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I. Stability of Minima
It is well know that for a β-smooth function that is bounded from below, GD with constant step size 0 < η < 2/β converges
to a stationary point. A twice continuously differentiable function f is β-smooth if and only if λmax(∇2f(w)) ≤ β for
every point w ∈ RN . Hence, convergence to a stationary point is guaranteed if λmax(∇2f(w)) ≤ 2/η for all w ∈ RN .
This seemingly stringent global requirement can in fact also be replaced by a local one, as shown by Wu et al. (2018).
Specifically, they use the following.

Definition S1. Let w∗ be a stationary point of f . Consider the linearized dynamical system of GD, namely

wk+1 = wk − η∇2f(w∗)(wk −w∗). (S1)

Then w∗ is said to be linearly stable if there exists a constant C ∈ R, such that ‖wk‖ ≤ C ‖w0‖ for all k > 0.

In other words, w∗ is linearly stable if once we have arrived near this critical point, we stay around it. In their paper, Wu
et al. (2018) show that w∗ is a linearly stable minimizer if

λmax

((
I − η∇2f(w∗)

)2) ≤ 1. (S2)

Note that for all i ∈ {1, . . . , N}

λi

((
I − η∇2f(w∗)

)2)
= λ2

i

(
I − η∇2f(w∗)

)
=
(
1− ηλi

(
∇2f(w∗)

))2
= 1− ηλi

(
∇2f(w∗)

) (
2− ηλi

(
∇2f(w∗)

))
, (S3)

1Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel. Correspondence to: Rotem Mulayoff
<rotem.mulayof@gmail.com>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).



Unique Properties of Flat Minima in Deep Networks: Supplementary Material

where λi is the ith largest eigenvalue. Since η and {λi} are all nonnegative, it follows that (S2) is equivalent to

λmax

(
∇2f(w∗)

)
≤ 2

η
. (S4)

This results asserts that flat minima are stable solutions for GD. In their paper, they also provide a similar result for stochastic
GD (SGD), which shows that the sharpness of a minimum should increase to ensure stability for SGD as well.

II. Proof of Lemma 1
Nar & Sastry (2018) showed that under the Lemma’s conditions, the weight matrices converge at a linear rate toW i = T

1
m

for all i. According to our Theorem 4, this solution is a flattest minimum, thus demonstrating (ii).

Arora et al. (2018) showed that gradient flow (GF) satisfies

W i(t)W
T
i (t) = W T

i+1(t)W i+1(t), ∀t ≥ 0 (S5)

in our setting. Denoting the SVD of W i(t) by U i(t)Si(t)V
T
i (t), we thus have that U i(t)S

2
i (t)U

T
i (t) =

V i+1(t)S2
i+1(t)V T

i+1(t), which implies that1

U i(t) = V i+1(t), Si(t) = Si+1(t), ∀t ≥ 0. (S6)

Assume that GF converges to a global minimimum and letUSV T denote the SVD of T . Since {Si(t)}mi=1 are identical, they
converge to the same limit, S̄. LetW i = U iS̄V

T
i denote the limit ofW i(t). Then, from (S6), we have that V T

i+1U i = I
for all i. Consequently,

WmWm−1 · · ·W 1 = UmS̄
m
V T

1 . (S7)

But since the left hand side equals T by assumption, the right hand side must coincide with the SVD of T . This means that
S̄ = S

1
m . Again, by Theorem 4, this is a flattest minimum, thus demonstrating (i).

III. Scalar Networks
III.1. The Set of Flattest Minima

As mentioned in the main text, in the scalar case, the end-to-end function fw(x) implemented by the network is given by

fw(x) =

m∏
j=1

wjx, (S8)

where w = [w1, w2, . . . , wm]T . In our analysis we consider a quadratic loss function, i.e.

`(w) = Ê
[(
y − fw(x)

)2]
. (S9)

Our goal is to characterize the set of flattest minima of the loss w.r.t. w. It is well known that the optimal coefficient for
linear estimation is given by

τ =
σ̂xy
σ̂2
x

, (S10)

where σ̂2
x = E[x2] is the empirical second-order moment of x, and σ̂xy = E[xy] is the empirical cross second-order moment

between x and y. Therefore, at any global minimum of `(w), we have

m∏
j=1

wj = τ. (S11)

1The SVD can be non-unique, however there necessarily exists a decomposition satisfying U i(t) = V i+1(t).
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To compute the Hessian matrix of `(w), we first calculate the partial derivative w.r.t. wk,

∂

∂wk
`(w) =

∂

∂wk
Ê
[(
y − fw(x)

)2]
= −2Ê

[(
y − fw(x)

) ∂

∂wk
fw(x)

]

= −2Ê

(y − m∏
j=1

wjx
)∏
j 6=k

wjx

 = 2
(
σ̂2
x

m∏
j=1

wj − σ̂xy
)∏
j 6=k

wj (S12)

We now complete the derivation by differentiating (S12) w.r.t. wq ,

∂2

∂wq∂wk
`(w) =

∂

∂wq

2
(
σ̂2
x

m∏
j=1

wj − σ̂xy
)∏
j 6=k

wj


= 2

∏
j 6=k

wj
∂

∂wq

(
σ̂2
x

m∏
j=1

wj − σ̂xy
)

+ 2
(
σ̂2
x

m∏
j=1

wj − σ̂xy
) ∂

∂wq

∏
j 6=k

wj . (S13)

Eq. (S11) asserts that σ̂2
x

∏m
j=1 wj − σ̂xy = 0 at global minima, therefore the second term in (S13) vanishes, and we obtain

∂2

∂wq∂wk
L(w) = 2

∏
j 6=k

wj
∂

∂wq

(
σ̂2
x

m∏
j=1

wj − σ̂xy
)

= 2σ̂2
x

(∏
j 6=k

wj

)(∏
j 6=q

wj

)
. (S14)

Hence, using (S10), we can express the elements of the Hessian matrixHw as(
Hw

)
k,q

= 2σ̂2
xτ

2 1

wkwq
. (S15)

Let us define the vector z = [w−1
1 , w−1

2 , . . . , w−1
m ]T , then the Hessian matrix can be equivalently written as

Hw = 2σ̂2
xτ

2zzT . (S16)

This shows that the Hessian is a rank one matrix, which implies that it has only one nonzero eigenvalue, with a corresponding
eigenvector z. Therefore,

λmax

(
Hw

)
z = Hwz = 2σ̂2

x

(
τ
)2
zzTz = 2σ̂2

x

(
τ
)2 ‖z‖2 z, (S17)

so that the eigenvalue is given by

λmax

(
Hw

)
= 2σ̂2

xτ
2‖z‖2 = 2σ̂2

xτ
2
m∑
j=1

1

w2
j

. (S18)

To determine the sharpness of the flattest minima, we need to solve the problem

min
w∈Rm

λmax

(
Hw

)
s.t.

m∏
j=1

wj = τ. (S19)

By the inequality of the arithmetic and geometric means, we have that for any feasible point w

m∑
j=1

1

w2
j

≥ m×

(
m∏
j=1

1

w2
j

) 1
m

= m× τ− 2
m . (S20)

Therefore, for all feasible points,
λmax

(
Hw

)
≥ 2mσ̂2

xτ
2(1− 1

m ). (S21)

On the other hand, this inequality can be achieved by setting |w1| = |w2| = · · · = |wm|. This shows that the right-hand-side
is precisely the sharpness of the flattest minimum, so that

Ω0 =
{
w ∈ Rm :

m∏
j=1

sgn(wj) = sgn
(
τ
)

and |wj | = m
√
|τ | ∀j

}
. (S22)
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III.2. Proof of Lemma 2

In this section we examine the behavior of the loss function on a line connecting two minima.

Claim S1. Assume that τ > 0 and let w(1) and w(2) be minimizers of the objective (S9) in Rm+ . Then, along the line
connecting w(1) and w(2), the loss function will appear sharper around w(1) than around w(2) if

m∑
i=1

w
(2)
i

w
(1)
i

>

m∑
i=1

w
(1)
i

w
(2)
i

. (S23)

Proof. The direction vector of the connecting line is α = (w(1)−w(2))/‖w(1)−w(2)‖. Along this direction, the behavior
of the loss function around w(i) is given by

`(w(i) + ηα) ≈ `(w(i)) + ηαT∇`(w(i)) +
η2

2
αTH(w(i))α. (S24)

Since∇`(w(1)) = ∇`(w(2)) = 0 and `(w(1)) = `(w(2)), the loss function will appear sharper around w(1) than around
w(2), if αTH(w(1))α > αTH(w(2))α. From (S16), this condition is equivalent to ‖αTz(1)‖2 > ‖αTz(2)‖2, or more
explicitly, ((

w(1) −w(2)
)T
z(1)

)2

>

((
w(1) −w(2)

)T
z(2)

)2

. (S25)

Since z = [w−1
1 , w−1

2 , . . . , w−1
m ]T , this inequality can be written as∣∣∣∣∣

m∑
i=1

w
(2)
i

w
(1)
i

−m

∣∣∣∣∣ >
∣∣∣∣∣
m∑
i=1

w
(1)
i

w
(2)
i

−m

∣∣∣∣∣ . (S26)

Note that
m∑
i=1

w
(2)
i

w
(1)
i

≥ m m

√√√√ m∏
i=1

w
(2)
i

w
(1)
i

= m m

√√√√∏m
i=1 w

(2)
i∏m

j=1 w
(1)
j

= m m

√
τ

τ
= m. (S27)

Similarly,
∑m
i=1

w
(1)
i

w
(2)
i

≥ m. Therefore, (S26) can be reduced to

m∑
i=1

w
(2)
i

w
(1)
i

>

m∑
i=1

w
(1)
i

w
(2)
i

. (S28)

�

Notice that the loss function is symmetric in a sense that if we flip the sign of two scalar layers, then it remains the same.
Therefore, without loss of generality, we can restrict our analysis to a single orthant. Let τ > 0, and w(1) be the flattest
minimum in Rm+ , i.e. w(1)

i = τ1/m for all i ∈ {1, . . . ,m}. Given a second minimum w(2) ∈ Rm+ for which the connecting
line betweenw(1) andw(2) is loyal to the true sharpness, we can construct a third solutionw(3) that will appear deceivingly
flatter than w(1) over their connecting line. Specifically, let us set

w
(3)
i =

(
w

(1)
i

)2

w
(2)
i

. (S29)

Clearly, w(3) is a global minimum as
∏m
i=1 w

(3)
i = τ . Since w(2) appears sharper than w(1) along their connecting line,

then according to Claim S1 we have
m∑
i=1

w
(1)
i

w
(2)
i

>

m∑
i=1

w
(2)
i

w
(1)
i

. (S30)
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Thus,
m∑
i=1

w
(3)
i

w
(1)
i

=

m∑
i=1

w
(1)
i

w
(2)
i

>

m∑
i=1

w
(2)
i

w
(1)
i

=

m∑
i=1

w
(1)
i

w
(3)
i

. (S31)

Therefore, by Claim S1, w(1) appears sharper than w(3) along their connecting line.

In the special case of two layer networks (m = 2), we have that for any minimizer, w(i)
2 = τ/w

(i)
1 . Hence,

w
(1)
1

w
(2)
1

+
w

(1)
2

w
(2)
2

=
w

(2)
2

w
(1)
2

+
w

(2)
1

w
(1)
1

. (S32)

This means that the minima will appear equally sharp.

IV. Proof of Lemma 3
In this section we derive the Hessian matrix defined in (18) at a global minimum point, i.e. for w ∈ Ω. Throughout this
section we will be using the following properties of the Kronecker product. For any matricesM1,M2,M3,M4,

vec (M1M2M3) =
(
MT

3 ⊗M1

)
vec (M2) , (P1)(

M1 ⊗M2

)T
=
(
MT

1 ⊗M
T
2

)
, (P2)(

M1 ⊗M2

)(
M3 ⊗M4

)
=
(
M1M3

)
⊗
(
M2M4

)
. (P3)

Let us start the computation ofHw by rearranging the loss function so as to simplify the differentiation w.r.t.wk. Specifically,
we have that

`(w) = Ê

∥∥∥y − m∏
j=1

W jx
∥∥∥2


= Ê

∥∥∥y − ( m∏
i=k+1

W i

)
W k

( k−1∏
j=1

W jx
)∥∥∥2


= Ê

∥∥∥y − ( k−1∏
j=1

W jx
)T
⊗
( m∏
i=k+1

W i

)
wk

∥∥∥2


= Ê

∥∥∥y − [xT( k−1∏
j=1

W j

)T ]
⊗
[
I
( m∏
i=k+1

W i

)]
wk

∥∥∥2


= Ê

∥∥∥y − [x⊗ I]T [( k−1∏
j=1

W j

)T
⊗
( m∏
i=k+1

W i

)]
wk

∥∥∥2

 , (S33)

where in the third equality we used property (P1), and in the last we used properties (P2) and (P3). To simplify expressions,
we define the following matrices

Uk ,
( k−1∏
j=1

W j

)T
⊗
( m∏
i=k+1

W i

)
and X , x⊗ I. (S34)

Thus, the loss function (2) is given by

`(w) = Ê
[∥∥∥y −XTUkwk

∥∥∥2
]
. (S35)

Now we are ready to calculate the partial derivative of `(w) w.r.t wk. Notice that Uk is not a function of wk, therefore

∂

∂wk
Ê
[∥∥∥y −XTUkwk

∥∥∥2
]

= −2Ê
[
UT
kX

(
y −XTUkwk

)]
= 2UT

k

(
Ê
[
XXT

]
Ukwk − Ê [Xy]

)
. (S36)
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Furthermore,

Ê
[
XXT

]
= Ê

[(
x⊗ I

)(
x⊗ I

)T ]
= Ê

[(
xxT ⊗ I

)]
=
(
Ê
[
xxT

] )
⊗ I = Σ̂x ⊗ I, (S37)

where in the second equality we used properties (P2) and (P3), and in the third equality we used the linearity of the Kronecker
product. Additionally,

Ê [Xy] = Ê
[(
x⊗ I

)
y
]

= Ê
[
vec
(
yxT

)]
= vec

(
Σ̂yx

)
, (S38)

where in the second step we used (P1). Overall we have that

∂

∂wk
`(w) = 2UT

k

[(
Σ̂x ⊗ I

)
Ukwk − vec

(
Σ̂yx

)]
. (S39)

Next we prepare Eq. (S39) for differentiation w.r.t wq . First, for all k

Ukwk =

( k−1∏
j=1

W j

)T
⊗
( m∏
i=k+1

W i

) vec (W k) = vec

( m∏
i=k+1

W i

)
W k

( k−1∏
j=1

W j

) = vec

(
m∏
i=1

W i

)
.

(S40)
Particularly, this means that the value of the term Ukwk is the same for all k. Hence, Ukwk = U qwq and therefore

∂

∂wk
`(w) = 2UT

k

[(
Σ̂x ⊗ I

)
U qwq − vec

(
Σ̂yx

)]
. (S41)

Now, let us differentiate the vector ∂
∂wk

`(w) w.r.t. the scalar wq,l, which is the lth element in the vector wq. Notice that
Uk and wq itself are the only terms which depend on wq. Therefore, by the product rule of differentiation using the
denominator-layout notation2

∂2

∂wq,l∂wk
`(w) = 2

∂

∂wq,l

(
UT
k

[(
Σ̂x ⊗ I

)
U qwq − vec

(
Σ̂yx

) ])
= 2
[(

Σ̂x ⊗ I
)
U qwq − vec

(
Σ̂yx

) ]T ( ∂

∂wq,l
UT
k

)
+ 2

(
∂

∂wq,l
wq

)
UT
q

(
Σ̂x ⊗ I

)
Uk. (S42)

However, at a global minimum

(
Σ̂x ⊗ I

)
U qwq =

(
Σ̂x ⊗ I

)
vec

(
m∏
i=1

W i

)
= vec

(
m∏
i=1

W iΣ̂x

)
= vec

(
Σ̂yxΣ̂

−1

x Σ̂x

)
= vec

(
Σ̂yx

)
, (S43)

where in the first equality we used (S40), in the second equality we used (P1) and in the third equality we used the assumption
that w ∈ Ω. Hence, for all 1 ≤ q ≤ m we have that(

Σ̂x ⊗ I
)
U qwq − vec

(
Σ̂yx

)
= 0. (S44)

Therefore, (S42) is reduced to

∂2

∂wq,l∂wk
`(w) = 2

(
∂

∂wq,l
wq

)
UT
q

(
Σ̂x ⊗ I

)
Uk, (S45)

for all 1 ≤ l ≤ m. Hence,

∂2

∂wq∂wk
`(w) = 2

(
∂

∂wq
wq

)
UT
q

(
Σ̂x ⊗ I

)
Uk = 2UT

q

(
Σ̂x ⊗ I

)
Uk = 2UT

q

(
Σ̂

1
2

x ⊗ I
)T (

Σ̂
1
2

x ⊗ I
)
Uk,

(S46)
2Where the derivative ∂A

∂z
of a matrix A w.r.t. a scalar z is laid out according to AT .
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where Σ̂
1
2

x is the symmetric square root matrix of Σ̂x. Let us define the matrices {Φk}mk=1 as

Φk = UT
k

(
Σ̂

1
2

x ⊗ I
)T

=

( k−1∏
j=1

W j

)
⊗

(
m∏

i=k+1

W i

)T(Σ̂
1
2

x ⊗ I
)

=

(
k−1∏
j=1

W jΣ̂
1
2

x

)
⊗

(
m∏

i=k+1

W i

)T
. (S47)

Thus,
∂2

∂wq∂wk
`(w) = 2ΦqΦ

T
k . (S48)

Finally, the Hessian matrix of the loss function `(w) is given by

Hw = 2ΦΦT , (S49)

where Φ = [ΦT
1 ,Φ

T
2 , . . . ,Φ

T
m]T .

V. The Missing Parts of the Proof of Theorem 1
V.1. Proof of Lemma 4

The proof is straightforward. We have

m∑
k=1

‖Ψk‖2F ≥
m∑
k=1

‖Ψk‖22 ≥ m

[
m∏
k=1

‖Ψk‖2

] 2
m

≥ m

[∥∥∥ m∏
k=1

Ψk

∥∥∥
2

] 2
m

, (S50)

where in the first inequality we used the fact that ‖Ψ‖F ≥ ‖Ψ‖2 for any matrix Ψ ∈ Rd1×d2 . The second inequality is due
to the inequality of arithmetic and geometric means. In the final inequality we used the fact that ‖ · ‖2 is a sub-multiplicative
matrix norm, meaning ‖Ψ‖2‖Φ‖2 ≥ ‖ΨΦ‖2 for any pair of matrices Ψ ∈ Rd1×d2 ,Φ ∈ Rd2×d3 .

V.2. Maximal Value of ν

On the one hand, for anyB ∈ Rdy×dx such that ‖B‖F = 1,∥∥∥(BT T )m−1
B
∥∥∥

2
≤
∥∥B∥∥m

2

∥∥T∥∥m−1

2
≤ (σmax(T ))m−1, (S51)

where in the second inequality we used ‖B‖2 ≤ ‖B‖F = 1. On the other hand, this upper bound is achieved byB = uvT ,
as ∥∥∥(uvTT T )m−1

uvT
∥∥∥

2
=
∥∥∥u(vTT Tu)m−1

vT
∥∥∥

2
=
(
vTT Tu

)m−1∥∥uvT∥∥
2

= (σmax(T ))m−1‖u‖‖v‖ = (σmax(T ))m−1. (S52)

Therefore,
max
‖B‖F=1

ν(B) = 2m× (σmax(T ))2(1− 1
m ). (S53)

V.3. Maximal Eigenvalue at the Canonical Solution (27)

In (20) we have
λmax

(
Hw

)
= max
‖b‖=1

2‖Φb‖2. (S54)

Note that ‖Φb‖2 =
∑m
k=1 ‖Φkb‖2. Using the definition of Φk in (16) we get

‖Φkb‖2 =

∥∥∥∥( k−1∏
j=1

W jΣ̂
1
2

x

)
⊗
( m∏
i=k+1

W i

)T
b

∥∥∥∥2

=

∥∥∥∥( m∏
i=k+1

W i

)T
B

( k−1∏
j=1

W jΣ̂
1
2

x

)T∥∥∥∥2

F

, (S55)
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where we used (P1) with b = vec (B). Therefore,

λmax

(
Hw

)
= max
‖B‖F=1

2

m∑
k=1

∥∥∥( m∏
i=k+1

W i

)T
BΣ̂

1
2

x

( k−1∏
j=1

W j

)T∥∥∥2

F
. (S56)

Substituting the canonical solution (27) in this optimization problem, we obtain

m∑
k=1

∥∥∥( m∏
i=k+1

W i

)T
B
( k−1∏
j=1

W j

)T∥∥∥2

F
=

m∑
k=1

∥∥∥( m∏
i=k+1

S
1
m
i

)T
UTBV

( k−1∏
j=1

S
1
m
j

)T∥∥∥2

F
, (S57)

where in the first and the last terms of the series (k = 1 and k = m) we used the fact that U and V are unitary matrices, so
that∥∥∥( m∏

i=2

S
1
m
i

)T
UTB

∥∥∥2

F
=
∥∥∥( m∏

i=2

S
1
m
i

)T
UTBV

∥∥∥2

F
,

∥∥∥BV (m−1∏
j=1

S
1
m
j

)T∥∥∥2

F
=
∥∥∥UTBV

(m−1∏
j=1

S
1
m
j

)T∥∥∥2

F
. (S58)

Note that
∏m
i=k+1 S

1
m
i is a diagonal dy × dk matrix, whose qth diagonal entry is (σq(T ))(m−k)/m (where σq(T ) is

the qth largest singular value of T ). Similarly,
∏k−1
j=1 S

1
m
j is a diagonal dk−1 × dx matrix, whose qth diagonal entry is

(σq(T ))(k−1)/m. Therefore, we can write

m∑
k=1

∥∥∥( m∏
i=k+1

S
1
m
i

)T
UTBV

( k−1∏
j=1

S
1
m
j

)T∥∥∥2

F
=

m∑
k=1

∥∥∥(Sm−k
m

)T
UTBV

(
S

k−1
m

)T∥∥∥2

F
, (S59)

where Sα denotes a dy×dx diagonal matrix whose qth diagonal entry is (σq(T ))α. Here, we used the fact that the Frobenius
norm is unaffected by zero entries, and thus removed/added zero rows/columns.

Next, we preform the change of variables B̃ = UTBV ∈ Rdy×dx to obtain the following optimization problem

max
B̃∈Rd×d

2

m∑
k=1

∥∥∥(Sm−k
m

)T
B̃
(
S

k−1
m

)T∥∥∥2

F
s.t.

∥∥B̃∥∥2

F
= 1. (S60)

Writing the objective in terms of the elements of B̃, which we denote by {b̃i,j}, gives

2

m∑
k=1

∥∥∥(Sm−k
m

)T
B̃
(
S

k−1
m

)T∥∥∥2

F
= 2

m∑
k=1

d∑
i=1

d∑
j=1

[
(σj(T ))

m−k
m (σi(T ))

k−1
m b̃i,j

]2
, (S61)

where d = min{dx, dy} is the number of singular values of T . By changing the order of the summation, we get

max
b̃1,1,...,b̃d,d∈R

2

d∑
i,j=1

b̃2i,j

m∑
k=1

[
(σj(T ))

m−k
m (σi(T ))

k−1
m

]2
s.t.

d∑
i,j=1

b̃2i,j = 1. (S62)

This is a simple linear optimization problem over the unit simplex, whose optimal value is attained at one of the vertices,

max
i,j∈{1,...,d}

2

m∑
k=1

[
(σj(T ))

m−k
m (σi(T ))

k−1
m

]2
. (S63)

The maximal value is attained for i = j = 1, thus the value of (21) for the canonical solution is

2

m∑
k=1

[
(σ1(T ))

m−k
m (σ1(T ))

k−1
m

]2
= 2m× (σmax(T ))2(1− 1

m ). (S64)

This result shows that the canonical solution (27) is indeed a minimizer of the maximal eigenvalue of the Hessian matrix.
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V.4. Proof of the Top Eigenvector ofHw

On the one hand, according to Section 5, for any flattest minimum point w ∈ Ω0, the largest eigenvalue satisfies

λmax(Hw) = 2m× (σmax(T ))2(1− 1
m ). (S65)

On the other hand, the maximal eigenvalue of the Hessian matrix is the solution to the optimization problem (S56), in which
b = vec (B) is the eigenvector of Ĥw (see (S54)). SubstitutingB∗ = uvT (i.e. b∗ = v ⊗ u) in the objective function, we
get

2

m∑
k=1

∥∥∥( m∏
i=k+1

W i

)T
B∗
( k−1∏
j=1

W j

)T∥∥∥2

F
≥ 2m×

∥∥∥∥∥∥
[
B∗
( m∏
i=1

W i

)T]m−1

B∗

∥∥∥∥∥∥
2
m

2

= 2m×
∥∥∥(B∗T T )m−1

B∗
∥∥∥ 2

m

2

= 2m× (σmax(T ))2(1− 1
m ), (S66)

where in the second inequality we used Lemma 4 and explicitly unrolled the product, as in (24), and in the last step we
used (S52). This proves that b∗ = v ⊗ u is an eigenvector of Ĥw corresponding to the maximal eigenvalue. Now, since
Ĥw = 2ΦTΦ andHw = 2ΦΦT , we have that Φb∗ = Φ(v ⊗ u) is the eigenvector ofHw corresponding to its maximal
eigenvalue.

VI. Proof of Theorem 2
Let us start the proof by presenting two lemmas.

Lemma S1. Let Σ̂x = I . If w ∈ Ω0 then for all k ∈ {1, 2, . . . ,m}

∥∥∥uT m∏
i=k+1

W i

∥∥∥∥∥∥ k−1∏
j=1

W jv
∥∥∥ = (σmax(T ))1− 1

m . (S67)

Proof. First, observe that forB∗ = uvT , the left-hand side of (S67) can be written as

∥∥∥uT m∏
i=k+1

W i

∥∥∥∥∥∥ k−1∏
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W j v
∥∥∥ =

∥∥∥( m∏
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W i

)T
B∗
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W j

)T∥∥∥
2
. (S68)

Now, from Theorem 1 and Eq. (21) we can conclude that

λmax(Hw) = 2

m∑
k=1

∥∥∥( m∏
i=k+1

W i

)T
B∗
( k−1∏
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W j
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2
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m ). (S69)

Note that sinceB∗ is a rank-1 matrix, the entire expression within the norm is rank-1, which is the reason we could replace
the Frobenius norm appearing in (21) by the operator norm (the two norms coincide for rank-1 matrices). Furthermore, by
the inequality of arithmetic and geometric means
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)T
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( k−1∏
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2

 1
m

= 2m× (σmax(T ))2(1− 1
m ), (S70)
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where the second inequality is due to the sub-multiplicativity property of the operator norm, and in the last step we unrolled
the product, as in (24), and used (S52). From (S69) and (S70) we obtain that the inequality of arithmetic and geometric
means in (S70) is achieved with equality. This happens if and only if all summands in the series are equal. Thus, we conclude
that for all k ∈ {1, 2, . . . ,m}, ∥∥∥( m∏

i=k+1

W i

)T
B∗
( k−1∏
j=1

W j

)T∥∥∥
2

= (σmax(T ))1− 1
m , (S71)

and together with (S68), this implies that∥∥∥uT m∏
i=k+1

W i

∥∥∥∥∥∥ k−1∏
j=1

W j v
∥∥∥ = (σmax(T ))1− 1

m . (S72)

�

While Lemma S1 characterizes the norms of the vectors uT
∏m
i=k+1W i and

∏k−1
j=1 W jv, the next Lemma characterizes

their directions.

Lemma S2. Let Σ̂x = I . If w ∈ Ω0 then for all k ∈ {0, 1, 2, . . . ,m}

1∥∥∥(∏m
i=k+1W i

)T
u
∥∥∥
(

m∏
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W i

)T
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1∥∥∥∏k
j=1 W j v

∥∥∥
k∏
j=1

W j v. (S73)

Proof. From Lemma S1 we have

m∏
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∥∥∥( m∏
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W i

)T
u
∥∥∥∥∥∥vT( k−1∏
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W j

)T∥∥∥ = (σmax(T ))m−1. (S74)

Recall that in our convention (see Section 4), for k = 1,m we have∥∥∥vT( 0∏
j=1

W j

)T∥∥∥ = ‖vT ‖ = 1,
∥∥∥( m∏

i=m+1

W i

)T
u
∥∥∥ = ‖u‖ = 1. (S75)

Therefore, (S74) can be written as
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On the other hand, by the Cauchy–Schwarz inequality we have
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vTT Tu

= (σmax(T ))(m−1). (S77)

From (S76) we have that the Cauchy–Schwartz inequalities are achieved with equality. Thus, for all k ∈ {0, 1, 2, . . . ,m}

1∥∥∥(∏m
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W j v. (S78)
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Now we are ready to prove Theorem 2. From Lemma S2, we have

1∥∥∥∏k
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Multiplying by (
∏k
j=1 W j)

T from the left, (S79) becomes
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Note that T Tu = σmax(T )v. Therefore,[(
k∏
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W j

)T k∏
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]
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This shows that v is an eigenvector of
(∏k

j=1W j

)T ∏k
j=1W j , i.e. a singular vector of

∏k
j=1W j . To compute the

corresponding singular value, let us multiply this equation by vT form the left to get the following result.∥∥∥ k∏
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Recall from Lemma S1 that ‖uT
∏m
i=k+1W i‖ = (σmax(T ))1−1/m/‖

∏k−1
j=1 W jv‖. Substituting into (S82), we obtain

that ∥∥∥ k∏
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W j v
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By unwrapping this recursive formula with an initial condition for k = 0 of
∥∥∏0

j=1W jv
∥∥ = ‖v‖ = 1, we get∥∥∥ k∏

j=1

W jv
∥∥∥ = σmax(T )

k
m . (S84)

The proof for the left singular vector and its corresponding singular value is the same.

Next, we prove the bound on the intermediate gain. By Theorem 1 and Eq. (21),

max
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Now, for any k, we have that
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Furthermore, note that
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‖B‖F=1

∥∥∥( m∏
i=k+1

W i

)T
B
( k−1∏
j=1

W j

)T∥∥∥
F

= max
‖b‖=1

∥∥∥( k−1∏
j=1

W j

)
⊗
( m∏
i=k+1

W i

)T
b
∥∥∥

= σmax

( k−1∏
j=1

W j

)
⊗
( m∏
i=k+1

W i

)T
= σmax

(
k−1∏
i=1

W i

)
× σmax

(
m∏

i=k+1

W i

)
. (S87)



Unique Properties of Flat Minima in Deep Networks: Supplementary Material

Therefore, this implies that
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W i

)
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≤
√
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or, equivalently, that
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By the first part of Theorem 2 we have
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)
≥

(
m∏

i=k+1

W iu

)
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Hence, we can further bound (S89) from above as
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m )
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The proof of the other direction is similar.

VII. Proof of Theorem 3
By Lemma S2
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Multiplying both sides byW T
k from the left, we obtain
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Using Lemma S2 again for k − 1 we have(
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Plugging this equation in (S93) we get∥∥∥(∏m
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From Theorem 2, we know that ‖(
∏m
i=kW i)

Tu‖ = (σmax(T ))(m−k+1)/m, ‖
∏k
j=1W jv‖ = (σmax(T ))k/m, and

‖
∏k−1
j=1 W jv‖‖(
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Tu‖ = (σmax(T ))1−1/m . Therefore, (S95) can be reduced to
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(
W T
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Hence, rk is an eigenvector ofW T
kW k with a corresponding eigenvalue of (σmax(T ))2/m. Namely, rk/‖rk‖ is a singular

vector ofW k with a corresponding singular value of (σmax(T ))1/m. Using Lemma S2 we have

1

‖rk‖
W krk = (σmax(T ))

1
m × 1

‖qk‖
qk. (S97)

From this equation we deduce that r̄k and q̄k are pair of singular vectors ofW k, with a singular value of (σmax(T ))1/m.
Note that the equality r̄k+1 = q̄k is in fact the result of Lemma S2.
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VIII. Proof of Theorem 4
On the one hand, according to Theorem 1

min
w̃∈Ω

λmax(Hw̃) = 2m× σmax

(
T
)2(1− 1

m )
. (S98)

On the other hand, given an arbitrary minimum point w ∈ Ω
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≤ max
B1,...,Bm∈Rdy×dx

2

m∑
k=1

∥∥∥( m∏
i=k+1

W i

)T
Bk

( k−1∏
j=1

W j

)T∥∥∥2

F
s.t. ‖B1‖F = · · · = ‖Bm‖F = 1.

Here we obtain a separable optimization problem. Let us examine one term from the series
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In (S87), we saw that the value of (S100) is

(
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))2

×
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W i

))2

≤
∏
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(σmax(W i))
2, (S101)

where we used the sub-multiplicity property of the operator norm (the top singular value). If σmax(W k) = (σmax(T ))1/m

for all k, then ∏
i 6=k

(σmax(W i))
2 =

∏
i 6=k

(σmax(T ))
2
m = (σmax(T ))2(1− 1

m ). (S102)

Thus,
λmax(Hw) = 2m× (σmax(T ))2(1− 1

m ). (S103)

Therefore w is a flattest minimum.

IX. More Details About Our Experiments
IX.1. Linear Networks

To sample arbitrary global minima, we started with the canonical solution (27), and multiplied the weight matrices by
random matrices from the left and right, such that the the left matrix of one layer cancels out the right matrix of the next (thus
keeping the end-to-end function unmodified). Specifically, let {Ai}m−1

i=1 be Gaussian random matrices with i.i.d. entries,
distributed N (0, 1). Then the weights for arbitrary solutions were generated as

Wm = US
1
m
mAm−1, W i = A−1

i S
1
m
i Ai−1, W 1 = A−1

1 S
1
m
1 V

T . (S104)

To obtain flattest minima, we minimized λmax(Hw) w.r.t. the weights, by taking random steps over the manifold of global
minima Ω, and greedily progressing towards a flattest solution. In detail, we randomly generated a set of matrices {A0

i }mi=1

with i.i.d. normally distributed entries. We then set the initial weights of the network to beW 0
i = A0

i , for all i 6= j, and

W 0
j =

( m∏
i=j+1

Ai

)−1

T

( j−1∏
i=1

Ai

)−1

, (S105)
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where j was a random integer chosen uniformly over {1, . . . ,m}. Next, we iteratively took small random steps over the
manifold of global minima according to the following update rule.

W t+1
m = W t

m

(
I + εtA

t
m−1

)
,

W t+1
i =

(
I + εtA

t
i

)−1
W t

i

(
I + εtA

t
i−1

)
,

W t+1
1 =

(
I + εtA

t
1

)−1
W t

1, (S106)

where εt is the step size at the tth iteration, and {At
i}mi=1 are again random matrices with i.i.d. normally distributed entries.

We continued to the next iteration only if the spectral norm of the Hessian decreased. Otherwise, we generated an additional
set of direction matrices {At

i}mi=1 until we got a decrement. We stopped this process when the objective achieved its minimal
value of 2m× (σmax(T ))2(1−1/m), up to a minor error.

IX.2. Nonlinear Networks

The table below summarizes the parameters and the results for the methods we used in the nonlinear setting for Fig. 6.

Method 1 Method 2

Optimization Algorithm SGD Adam

Learning rate 1/2 3× 10−4

Other parameters momentum = 0 β1 = 0.8, β2 = 0.99

Batch size 100 100

Train loss 2.69× 10−2 ± 2.53× 10−5 2.74× 10−2 ± 4.03× 10−5

Validation loss 2.70× 10−2 ± 1.68× 10−4 2.80× 10−2 ± 1.94× 10−4

λmax 1.76± 9.43× 10−3 12.9± 2.2

Table S1. Summary of the two methods we used to train the network.
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