)

(2− ε)
[
(2− ε)e2t + (et − 1 + ε)et(et − 1)

]
(et − 1 + ε)2(1 + et)2

< 0 ∀ t ∈ R+
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This proves the strict concavity. To prove that Σ0 is the unique maximizer, observe that:

`(Σ) = E [Y logF∗(X
′ΣX) + (1− Y ) log (1− F∗(X ′ΣX))]

= E [F∗(X
′Σ0X) logF∗(X

′ΣX) + (1− F∗(X ′Σ0X)) log (1− F∗(X ′ΣX))]

= `(Σ0)− E (KL(Bern(F∗(X
′Σ0X)) || Bern(F∗(X

′ΣX))))

Hence `(Σ0) ≥ `(Σ) for all Σ ∈ Θ as KL divergence is always non-negative. Next, let Σ1 be any other maximizer. Then,

E (KL(Bern(F∗(X
′Σ0X)) || Bern(F∗(X

′ΣX)))) = 0

⇒KL(Bern(F∗(X
′Σ0X)) || Bern(F∗(X

′ΣX))) = 0 a.s. in X

⇒F∗(X ′Σ0X) = F∗(X
′ΣX)a.s. in X

⇒X ′(Σ− Σ0)X = 0 a.s. in X

⇒Σ = Σ0

as the interior of the support of X is non null. This proves the uniqueness of the maximizer.

The maximum likelihood estimator (MLE) Σ̂ is

Σ̂ = arg maxΣ`n(Σ)

The asymptotic properties of Σ̂ (consistency and asymptotic normality) are well-established in the statistical literature
(e.g. see van der Vaart (1998)). Here we study the non-asymptotic convergence rate of the MLE. We start by stating our
assumptions.

Assumption B.2. The feature space X is a bounded subset of Rd, i.e. there exits R <∞ such that ‖X‖ = ‖ϕ1−ϕ2‖ ≤ U
for all X ∈ X .

Assumption B.3. The parameter space Θ is a subset of Sd++ and sup{λmax(Σ) : Σ ∈ Θ} ≤ C+ <∞.

Under these assumptions, we establish a finite sample concentration result for our estimator Σ̂:

Theorem B.4. Under assumptions B.2 and B.3 we have the following
√
n‖Σ̂− Σ0‖op ≤ t

with probability atleast 1− e−bt2 for some constant b > 0.

Proof. We break the proof of the theorem into a few small lemmas. Consider the collection G = {gΣ : Σ ∈ Θ}, where

gΣ(X,Y ) = [Y logF∗(X
′ΣX) + (1− Y ) log (1− F (X ′ΣX)]

The problem of estimating Σ0 using MLE can be viewed as a risk minimization problem over the collection of functions G,
which we are going to exploit later this section. Lemma B.5 below provides a lower bound on the deviation of l(Σ) from
l(Σ0) in terms of ‖Σ− Σ0‖op:

Lemma B.5. Under assumptions B.2 and B.3, we have a quadratic lower bound on the excess risk:

Proof. From the definition of our model in ExPLORE, F∗(t) = (2−ε)/(1+et) which implies F ′∗(t) = −(2−ε)et/(1+et)2.
As X is bounded (Assumption B.2),

〈XXT ,Σ〉 ≤ λmax(Σ)‖X‖22 ≤ C+U
2

for all X ∈ X ,Σ ∈ Θ, where the constants C+ and U are as defined in Assumptions B.3 and B.2 respectively. Hence, there
exists K̃ > 0 such that |F ′∗(X ′(αΣ + (1−α)Σ0)X)| ≥ K̃ for all X,Σ. For notational simplicity define D = XXT . From
the definition of l(Σ) we have:

l(Σ) = E (F∗(〈D,Σ0〉) logF∗(〈D,Σ〉) + (1− F∗(〈D,Σ0〉))(1− logF∗(〈D,Σ〉)))
= l(Σ0)− E

[
KL

(
Bern(F∗(〈D,Σ0〉)) || Bern(F∗(〈D,Σ〉))

)]
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≤ l(Σ0)− 2E
[
(F∗(〈D,Σ0〉)− F∗(〈D,Σ〉))2

]
(B.5)

where the last inequality follows from Pinsker’s inequality. Using equation B.5 we can conclude:

l(Σ0)− l(Σ) ≥ 2E
[
(F∗(〈D,Σ0〉)− F∗(〈D,Σ〉))2

]
≥ 2K̃2E

[(
〈D,Σ− Σ0〉

)2]
≥ 2K̃2‖Σ− Σ0‖2opE

[(
〈D, Σ− Σ0

‖Σ− Σ0‖op
〉
)2
]

≥ 2K̃2‖Σ− Σ0‖2opE

[(
XT Σ− Σ0

‖Σ− Σ0‖op
X

)2
]

≥ 2cK̃2‖Σ− Σ0‖2op

Here we have used the fact that
inf

T∈S++
d :‖T‖op=1

E
[(
XTTX

)2]
= c > 0

To prove the fact, assume on the contrary that the infimum is 0. The set of all matrices T with ‖T‖op = 1 is compact subset
of Rd×d. Now consider the function:

f : T −→ E
[(
XTTX

)2]
By DCT, f is a continuous function. Hence the infimum will be attained, which means that we can find a matrix M such
that M ∈ S++

d and ‖M‖op = 1 such that E
[(
XTMX

)2]
= 0. Hence XTMX = 0 almost surely. As the support of A

contains an open set, we can conclude M = 0 which contradicts ‖M‖op = 1.

Next we establish an upper bound on the variability of the centered function gΣ − gΣ0
in terms of the distance function,

which is stated in the following lemma:

Lemma B.6. Under the aforementioned assumptions,

V ar (gΣ − gΣ0
) . d2(Σ,Σ0)

where d(Σ,Σ0) = ‖Σ− Σ0‖op.

Proof. We start with the observation

gΣ0
(X,Y )− gΣ(X,Y ) = Y log

F∗(X
′Σ0X)

F∗(X ′ΣX)
+ (1− Y ) log

1− F∗(X ′Σ0X)

1− F∗(X ′ΣX)

From our assumption on the parameter space, we know there exists p > 0 such that p ≤ F∗(X ′ΣX) ≤ 1− p for all Σ ∈ Θ
and for all X almost surely. Hence,

|gΣ0
(X,Y )− gΣ(X,Y )| ≤

∣∣∣∣log
F∗(X

′Σ0X)

F∗(X ′ΣX)

∣∣∣∣+

∣∣∣∣log
1− F∗(X ′Σ0X)

1− F∗(X ′ΣX)

∣∣∣∣
≤ 2K|F∗(X ′ΣX)− F∗(X ′Σ0X)| [K is the upper bound on the derivative of log]

≤ K|X ′(Σ− Σ0)X| [As F ′∗ ≤ 1/2]

≤ KU‖Σ− Σ0‖op

This concludes the lemma.

The following lemma establishes an upper bound on the modulus of continuity of the centered empirical process:
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Lemma B.7. Under the aforementioned assumptions, we have for any δ > 0:

E

(
sup

d(Σ,Σ0)≤δ
|Pn (gΣ0

− gΣ)− P (gΣ0
− gΣ)|

)
. δ

Proof. Fix δ > 0. DefineHδ = {hΣ = gΣ − gΣ0 : ‖Σ− Σ0‖op ≤ δ}. We can write gΣ − gΣ0 = h1
Σ + h2

Σ where

h
(1)
Σ = Y log

F∗(X
′Σ0X)

F∗(X ′ΣX)
, h

(2)
Σ = (1− Y ) log

1− F∗(X ′Σ0X)

1− F∗(X ′ΣX)

Hence Hδ ⊂ H(1)
δ +H

(2)
δ where H(i)

δ = {h(1)
Σ : ‖Σ− Σ0‖op ≤ δ}for i ∈ {1, 2}. Next, we argue that H(1)

δ has finite VC
dimension. To see this, consider the function (X,Y )→ 〈XX ′,Σ〉. As this is linear function, it has finite VC dimension.
Now the function log ◦F∗ is monotone. As composition of monotone functions keeps VC dimension finite, we see that
(X,Y )→ logF∗(〈XX ′,Σ〉) is also VC class. It is also easy to see that projection map (X,Y )→ Y is VC class, which
implies the functions (X,Y )→ Y logF∗(〈XX ′,Σ〉) form a VC class. As Σ0 is fixed, then we can easily conclude the class
of functions (X,Y ) → Y log F∗(X

′Σ0X)
F∗(X′ΣX) has finite VC dimension. By similar argument we can establish H(2)

δ also has

finite VC dimension. Let’s say Vi be the VC dimension of H(i)
δ . Define hδ to be envelope function of Hδ . Then we have,

|hδ(X,Y )| =

∣∣∣∣∣ sup
‖Σ−Σ0‖op≤δ

hΣ(X,Y )

∣∣∣∣∣
≤ sup
‖Σ−Σ0‖op≤δ

|hΣ(X,Y )|

≤ sup
‖Σ−Σ0‖op]≤δ

[|logF∗(X
′Σ0X)− logF∗(X

′ΣX)|+ |log (1− F∗(X ′Σ0X))− log (1− F∗(X ′ΣX))|]

≤ 2K1 sup
‖Σ−Σ0‖op≤δ

|X ′(Σ− Σ0)X| ≤ 2K1Uδ

Note that, hδ can also serve as an envelope for both H(1)
δ and H(2)

δ . Using the maximal inequality from classical empirical
process theory (e.g. see Theorem 2.14.1 in (van der Vaart & Wellner, 1996)) we get:

E

(
sup

d(Σ,Σ0)≤δ
|Pn (gΣ0 − gΣ)− P (gΣ0 − gΣ)|

)
≤ J(1,Hδ)

√
Ph2

δ ≤ J(1,Hδ)2K1Uδ (B.6)

for all δ > 0, where

J(1,Hδ) = sup
Q

∫ 1

0

√
1 + logN(ε‖hδ‖Q,2,Hδ, L2(Q)) dε

≤ sup
Q

∫ 1

0

√
1 + logN

(
ε‖hδ‖Q,2,H(1)

δ +H(2)
δ , L2(Q)

)
dε

≤ sup
Q

∫ 1

0

√√√√1 +

2∑
i=1

logN
(
ε‖hδ‖Q,2,H(i)

δ , L2(Q)
)
dε

≤ sup
Q

∫ 1

0

√√√√1 +

2∑
i=1

[
logK + log Vi + Vi log 16e+ 2(Vi − 1) log

1

ε

]
dε

which is finite. This completes the proof.

The last ingradient of the proof is a result due of Massart and Nedelec (Massart et al., 2006), which, applied to our setting,
yields an exponential tail bound. For the convenience of the reader, we present below a tailor-made version of their result
which we apply to our problem:
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Theorem B.8 (Application of Talagarand’s inequality). Let {Zi = (Xi, Yi)}ni=1 be i.i.d. observations taking values in the
sample space Z : X × Y and let F be a class of real-valued functions defined on X . Let γ be a bounded loss function on
F × Z and suppose that f∗ ∈ F uniquely minimizes the expected loss function P (γ(f, .)) over F . Define the empirical
risk as γn(f) = (1/n)

∑n
i=1 γ(f, Zi), and γ̄n(f) = γn(f)− P (γ(f, .)). Let l(f∗, f) = P (γ(f, .))− P (γ(f∗, .)) be the

excess risk. Assume that:

1. We have a pseudo-distance d on F × F satisfying V arP [γ(f, .)− γ(f∗, .)] ≤ d2(f, f∗).

2. There exists F ⊆ F and a countable subset F ′ ⊆ F , such that for each f ∈ F , there is a sequence {fk} of elements of
F ′ satisfying γ(fk, z)→ γ(f, z) as k →∞, for every z ∈ Z .

3. l(f, f∗) ≥ d2(f∗, f) ∀ f ∈ F

4.
√
nE
[
supf∈F ′:d(f,f∗)≤σ [γ̄n(f)− γ̄n(f∗)]

]
≤ φ(σ) for every σ > 0 such that φ(σ) ≤

√
nσ.

Let ε∗ be such that
√
nε2∗ ≥ φ(ε∗). Let f̂ be the (empirical) minimizer of γn over F and l(f∗, F ) = inff∈F l(f

∗, f).Then,
there exists an absolute constant K such that for all y ≥ 1, the following inequality holds:

P
(
l(f∗, f̂) > 2l(f∗, F ) +Kyε2∗

)
≤ e−y

The collection of function is G = {gΣ : ‖Σ− Σ0‖op}. The corresponding pseudo-distance is d(gΣ, gΣ0
) = ‖Σ− Σ0‖op.

Condition 2 is easily satisfied as our parameter space has countable dense set and our loss function is continuous with
respect to the parameter. Condition 1 and 3 follows form Lemma B.6 and Lemma B.5 respectively. Condition 4 is satisfied
via Lemma B.7 with φ(σ) = σ. Hence, in our case, we can take εn =

√
n and conclude that, there exists a constant K such

that, for all t ≥ 1,

P
(
n(l(Σ0)− l(Σ̂)) ≥ Kt

)
≤ e−t

From Lemma B.5 we have ‖Σ̂− Σ0‖2op . l(Σ0)− l(Σ̂) which implies

P
(√

n‖Σ̂− Σ0‖2op ≥ K1t
)
≤ e−t

2

which completes the proof of the theorem.

We can combine Theorem B.4 with Proposition 3.1 and Proposition 3.2 of (Yurochkin et al., 2020) to show that EXPLORE
in conjunction with SENSR trains individually fair ML models. For simplicity, we keep the notations same as in (Yurochkin
et al., 2020). Define L = {`(·, θ) : θ ∈ Θ} as the loss class. We assume that:

1. We assume the embeded feature space of ϕ is bounded R , max{diam(ϕ), diam∗(ϕ)} < ∞, where diam∗ is the
diameter of ϕ in the (unknown) exact fair metric

d∗x(x1, x2) = 〈(ϕ1 − ϕ2),Σ0(ϕ1 − ϕ2)〉1/2,

and diam is the diameter in the learned fair metric

d̂x(x1, x2) = 〈(ϕ1 − ϕ2), Σ̂(ϕ1 − ϕ2)〉1/2.

2. The loss functions in L is uniformly bounded, i.e. 0 ≤ `(z, θ) ≤M for all z ∈ Z and θ ∈ Θ where z = (x, y).

3. The loss functions in L is L-Lipschitz with respect to dx, i.e.:

supθ∈Θ

{
sup(x1,y),(x2,y)∈Z |`((x1, y), θ)− `((x2, y), θ)|

}
≤ Ldx(x1, x2);
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Define δ∗ to be bias term:
min
θ∈Θ

sup
P :W∗(P,P∗)≤ε

[EP (`(Z, θ))] = δ∗

where W∗ is the Wasserstein distance with respect to the true matrix Σ0 and W is Wasserstein distance with respect to Σ̂.
Now for x1, x2 ∈ X we have:∣∣∣d̂2

x(x1, x2)− (d∗x(x1, x2))2
∣∣∣ =

∣∣∣(ϕ1 − ϕ2)
>
(

Σ̂− Σ∗
)

(ϕ1 − ϕ2)
∣∣∣

≤ ‖Σ̂− Σ∗‖op‖ϕ1 − ϕ2‖22
≤ R2‖Σ̂− Σ∗‖op

≤ R2K1
t√
n

where the last inequality is valid with probability greater than or equal to 1− e−bt2 from Theorem B.4. Hence we have with
high probability:

sup
x1,x2∈X

∣∣∣d̂2
x(x1, x2)− (d∗x(x1, x2))2

∣∣∣ ≤ R2K1
t√
n

Hence we can take δc = K1t/
√
n in Proposition 3.2 of (Yurochkin et al., 2020) to conclude that:

Corollary B.9. If we assume he loss function ` ∈ L and define the estimator θ̂ as:

θ̂ ∈ arg minθ∈Θ supP :W (P,Pn)≤ε EP
[
`(Z, h)

]
,

then the estimator θ̂ satisfies with probability greater than or equal to 1− t− e−t2 :

supP :W∗(P,P∗)≤ε EP
[
`(Z, θ̂)

]
− EP∗

[
`(Z, θ̂)

]
≤ δ∗ + 2δn, (B.7)

where W and W∗ are the learned and exact fair Wasserstein distances induced by the learned and exact fair metrics (see
Section 2.1 in Yurochkin et al. (2020)) and

δn ≤ 48C(L)√
n

+ 48LR2
√
nε

+ LK1tR
2

√
nε

+M
(

log 2
t

2n

) 1
2

.

where C(L) =
∫∞

0

√
log (N∞ (L, r)) dr, with N∞ (L, r) being the covering number of the loss class L with respect to the

uniform metric.

C. Proofs of Theorems of Section 3
C.1. Proof of Theorem 3.1

Proof. One key ingredient for the proof is a version of Davis-Kahane’s sin Θ theorem (Davis & Kahan, 1970), which we
state here for convenience:

Theorem C.1. Suppose A,E ∈ Rd×d. Define Â = A+ E. Suppose U (respectively Û ) denote the top-k eigenvectors of A
(respectively Â). Define γ = λk(A)− λ(k+1)(A). Then if ‖E‖op < γ, we have:

‖Û ÛT − UUT ‖op ≤
‖E‖op

γ − ‖E‖op

In our context, let’s define Uk and Ûk denote the eigenspace corresponding to top - k eigenvectors of Σ and Sn respectively.
Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of Σ and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d be eigenvalues of Sn. Applying the above
theorem we obtain the following bound:

‖UkU∗k − ÛkÛ∗k‖op ≤
‖Σ− Sn‖op

η − ‖Σ− Sn‖op
(C.1)
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where η = λk(Σ)− λk+1(Σ). To provide a high probability bound on ‖Sn − Σ‖op we resort to Remark 5.40 ((Vershynin,
2011)), which implies that with probability ≥ 1− 2e−ct

2

:

‖Σ− Sn‖op ≤ δ ∨ δ2 (C.2)

where δ = C
√
d+t√
n

. For t < (
√
nγ̃ − C

√
d) ∧ (

√
nγ̃ − C

√
d), η > δ ∨ δ2. Hence combining the bounds from equation C.1

and equation C.2 we have:

‖UkU∗k − ÛkÛ∗k‖op ≤
δ ∨ δ2

η − (δ ∨ δ2)
(C.3)

Here the constantC, c depends only on ‖xi‖ψ2
. To conclude the proof, we need a bound on the bias term ‖UkUTk −Ã∗ÃT∗ ‖op,

which is obtained from another application of Theorem C.1. From the representation of Σ we have:

Σ = A∗A
T
∗ +B∗B

T
∗ + σ2Id = Ã∗ΛÃ

T
∗ +B∗B

T
∗ + σ2Id

where Ã∗ is the set of eigenvectors of A∗ and Λ is the diagonal matrix of the eigenvalues. We can apply Theorem C.1
on Σ taking A = Ã∗ΛÃ

T
∗ , E = B∗B

T
∗ + σ2Id and Σ = Â. Here λk(A) = λmin(A∗A

T
∗ ) and λk+1(A) = 0. Hence

γ = λmin(A∗A
T
∗ ). As by our assumption ‖B∗BT∗ + σ2Id‖op < γ = λmin(A∗A

T
∗ ), we obtain :

‖UkUTk − Ã∗ÃT∗ ‖op ≤
‖B∗BT∗ + σ2Id‖op

λmin(A∗AT∗ )− ‖B∗BT∗ + σ2Id‖op
= b (C.4)

To conclude the theorem, we provide a bound on η = λk(Σ)− λk+1(Σ). To upper bound λk+1(Σ) we use Courant-Fisher
theorem:

λk+1(Σ) = inf
S⊆Rd:dim(S)=d−k

sup
x∈Sd−1∩S

xTΣx ≤ sup
x∈Sd−1∩Ã⊥∗

xTΣx

= sup
x∈Sd−1∩Ã⊥∗

xTB∗B
T
∗ x+ σ2 ≤ ‖B∗BT∗ ‖op + σ2

The lower bound on λk(Σ) can be obtained easily as follows: For any x ∈ Sd−1:

xTΣx = xTA∗A
T
∗ x+ xTB∗B

T
∗ x+ σ2 ≥ λmin(A∗A

T
∗ ) + σ2

This automatically implies λk(Σ) ≥ λmin(A∗A
T
∗ ) + σ2. Hence combining the bound on λk(Σ) and λk+1(Σ) we get:

η = λk(Σ)− λk+1(Σ) ≥ λmin(A∗A
T
∗ )− ‖B∗BT∗ ‖op = γ̃ (C.5)

Combining equation C.2, C.4 and C.5 and using the fact that:∥∥∥Û Û> − Ã∗Ã>∗ ∥∥∥
op

=
∥∥∥Σ̂− Σ0

∥∥∥
op

we conclude the theorem.

C.2. Proof of Theorem 3.2

Proof. The variance covariance matrix of ϕi can be represented as following:

Σϕ = A∗A
T
∗ +B∗B

T
∗ + σ2Id

As in the proof of the previous theorem, define λ1 ≥ · · · ≥ λd as the eigenvalues of Σϕ and λ̂1 ≥ · · · ≥ λ̂d as the
eigenvalues of Sn. Also define by Uk (respectively Ûk) to be the matrix containing top-k eigenvectors of Σ (respectively
Sn) and η = λk − λk+1. Using Davis-Kahan’s sin Θ theorem (see Theorem C.1), we conclude that:

‖ÛkÛTk − UkUTK‖op ≤
‖Sn − Σϕ‖op

γ − ‖Sn − Σϕ‖op
(C.6)
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provided that η > ‖Sn − Σϕ‖op. Using matrix concentration inequality (see remark 5.40 of ((Vershynin, 2011))) we get
that with probability > 1− 2e−ct

2

:

‖Sn − Σ‖op ≤ δ ∨ δ2 +
t

n
(C.7)

where δ = (C
√
d+ t)/

√
n, for all t ≥ 0. The difference between this and equation C.2 in Theorem 3.1 is the extra term

t/n, which appears due to mean centering the samples. The constants c, C only depends on the ψ2 norm of ϕi. Combining
equation C.6 and C.7 we conclude that, with high probability we have

‖ÛkÛTk − UkUTk ‖op ≤
δ ∨ δ2 + t/n

η − (δ ∨ δ2)− t/n

when t/n + δ ∨ δ2 < η. As before, we apply Theorem C.1 to control the bias. Towards that end, define A = A∗A
T
∗ =

Ã∗ΛÃ
T
∗ , where Ã∗ is the matrix of eigenvectors of A∗ and Λ is diagonal matrix with the eigenvalues of A∗AT∗ . Also

define E = B∗B
T
∗ + σ2Id and Â = Σϕ. Now, as before, λk(A) = λmin(A∗A

T
∗ ) and λk+1(A) = 0. Hence γ =

λk(A)− λk+1(A) = λmin(A∗A
T
∗ ). Applying Theorem C.1 we conclude:

‖UkUTk − Ã∗ÃT∗ ‖op ≤
‖B∗BT∗ + σ2Id‖op

λmin(A∗AT∗ )− ‖B∗BT∗ + σ2Id‖op
(C.8)

Finally, we use Courant-Fischer Min-max theorem to provide an upper bound on η = λk(Σϕ) − λk+1(Σϕ). As in the
previous proof we have:

λk+1(Σϕ) = inf
S⊆Rd:dim(S)=k+1

sup
x∈Sd−1∩S

xTΣϕx ≤ sup
x∈Sd−1∩Ã⊥∗

xTΣϕx

= sup
x∈Sd−1∩Ã⊥∗

xTB∗B
T
∗ x+ σ2 ≤ ‖B∗BT∗ ‖op + σ2

λk+1(Σϕ) = sup
S⊆Rd:dim(S)=d−k

sup
x∈Sd−1∩S

xTΣϕx ≤ sup
x∈Sd−1∩Ã⊥∗

xTΣϕx

= sup
x∈Sd−1∩Ã⊥∗

xTB∗B
T
∗ x+ σ2 ≤ ‖B∗BT∗ ‖op + σ2

To get a lower bound on λk(Σϕ), we use the the other version of Courant-Fischer Minmax theorem:

λk(Σϕ) = max
S:dim(S)=d−k+1

min
x∈Sd−1∩S

xTΣx

Using this we conclude:
λk(Σϕ) ≥ λmin(A∗A

T
∗ ) + σ2

Hence combining the bound on λk(Σϕ) and λk+1(Σϕ) we get:

η = λk(Σϕ)− λk+1(Σϕ) ≥ λmin(A∗A
T
∗ )− ‖B∗BT∗ ‖op = γ̃ (C.9)

Combining equation C.7, C.8 and C.9 and using the fact that:∥∥∥Û Û> − Ã∗Ã>∗ ∥∥∥
op

=
∥∥∥Σ̂− Σ0

∥∥∥
op

we conclude the theorem.

C.3. Proof of Theorem 3.3

Proof. The proof of Theorem 3.3 essentially follows form Proposition 3.2 and Proposition 3.1 of (Yurochkin et al., 2020).
Note that from Theorem 3.1, for any x1, x2 ∈ X :∣∣∣d̂2

x(x1, x2)− (d∗x(x1, x2))2
∣∣∣ =

∣∣∣(ϕ1 − ϕ2)
>
(

Σ̂− Σ∗
)

(ϕ1 − ϕ2)
∣∣∣
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≤ ‖Σ̂− Σ∗‖op‖ϕ1 − ϕ2‖22
≤ R2‖Σ̂− Σ∗‖op

≤ R2

[
b+

δ ∨ δ2

γ̃ − (δ ∨ δ2)

]
where the last inequality is true with probability greater than or equal to 1− 2e−ct

2

from Theorem 3.1. This justifies taking
δc ≥

[
b+ δ∨δ2

γ̃−(δ∨δ2)

]
which along with Proposition 3.1 and 3.2 of (Yurochkin et al., 2020) completes the proof.


