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Supplementary Materials for:
Full Law Identification in Graphical Models of Missing Data:

Completeness Results

For clearer presentation of materials in this supplement, we switch to a single-column format. In Appendix A, we provide
an overview of the nested Markov model. We summarize the necessary concepts required in order to explain our proof of
completeness for identification of the full law in missing data acyclic directed mixed graphs (ADMGs). These concepts draw
on the binary parameterization of nested Markov models of an ADMG. In Appendix B, we provide a concrete example of
the odds ratio parameterization. In Appendix C, we present proofs that were omitted from the main body of the paper for
brevity.

A. Background: Fixing and Nested Markov Models of an ADMG
Given a DAG G(V ∪ U) where U contains variables that are unobserved, the latent projection operator onto the observed
margin produces an acyclic directed mixed graph G(V ) that consists of directed and bidirected edges (Verma & Pearl, 1990).
The bidirected connected components of an ADMG G(V ), partition the vertices V into distinct sets known as districts. The
district membership of a vertex Vi in G is denoted disG(Vi), and the set of all districts in G is denoted D(G).

(Evans, 2018) showed that the nested Markov model (Richardson et al., 2017) of an ADMG G(V ) is a smooth super model
with fixed dimension, of the underlying latent variable model, that captures all equality constraints and avoids non-regular
asymptotics arising from singularities in the parameter space (Drton, 2009; Evans, 2018). We use this fact in order to
justify the use of nested Markov models of a missing data ADMG in order to describe full laws that are Markov relative
to a missing data DAG with hidden variables. That is, the nested Markov model of a missing data ADMG G(V ), where
V = {O,X(1), R,X}, is a smooth super model of the missing data DAG model G(V ∪ U). We also utilize nested Markov
models of an ADMG G(V \X(1)), corresponding to projection of the missing data ADMG G(V ) onto variables that are
fully observable. While such a model does not capture all equality constraints in the true observed law, it is still a smooth
super model of it, thus providing an upper bound on the model dimension of the observed law.

CADMGs and Kernels

The nested Markov factorization of p(V ) relative to an ADMG G(V ) is defined with the use of conditional distributions
known as kernels and their associated conditional ADMGs (CADMGs) that are derived from p(V ) and G(V ) respectively,
via repeated applications of the fixing operator (Richardson et al., 2017). A CADMG G(V,W ), is an ADMG whose
nodes can be partitioned into random variables V and fixed variables W, with the restriction that only outgoing edges may
be adjacent to variables in W. A kernel qV (V | W ) is a mapping from values in W to normalized densities over V i.e.,∑
v∈V qV (v | w) = 1 (Lauritzen, 1996). Conditioning and marginalization operations in kernels are defined in the usual

way.

Fixing and Fixability

In Section 4 of the main paper, we provided an informal description of fixing as the operation of inverse-weighting by the
propensity score of the variable being fixed; we now formalize this notion. A variable A ∈ V is said to be fixable if the paths
A→ · · · → X and A↔ · · · ↔ X do not both exist for all X ∈ V \ {A}. Given a CADMG G(V,W ) where A is fixable,
the graphical operator of fixing, denoted φA(G), yields a new CADMG G(V \A,W ∪A) with all incoming edges into A
being removed, and A being set to a fixed value a. Given a kernel qV (V |W ), the corresponding probabilistic operation of
fixing, denoted φA(qV ;G) yields a new kernel

qV \A(V \A |W ∪A) ≡
qV (V |W )

qV (A | mbG(A),W )
,
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Full Law Identification in Graphical Models of Missing Data: Completeness Results

where mbG(A) is the Markov blanket of A, defined as the bidirected connected component (district) of A (excluding A
itself) and the parents of the district of A, i.e., mbG(A) ≡ disG(A) ∪ paG(disG(A)) \ {A}. It is easy to check that when G
is a DAG, i.e., there are no bidirected edges, the denominator in the probabilistic operation of fixing, reduces to the familiar
definition of a simple propensity score.

The notion of fixability can be extended to a set of variables S ⊆ V as follows. A set S is said to be fixable if elements in S
can be ordered into a sequence σS = 〈S1, S2, . . . 〉 such that S1 is fixable in G, S2 is fixable in φS1(G), and so on. This
notion of fixability on sets of variables is essential to the description of the nested Markov model that we present in the
following section.

Nested Markov Factorization

Given a CADMG G, A set S ⊆ V is said to be reachable if there exists a valid sequence of fixing operations on vertices
V \ S. Further, S is said to be intrinsic if it is reachable, and forms a single bidirected connected component or district in
φσV \S (G), i.e., the CADMG obtained upon executing all fixing operations given by a valid fixing sequence σV \S .

A distribution p(V ) is said to obey the nested Markov factorization relative to an ADMG G(V ) if for every fixable set S,
and any valid fixing sequence σS ,

φσS (p(V );G) =
∏

D∈D(φσS (G))

qD(D | paφσS (G)(D)),

where all kernels appearing in the product above can be constructed by combining kernels corresponding to intrinsic sets i.e.,
{qI(I | paG(I)) | I is intrinsic in G}. Such a construction is made possible by the fact that all the sets D quantified in the
product are districts in a reachable graph derived from G.

(Richardson et al., 2017) noted that when a distribution p(V ) is nested Markov relative to an ADMG G, all valid fixing
sequences yield the same CADMG and kernel so that recursive applications of the fixing operator on a set V \ S can simply
be denoted as φV \S(G) and φV \S(qV ;G) without explicitly specifying any particular valid order. Thus, the construction
of the set of kernels corresponding to intrinsic sets can be characterized as {qI(I | paG(I)) | I is intrinsic in G} =
{φV \I(p(V ;G)) | I is intrinsic in G}, and the nested Markov factorization can be re-stated more simply as, for every fixable
set S we have,

φS(p(V ;G)) =
∏

D∈D
(
φS(G)

)φV \D(p(V );G),

An important result from (Richardson et al., 2017) states that if p(V ∪ U) is Markov relative to a DAG G(V ∪ U), then
p(V ) is nested Markov relative to the ADMG G(V ) obtained by latent projection.

Binary Parameterization of Nested Markov Models

From the above factorization, it is clear that intrinsic sets given their parents form the atomic units of the nested Markov
model. Using this observation, a smooth parameterization of discrete nested Markov models was provided by (Evans &
Richardson, 2014). We now provide a short description of how to derive the so-called Moebius parameters of a binary
nested Markov model.

For each districtD ∈ D(G), consider all possible subsets S ⊆ D. If S is intrinsic (that is, reachable and bidirected connected
in φV \S(G)), define the headH of the intrinsic set to be all vertices in S that are childless in φV \S(G), and the tail T to be all
parents of the head in the CADMG φV \S(G), excluding the head itself. More formally,H ≡ {Vi ∈ S | chφ

V \S(G)(Vi) = ∅},
and T ≡ paφ

V \S(G)
(H) \H. The corresponding set of Moebius parameters for this intrinsic head and tail pair parameterizes

the kernel qS(H = 0 | T ), i.e., the kernel where all variables outside the intrinsic set S are fixed, and all elements of
the head are set to zero given the tail. Note that these parameters are, in general, variationally dependent (in contrast to
variationally independent in the case of an ordinary DAG model) as the heads and tails in these parameter sets may overlap.
The joint density for any query p(V = v), can be obtained through the Moebius inversion formula; see (Lauritzen, 1996;
Evans & Richardson, 2014) for details. For brevity, we will denote qS(H = 0 | T ) as simply q(H = 0 | T ), as it will be
clear from the given context what variables are still random in the kernel corresponding to a given intrinsic set.
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Binary Parameterization of Missing Data ADMGs

We use the parameterization described in the previous section in order to count the number of parameters required to
parameterize the full law of a missing data ADMG and its corresponding observed law. We then use this to reason that if the
number of parameters in the full law exceeds those in the observed law, it is impossible to establish a map from the observed
law to the full law. This in turn implies that such a full law is not identified.

The binary parameterization of the full law of a missing data ADMG G(X(1), O,R,X) is exactly the same as that of an
ordinary ADMG, except that the deterministic factors p(Xi | Ri, X(1)

i ), can be ignored, as Xi = X
(1)
i with probability one

when Ri = 1, and Xi =? with probability one when Ri = 0.

The observed law is parameterized as follows. First, variables in X(1) are treated as completely unobserved, and an
observed law ADMG G(X,O,R) is obtained by applying the latent projection operator to G(X(1), O,R,X). The Moebius
parameters are then derived in a similar manner as before, with the additional constraint that if Xi ∈ X appears in the
head of a Moebius parameter, and the corresponding missingness indicator Ri appears in the tail, then the kernel must be
restricted to cases where Ri = 1. This is because when Ri = 0, the probability of the head taking on any value, aside from
those where Xi =?, is deterministically defined to be 0.

Note that parameterizing the observed law by treating variables in X(1) as fully unobserved does not quite capture all
equality constraints that may be detectable in the observed law, as these variables are, in fact, sometimes observable when
their corresponding missingness indicators are set to one. Indeed, a smooth parameterization of the observed law of missing
data models that captures all constraints implied by the model, is still an open problem. Nevertheless, parameterizing an
observed law ADMG, such as the one mentioned earlier, provides an upper bound on the number of parameters required to
parameterize the true observed law. This suffices for our purposes, as demonstrating that the upper bound on the number of
parameters in the observed law is less than the number of parameters in the full law, is sufficient to prove that the full law is
not identified.
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Figure 1. (a) The missing data DAG model used in Scenario 2. (b) the missing data ADMG model used in Scenario 3.

B. Example: Odds Ratio Parameterization
To build up a more concrete intuition for Theorems 1 and 3, we provide an example of the odds ratio parameterization for
the missing data models used in Scenarios 2 and 3 of the main paper, reproduced here in Figs. 1(a, b). Utilizing the order
R1, R2, R3 on the missingness indicators, the odds ratio parameterization of the missing data process for both models is as
follows.

1

Z
×
( 3∏
k=1

p(Ri | R−i = 1, X(1))

)
× OR(R1, R2, | R3 = 1, X(1))× OR(R3, (R1, R2) | X(1)). (1)

We now argue that each piece in Eq. 1 is identified. Note that, in the missing data DAG shown in Fig. 1(a), Ri ⊥⊥ X(1)
i |

R−i, X
(1)
−i by d-separation. The same is true for the missing data ADMG in Fig. 1(b) by m-separation. Thus, in both cases,

the product over conditional pieces of each Ri given the remaining variables is not a function X(1)
i , and is thus a function of

observed data. We now show that OR(R1, R2 | R3 = 1, X(1)) is not a function of X(1)
1 , X

(1)
2 by utilizing the symmetry

property of the odds ratio.

OR(R1, R2 | R3 = 1, X(1)) =
p(R1 | R2, R3 = 1, X

(1)
2 , X

(1)
3 )

p(R1 = 1 | R2, R3 = 1, X
(1)
2 , X

(1)
3 )
× p(R1 = 1 | R2 = 1, R3 = 1, X

(1)
2 , X

(1)
3 )

p(R1 | R2 = 1, R3 = 1, X
(1)
2 , X

(1)
3 )

= OR(R2, R1 | R3 = 1, X(1)) =
p(R2 | R1, R3 = 1, X

(1)
1 , X

(1)
3 )

p(R2 = 1 | R1, R3 = 1, X
(1)
1 , X

(1)
3 )
× p(R2 = 1 | R1 = 1, R3 = 1, X

(1)
1 , X

(1)
3 )

p(R2 | R1 = 1, R3 = 1, X
(1)
1 , X

(1)
3 )

.

Thus, from the first equality, the odds ratio is not a function of X(1)
2 as R1 ⊥⊥ X(1)

1 | R−1, X(1)
−1 by d-separation in Fig. 1(a)

and by m-separation in Fig. 1(b). A symmetric argument holds for X(1)
2 and R2 as seen in the second and third equalities.

Hence, the odds ratio is only a function of X(1)
3 , which is observable, as the function is evaluated at R3 = 1.

We now utilize an identity from (Chen et al., 2015) in order to simplify the final term in Eq. 1. That is,

OR(R3, (R1, R2) | X(1)) = OR(R3, R2 | R1 = 1, X(1)) OR(R3, R1 | R2, X
(1))

= OR(R3, R2 | R1 = 1, X(1)) OR(R3, R1 | R2 = 1, X(1))
OR(R3, R1 | R2, X

(1))

OR(R3, R1 | R2 = 1, X(1))︸ ︷︷ ︸
f(R1,R2,R3|X(1))

.

The first two pairwise odds ratio terms are functions of observed data using an analogous argument that draws on the
symmetry property of the odds ratio and the conditional independence Ri ⊥⊥ Xi | R−i, X(1)

−i , as before. The final term
f(R1, R2, R3 | X(1)), is a three-way interaction term on the odds ratio scale and can be expressed in three different ways as
follows (Chen et al., 2015),

OR(R3, R1 | R2, X
(1))

OR(R3, R1 | R2 = 1, X(1))
=

OR(R2, R3 | R1, X
(1))

OR(R2, R3 | R1 = 1, X(1))
=

OR(R1, R2 | R3, X
(1))

OR(R1, R2 | R3 = 1, X(1))
.

From the first equality, we note by symmetry of the odds ratio and conditional independence that f is not a function of
X

(1)
1 , X

(1)
3 . Similarly, from the second equality, we note that f is not a function of X(1)

2 , X
(1)
3 . Finally, from the third

equality, we note that f is not a function of X(1)
1 , X

(1)
2 . Therefore, f is not a function of X(1)

1 , X
(1)
2 , X

(1)
3 and is identified.
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The normalizing function Z, is a function of all the pieces that we have already shown to be identified, and is therefore also
identified. Thus, the missing data mechanisms p(R | X(1)), and consequently, the full laws corresponding to the missing
data graphs shown in Figs. 1(a,b) are identified by Remark 2.
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C. Proofs
We first prove Lemmas 1 and 2 as we use them in the course of proving Theorems 1 and 3. We start with Lemma 2, as the
proof for Lemma 1 simplifies to a special case.

Lemma 2 A missing data model of an ADMG G that contains no colluding paths is a submodel of the itemwise conditionally
independent nonresponse model described in (Shpitser, 2016; Sadinle & Reiter, 2017).

Proof. The complete Markov blanket of a vertex Vi in an ADMG G, denoted mbcG(Vi) is the set of vertices such that
Vi ⊥⊥ V−i \mbcG(Vi) | mbcG(Vi) (Pearl, 1988; Richardson, 2003). In ADMGs, this set corresponds to the Markov blanket
of Vi, its children, and the Markov blanket of its children. That is,

mbcG(Vi) ≡ mbG(Vi) ∪
( ⋃
Vj∈chG(Vi)

Vj ∪mbG(Vj)

)
\ {Vi}.

Without loss of generality, we ignore the part of the graph involving the deterministic factors p(X | X(1), R) and the
corresponding deterministic edges, in the construction of the Markov blanket and complete Markov blanket of variables in a
missing data graph G(X(1), O,R). We now show that the absence of non-deterministic colluder paths between a pair X(1)

i

and Ri in G implies that X(1)
i /∈ mbcG(Ri).

• X(1)
i is not a parent of Ri, as X(1)

i → Ri is trivially a colluder path.

• X(1)
i is not in the district of Ri, as X(1)

i ↔ · · · ↔ Ri is also a colluder path.

These two points together imply that X(1)
i /∈ mbG(Ri). We now show that the union over children of Ri and their Markov

blankets also exclude X(1)
i .

• X(1)
i is not a child of Ri, as directed edges from Ri to variables in X(1) are ruled out by construction in missing data

graphs.

• X(1)
i is also not in the district of any children of Ri, as Ri → · · · ↔ X

(1)
i is a colluding path.

• X(1)
i is also not a parent of the district of any children of Ri, as Ri → · · · ← X

(1)
i is a colluding path.

These three points together rule out the possibility that X(1)
i is present in the union over children and Markov blankets of

children of Ri. Thus, we have shown that X(1)
i 6∈ mbcG(Ri). This implies the following,

Ri ⊥⊥ V \ {Ri,mbcG(Ri)} | mbcG(Ri) =⇒ Ri ⊥⊥ X(1)
i | mbcG(Ri).

By semi-graphoid axioms (see for example, (Lauritzen, 1996; Pearl, 2009)) this yields the conditional independence
Ri ⊥⊥ X(1)

i | R−i, X(1)
−i , O.

The same line of reasoning detailed above can be used for all Ri ∈ R, which then gives us the set of conditional
independences implied by the no self-censoring model. That is,

Ri ⊥⊥ X(1)
i | R−i, X(1)

−i , O, ∀Ri ∈ R.

Lemma 1 A missing data model of a DAG G that contains no self-censoring edges and no colluders, is a submodel of the
itemwise conditionally independent nonresponse model described in (Shpitser, 2016; Sadinle & Reiter, 2017).
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Proof. A DAG is simply a special case of an ADMG with no bidirected edges. Consequently the only two types of colluding
paths, are self-censoring edges (X(1)

i → Ri) and colluder structures (X(1)
i → Rj ← Ri). Thus, the absence of these

two structures in a missing data DAG G, rules out all possible colluding paths. The rest of the proof then carries over
straightforwardly from Lemma 2.

Theorem 1 A full law p(R,X(1), O) that is Markov relative to a missing data DAG G is identified if G does not contain
edges of the form X

(1)
i → Ri (no self-censoring) and structures of the form X

(1)
j → Ri ← Rj (no colluders), and the stated

positivity assumption holds. Moreover, the resulting identifying functional for the missingness mechanism p(R | X(1), O) is
given by the odds ratio parameterization provided in Eq. 2 of the main draft, and the identifying functionals for the target
law and full law are given by Remarks 1 and 2.

Proof. Given Eq. (2), we know that

p(R | X(1), O) =
1

Z
×

K∏
k=1

p(Rk | R−k = 1, X(1), O)×
K∏
k=2

OR(Rk, R≺k | R�k = 1, X(1), O),

where R−k = R \Rk, R≺k = {R1, . . . , Rk−1}, R�k = {Rk+1, . . . , RK}, and

OR(Rk, R≺k | R�k = 1, X(1), O) =
p(Rk | R�k = 1, R≺k, X

(1), O)

p(Rk = 1 | R�k = 1, R≺k, X(1), O)
× p(Rk = 1 | R−k = 1, X(1), O)

p(Rk | R−k = 1, X(1), O)
,

and Z is the normalizing term and is equal to
∑

r{
∏K

k=1 p(rk | R−k = 1, X(1), O)×
∏K

k=2 OR(rk, r≺k | R�k = 1, X(1), O)}.
If we can prove that all the pieces in this factorization are identified, then the missingness process is identified and so is the
full law. We provide the proof in two steps. Our proof is similar to the identification proof of the no self-censoring model
given in (Malinsky et al., 2019).

For each k ∈ 3, . . . ,K, we can apply the following expansion to the odds ratio term. Without loss of generality we drop
fully observed random variables O for brevity,

OR(Rk, R≺k | R�k = 1, X(1)) = OR(Rk, Rk−1 | R−(k,k−1) = 1, X(1))× OR(Rk, R≺k−2 | R�k = 1, Rk−1, X
(1)). (2)

This expansion can be applied inductively to the second term in the above product until OR(Rk, R≺k | R�k = 1, X(1)) is
expressed as a function of pairwise odds ratios and higher-order interaction terms. Applying the inductive expansion to each
odds ratio term in

∏K
k=2 OR(Rk, R≺k | R�k = 1, X(1)) we can re-express the identifying functional as,

p(R | X(1)) =
1

Z
×

K∏
k=1

p(Rk | R−k = 1, X(1))

×
∏

Rk,Rl∈R

OR(Rk, Rl | R−(k,l) = 1, X(1))×
∏

Rk,Rl,Rm∈R

f(Rk, Rl, Rm | R−(k,l,m) = 1, X(1))

×
∏

Rk,Rl,Rm,Rn∈R

f(Rk, Rl, Rm, Rn | R−(k,l,m,n) = 1, X(1))× · · · × f(R1, . . . , RK | X(1)), (3)

where Z is the normalizing constant as before, and each f(· | ·, X(1)) are 3-way, 4-way, up to K-way interaction terms.
These interaction terms are defined as follows.

f(Ri, Rj , Rk|R−(i,j,k) = 1, X
(1)

) =
OR(Ri, Rj |Rk, R−(i,j,k) = 1, X(1))

OR(Ri, Rj |Rk = 1, R−(i,j,k) = 1, X(1))
,

and

f(Ri, Rj , Rk, Rl|R−(i,j,k,l) = 1, X
(1)

) =
OR(Ri, Rj |Rk, Rl, R−(i,j,k,l) = 1, X(1))

OR(Ri, Rj |Rk = 1, Rl, R−(i,j,k,l) = 1, X(1))
×

OR(Ri, Rj |Rk = 1, Rl = 1, R−(i,j,k,l) = 1, X(1))

OR(Ri, Rj |Rk, Rl = 1, R−(i,j,k,l) = 1, X(1))
,

and so on, up to

f(R1, ..., RK | X(1)
) = OR(Ri, Rj |R−(i,j), X

(1)
)

×

∏
Rk,Rl∈R

OR(Ri, Rj |R(k,l) = 1, R−(i,j,k,l), X
(1)

)
∏

Rk,Rl,Rm,Rn∈R
OR(Ri, Rj |R(k,l,m,n) = 1, R−(i,j,k,l,m,n), X

(1)
)× · · ·

∏
Rk∈R

OR(Ri, Rj |Rk = 1, R−(i,j,k), X
(1)

)
∏

Rk,Rl,Rm∈R
OR(Ri, Rj |R(k,l,m) = 1, R−(i,j,k,l,m), X

(1)
)× · · ·

.
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Readers familiar with the clique potential factorization of Markov random fields may treat these interaction terms analogously
(Malinsky et al., 2019). We now show that each term in the above factorization is identified.

Step 1.
We start off by looking at the conditional pieces p(Rk | R−k = 1, X(1), O). Given Lemma. 1, we know that Rk ⊥⊥ X(1)

k |
R−k, X

(1)
−k , O. Therefore, p(Rk | R−k = 1, X(1), O) = p(Rk | R−k = 1, X

(1)
−k , O),∀k, is identified for all Rk ∈ R.

Step 2.
We now show that for any Rk, Rl ∈ R, the pairwise odds ratio OR(Rk, Rl | R{−(k,l)} = 1, X(1)) given in Eq. (3) is
identified. We know that

OR(Rk, Rl | R−(k,l) = 1, X(1)) = OR(Rk, Rl | R−(k,l) = 1, X−(k,l), X
(1)
k , X

(1)
l ).

Consequently, if we can show that the odds ratio is neither a function of X(1)
k nor X(1)

l , then we can safely claim that the
odds ratio is only a function of observed data and hence is identified. We get to this conclusion by exploiting the symmetric
notion in odds ratios.

OR(Rk, Rl | R−(k,l) = 1, X(1)) =
p(Rk | Rl, R−(k,l) = 1, X(1))

p(Rk = 1 | Rl, R−(k,l) = 1, X(1))
× p(Rk = 1 | R−k = 1, X(1))

p(Rk | R−k = 1, X(1))

=
p(Rl | Rk, R−(k,l) = 1, X(1))

p(Rl = 1 | Rk, R−(k,l) = 1, X(1))
× p(Rl = 1 | R−l = 1, X(1))

p(Rl | R−l = 1, X(1))

In the first equality, we can see that the odds ratio is not a function of X(1)
k since Rk ⊥⊥ X(1)

k | R−k, X(1)
−k . Similarly, from

the second equality, we can see that the odds ratio is not a function of X(1)
l since Rl ⊥⊥ X(1)

l | R−l, X(1)
−l . Therefore, the

pairwise odds ratios are all identified.

Finally we show that each of the higher-order interaction terms are identified. For each of these terms we need to show that
they are not a function of missing variables with indices corresponding to indicators to the left of the conditioning bar. That
is, we need to show that the 3-way interaction terms f(Rk, Rl, Rm | R−(k,l,m) = 1, X(1)) are not functions of X(1)

(k,l,m),

the 4-way interaction terms f(Rk, Rl, Rm, Rn | R−(k,l,m,n) = 1, X(1)) are not functions of X(1)
(k,l,m,n), and so on until

finally the K-way interaction term f(R1, . . . , RK | X(1)) is not a function of X(1).

Because of the way the odds ratio is defined, each f(· | ·, X(1)) is symmetric in the k arguments appearing to the left of the
conditioning bar and can be rewritten in multiple equivalent ways. In particular, each k-way interaction term can be rewritten
in
(
k
2

)
ways for any choice of indices i, j of the missingness indicators that appear to the left of the conditioning bar. Each

such representation allows us to conclude that f(· | ·, X(1)) is not a function of X(1)
i , X

(1)
j . Combining all these together

allows us to conclude that the k-way interaction term f(· | ·, X(1)) is not a function of the missing variables corresponding
to the indicators appearing on the left of the conditioning bar.

As a concrete example, consider the 3-way interaction f(R1, R2, R3 | R−(1,2,3) = 1, X(1)). We can write it down in three
different ways as follows.

f(Ri, Rj , Rk | R−(1,2,3) = 1, X
(1)

)

=
OR(R1, R2 | R−(1,2,3) = 1, R3, X

(1))

OR(R1, R2 | R−(1,2,3) = 1, R3 = 1, X(1))
=

OR(R1, R3 | R−(1,2,3) = 1, R2, X
(1))

OR(R1, R3 | R−(1,2,3) = 1, R2 = 1, X(1))
=

OR(R2, R3 | R−(1,2,3) = 1, R1, X
(1))

OR(R2, R3 | R−(1,2,3) = 1, R1 = 1, X(1))

From the first equality, we note that f is not a function of X(1)
1 , X

(1)
2 . From the second equality, we note that f is not a

function of X(1)
1 , X

(1)
3 . From the third equality, we note that f is not a function of X(1)

2 , X
(1)
3 . Therefore, f is not a function

of X(1)
1 , X

(1)
2 , X

(1)
3 and is identified.

Theorem 2 The graphical condition of no self-censoring and no colluders, put forward in Theorem 1, is sound and complete
for the identification of full laws p(R,O,X(1)) that are Markov relative to a missing data DAG G.
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Figure 2. (a, d, e) Examples of colluding paths in missing data models of ADMGs. (b) A DAG with hidden variable U that is Markov
equivalent to (a). (c) Projecting out X(1)

1 from (a), (f) Projecting out X(1)
1 and X

(1)
2 from (d) and (e).

Proof. Soundness is a direct consequence of Theorem 1. To prove completeness, it needs to be shown that in the presence
of a self-censoring edge, or a colluder structure, the full law is no longer (non-parametrically) identified. A proof by
counterexample of both these facts was provided in (Bhattacharya et al., 2019). However, this can also be seen from the fact
that self-censoring edges and colluders are special cases of the colluding paths that we prove results in non-identification of
the full law in Lemma 3.

Theorem 3 A full law p(R,X(1), O) that is Markov relative to a missing data ADMG G is identified if G does not contain
any colluding paths and the stated positivity assumption in Section 5 holds. Moreover, the resulting identifying functional for
the missingness mechanism p(R | X(1), O) is given by the odds ratio parametrization provided in Eq. 2 of the main draft.

Proof. The proof strategy is nearly identical to the one utilized in Theorem 1, except the conditional independences
Rk ⊥⊥ X(1)

k | R−k, X(1)
−k , O come from Lemma 2 instead of Lemma 1.

Lemma 3 A full law p(R,X(1), O) that is Markov relative to a missing data ADMG G containing a colluding path between
any pair X(1)

i ∈ X(1) and Ri ∈ R, is not identified.

Proof. Proving the non-identifiability of missing data models of an ADMG G that contains a colluding path can be shown
by providing two modelsM1 andM2 that disagree on the full law but agree on the observed law. Coming up with a single
example of such a pair of models is sufficient for arguing against non-parametric identification of the full law. Therefore, for
simplicity, we restrict our attention to binary random variables. We first provide an example of such a pair of models on the
simplest form of a colluding path, a bidirected edge X(1)

i ↔ Ri as shown in Fig. 2(a). According to Table 1, in order for the
observed laws to agree, the only requirement is that the quantity ab+ (1− a)c remain equal in both models; hence we can
come up with infinitely many counterexamples of full laws that are not the same but map to the same observed law.

Constructing explicit counterexamples are not necessary to prove non-identification as long as it can be shown that there
exist at least two distinct functions that map two different full laws onto the exact same observed law. For instance, if the
number of parameters in the full law is strictly larger than the number of parameters in the observed law, then there would
exist infinitely many such functions. Consequently, we rely on a parameter counting argument to prove the completeness
of our results. Since we are considering missing data models of ADMGs, we use the Moebius parameterization of binary
nested Markov models of an ADMG described in Appendix A.

The nested Markov model of a missing data ADMG G(V ), where V = {O,X(1), R,X}, is a smooth super model of the
missing data DAG model G(V ∪U), and has the same model dimension as the latent variable model (Evans, 2018). We also
utilize nested Markov models of an ADMG G(V \X(1)), corresponding to projection of the missing data ADMG G(V )
onto variables that are fully observable. While such a model does not capture all equality constraints in the true observed
law, it is still a smooth super model of it, thus providing an upper bound on the model dimension of the observed law. This
suffices for our purposes, as demonstrating that the upper bound on the number of parameters in the observed law is less
than the number of parameters in the full law, is sufficient to prove that the full law is not identified. We first walk the reader
through a few examples to demonstrate this proof strategy, and then provide the general argument.
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U p(U)
0 a
1 1− a

R1 U p(R1|U)
0 0 b
1 0 1− b
0 1 c
1 1 1− c

X
(1)
1 U p(X

(1)
1 |U)

0 0 d
1 0 1− d
0 1 e
1 1 1− e

R1 X
(1)
1 U p(R1, X

(1)
1 , U)

0 0 0 a ∗ b ∗ d
0 0 1 (1− a) ∗ c ∗ e
0 1 0 a ∗ b ∗ (1− d)
0 1 1 (1− a) ∗ c ∗ (1− e)
1 0 0 a ∗ (1− b) ∗ d
1 0 1 (1− a) ∗ (1− c) ∗ e
1 1 0 a ∗ (1− b) ∗ (1− d)
1 1 1 (1− a) ∗ (1− c) ∗ (1− e)

R1 X
(1)
1 p(Full Law) X1 p(Observed Law)

0 0 a ∗ b ∗ d+ (1− a) ∗ c ∗ e ? a ∗ b+ (1− a) ∗ c1 a ∗ b ∗ (1− d) + (1− a) ∗ c ∗ (1− e)

1 0 a ∗ (1− b) ∗ d+ (1− a) ∗ (1− c) ∗ e 0
a ∗ (1− b) + (1− a) ∗ (1− c)1 a ∗ (1− b) ∗ (1− d) + (1− a) ∗ (1− c) ∗ (1− e) 1

Table 1. Construction of counterexamples for non-identifiablity of the full law in Fig. 2(a) using the DAG with hidden variable U in
Fig. 2(b) that is Markov equivalent to (a).

SELF-CENSORING THROUGH UNMEASURED CONFOUNDING:

We start by reanalyzing the colluding path given in Fig. 2(a) and the corresponding projection given in Fig. 2(c). The
Moebius parameters associated with the full law are q(X(1)

1 = 0), q(R1 = 0), q(X
(1)
1 = 0, R1 = 1), for a total of 3

parameters. The Moebius parameters associated with the observed law in Fig 2(c) are q(R1 = 0), q(X
(1)
1 = 0 | R1 = 0),

for a total of only 2 parameters. Since 2 < 3, we can construct infinitely many mappings, as it was shown in Table 1.

SIMPLE COLLUDING PATHS:

Consider the colluding paths given in Fig. 2(d, e) and the corresponding projection (which are identical in both cases) given
in Fig. 2(f). The Moebius parameters associated with the full laws and observed law are shown in Table 2. Once again, since
the number of parameters in the observed law is less than the number in the full law (6 < 7), we can construct infinitely
many mappings.
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Moebius Parameterization of the Full Law in Fig. 2(d)

Districts Intrinsic Head/Tail Moebius Parameters Counts
{X(1)

1 } {X(1)
1 }, {} q(X

(1)
1 = 0) 1

{R2} {R2}, {} q(R2 = 0) 1

{R1, X
(1)
2 }

{R1}, {} q(R1 = 0) 1

{X(1)
2 }, {X

(1)
1 } q(X

(1)
2 = 0 | X(1)

1 ) 2

{R1, X
(1)
2 }, {X

(1)
1 } q(R1 = 0, X

(1)
2 = 0 | X(1)

1 ) 2
Total 7

Moebius Parameterization of the Full Law in Fig. 2(e)

Districts Intrinsic Head/Tail Moebius Parameters Counts
{R2} {R2}, {} q(R2 = 0) 1

{R1, X
(1)
1 , X

(1)
2 }

{R1}, {} q(R1 = 0) 1

{X(1)
1 }, {} q(X

(1)
1 = 0) 1

{X(1)
2 }, {} q(X

(1)
2 = 0) 1

{R1, X
(1)
2 }, {} q(R1 = 0, X

(1)
2 = 0) 1

{X(1)
1 , X

(1)
2 }, {} q(X

(1)
1 = 0, X

(1)
2 = 0) 1

{R1, X
(1)
1 , X

(1)
2 }, {} q(R1 = 0, X

(1)
1 = 0, X

(1)
2 = 0) 1

Total 7

Moebius Parameterization of the Observed Law in Fig. 2(f)

Districts Intrinsic Head/Tail Moebius Parameters Counts
R2 {R2}, {} q(R2 = 0) 1

{R1, X1, X2}

{R1}, {} q(R1 = 0) 1
{X1}, {R1} q(X1 = 0 | R1) 1
{X2}, {R2} q(X2 = 0 | R2) 1
{R1, X2}, {R2} q(R1 = 0, X2 = 0 | R2) 1
{X1, X2}, {R1, R2} q(X1 = 0, X2 = 0 | R1, R2) 1

Total 6

Table 2. Moebius Parameterization of the Full and Observed Laws of missing data ADMGs
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X
(1)
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V1 · · · VS Ri

(a)

X
(1)
i

V1 · · · VS Ri

(b)

X
(1)
i

V1 · · · RS Ri

(c)

X
(1)
i

V1 · · · RS Ri

(d)

Xi V ∗1 · · · V ∗S Ri

(e)

Xi V ∗1 · · · RS Ri

(f)

Figure 3. (a) Colluding paths (b) Projecting out X(1)

A GENERAL ARGUMENT:

In order to generalize our argument, we first provide a more precise representation (that does not use dashed edges) in
Figs. 3(a-d), of all possible colluding paths between X(1)

i and Ri. Without loss of generality, assume that there are K
variables inX(1) and there are S variables that lie on the collider path betweenX(1)

i andRi, S ∈ {0, 1, . . . , 2∗(K−1)}. We
denote the sth variable on the collider path by Vs; Vs ∈ {X(1) \X(1)

i , R \Ri}. Note that VS in Figs. 3(c, d) can only belong
to {R \Ri} by convention. Fig. 3(e) illustrates the corresponding projections of figures (a) and (b), and Fig. 3(f) illustrates
the corresponding projections of figures (c) and (d). In the projections shown in Figs. 3(e, f), V ∗ ∈ {X \X(1)

i , R \Ri}.

We now go over each of these colluding paths and their corresponding latent projections, as if they appear in a larger graph
that is otherwise completely disconnected. We count the number of Moebius parameters as a function of S, and show that
the full law always has one more parameter than the observed law. One can then imagine placing these colluding paths
in a larger graph with arbitrary connectivity, and arguing that the full law is still not identified as a consequence of the
parameter discrepancy arising from the colluding path alone. That is, if we show a fully disconnected graph containing a
single colluding path is not identified, then it is also the case that any edge super graph (super model) is also not identified.

In the following proof we heavily rely on the following fact. Given a bidirected chain of length V1 ↔, · · · ,↔ VK , of length
K, the number of Moebius parameters required to parameterize this chain is given by the sum of natural numbers 1 to K,
i.e., K(K+1)

2 . This can be seen from the fact that the corresponding Moebius parameters are given by the series,

• q(V1 = 0), q(V1 = 0, V2 = 0), . . . , q(V1 = 0, . . . , VK = 0) corresponding to K parameters.

• q(V2 = 0), q(V2, V3 = 0), . . . , q(V2 = 0, . . . , VK = 0) corresponding to K − 1 parameters.

• . . .

• q(VK = 0) corresponding to 1 parameter.

In counting the number of parameters for a disconnected graph (with the exception of the colluding path), we can also exclude
the singleton (disconnected) nodes from the counting argument since they account for the same number of parameters
in both the full law and observed law. In the full law they are either q(Rs = 0) or q(X(1)

s = 0) and the corresponding
parameters in the observed law are q(Rs = 0) or q(Xs = 0 | Rs = 1). The Moebius parameter counts for each of the
colluding paths in Figs. 3(a-d) and their corresponding latent projections in Figs. 3(e,f) are as follows.

Figures a, b, and e

1. Number of Moebius parameters in Fig. 3(a) is (S+2)(S+3)
2
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• A bidirected chain X(1)
i ↔, · · · ,↔ Ri of length S + 2, i.e., (S + 2) ∗ (S + 3)/2 parameters.

2. Number of Moebius parameters in Fig. 3(b) is (S+2)(S+3)
2

• q(X(1)
i = 0), i.e. 1 parameter,

• A bidirected chain V2 ↔ · · · ↔ Ri of length S, i.e. S ∗ (S + 1)/2 parameters,
• Intrinsic sets involving V1, i.e., q(V1 = 0 | X(1)

i ), q(V1 = 0, V2 = 0 | X(1)
i ), q(V1 = 0, . . . , Ri = 0 | X(1)

i )
corresponding to 2 ∗ (S + 1) parameters.

3. Number of Moebius parameters in Fig. 3(e) is (S+2)(S+3)
2 − 1

• Note that even though each proxy Xs that may appear in the bidirected chain has a directed edge from Rs pointing
into it, the corresponding intrinsic head tail pair that involves both variables, will always have Ri = 1. Hence, we
may ignore these deterministic edges and count the parameters as if it were a bidirected chain V ∗1 ↔ · · · ↔ Ri of
length S + 1, corresponding to (S + 1) ∗ (S + 2)/2 parameters,

• When enumerating intrinsic sets involving Xi, we note that {Xi, V
∗
1 , . . . V

∗
S } is not intrinsic as Ri is not fixable

(due to the bidirected path between Ri and Xi and the edge Ri → Xi). Thus, as there is one less intrinsic set
involving Xi, the number of parameters required to parameterize all intrinsic sets involving Xi is one fewer, i.e.,
S + 1 (instead of S + 2) parameters.

Figures c, d, and f

1. Number of Moebius parameters in Fig. 3(c) is (S+2)(S+3)
2

• q(Ri = 0), i.e. 1 parameter,
• A bidirected chain X(1)

i ↔ · · · ↔ VS−1 of length S, i.e. S ∗ (S + 1)/2 parameters,
• Intrinsic sets involving RS , i.e., q(RS = 0 | Ri), q(RS = 0, VS−1 = 0 | Ri), . . . , q(RS = 0, VS−1 =

0 . . . , X
(1)
i | Ri), corresponding to 2 ∗ (S + 1) parameters.

2. Number of Moebius parameters in Fig. 3(d) is (S+2)(S+3)
2

• q(X(1)
i = 0), q(Ri = 0), i.e. 2 parameters,

• A bidirected chain V2 ↔ · · · ↔ VS−2 of length S − 2, i.e. (S − 2) ∗ (S − 1)/2 parameters,
• Intrinsic sets involving V1 and not RS , i.e., q(V1 = 0 | X(1)

i ), q(V1 = 0, V2 = 0 | X(1)
i ), . . . , q(V1 = 0, V2 =

0, . . . , VS−1 | X(1)
i ), corresponding to 2 ∗ (S − 1) parameters,

• Intrinsic sets involving RS and not V1, i.e., q(RS = 0 | Ri), q(RS = 0, VS−1 = 0 | Ri), . . . , q(RS = 0, VS−1 =
0, . . . , V2 | Ri) corresponding to 2 ∗ (S − 1) parameters.

• The intrinsic set involving both V1 and RS , i.e., q(V1 = 0, V2 = 0, . . . , RS = 0 | X(1)
i , Ri), corresponding to 4

parameters.

3. Number of Moebius parameters in Fig. 3(f) is (S+2)(S+3)
2 − 1

• q(Ri = 0), i.e. 1 parameter,
• By the same argument as before, deterministic tails can be ignored. Hence, we have a bidirected chain Xi ↔
· · · ↔ VS−1 of length S, i.e. S ∗ (S + 1)/2 parameters,

• Intrinsic sets involving RS , i.e., q(RS = 0 | Ri), q(RS = 0, VS−1 | Ri), . . . , q(RS , VS−1, . . . , V1 | Ri),
corresponding to 2 ∗ S parameters, and the special intrinsic set which results in the observed law having one less
parameter q(RS , VS−1, . . . , V1, Xi | Ri = 1) corresponding to just 1 parameter instead of 2 due to the presence
of the proxy Xi in the head and the corresponding Ri in the tail.

Theorem 4 The graphical condition of the absence of colluding paths, put forward in Theorem 3, is sound and complete for
the identification of full laws p(R,O,X(1)) that are Markov relative to a missing data ADMG G.

Proof. Soundness is a direct consequence of Theorem 3 and completeness is a direct consequence of Lemma. 3.
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